
U-Boost NAS: Utilization-Boosted Di↵erentiable Neural Architecture Search 19

Table 2: Microarchitecture search space. DWS: Depthwise Separable.

block name type kernel dilation nonlinearity

conv2d 3x3 Convolution 3 1 ReLU
conv2d 5x5 Convolution 5 1 ReLU
dws 3x3 DWS Conv. 3 1 ReLU
dws 5x5 DWS Conv. 5 1 ReLU
dil 3x3 Convolution 3 2 ReLU
dil 5x5 Convolution 5 2 ReLU
identity - - - -
zero - - - -

A Micro-architecture search

Table 2 presents the candidate operations in a cell. We include standard, dilated
and depthwise separable (DWS) convolutions along with the identity and zero
operations. For simplicity, we only consider ReLU activations.

B Utilization and Runtime details

In this section, we analyze the utilization and runtime of all the building blocks.
We consider the operations of Table 2 as well as fully connected layers (for the
classifier). Maxpooling layers, batch normalization and activation functions, i.e.,
ReLUs, are characterized by full utilization and zero runtime, since they need
no matrix multiplications.

Let k1 and k2 be the kernel sizes, c and f the input and output channels, s1
and s2 the systolic array dimensions, h and w the height and width of the input,
b the batch size. The number of operations is

MACs = hwbk1k2cf (9)

The utilization of a specific layer is computed by dividing the number of
MACs by the runtime.

Convolution The runtime and utilization of a convolution are computed in
Section 3.2 of the main text:

RUNTIMEconv =

⇠
k1k2c

s1

⇡⇠
f

s2

⇡
hwb (10)

UTILconv =
k1k2cf

s1s2
l
k1k2c
s1

m l
f
s2

m (11)



20 A. C. Yüzügüler et al.

Table 3: Utilizations and runtimes for all building blocks. Symbols explained in
text. † includes all other layer types: identity, zero, maxpooling, ReLUs.

Block Type Runtime Utilization

Convolution
l

k1k2c
s1

m l
f
s2

m
hwb k1k2cf

s1s2
l
k1k2c

s1

ml
f
s2

m

Depthwise Convolution c
l

k1k2
s1

m
fhwb k1k2l

k1k2
s1

m
f

Fully connected
l

c
s1

m l
f
s2

m
b cf

s1s2
l

c
s1

ml
f
s2

m

† 0 1

Depthwise Convolution A single convolutional filter is applied to each input
channel. In this case the number of input and output channels is the same c = f .
There is no input reuse, meaning that only one column of the systolic array is

used. In other words, the
l

f
s2

m
term in Eq. 10 is replaced by

l
1
s2

m
= 1. Finally,

the operation is repeated c times, yielding the following runtime:

RUNTIMEdepthwise = c

⇠
k1k2
s1

⇡
hwb (12)

UTILdepthwise =
k1k2

s1s2
l
k1k2
s1

m (13)

The utilization is calculated by dividing the number of multiply-accumulates
(MACs) by the runtime. Eq. 13 shows the ine↵ectiveness of the depthwise con-
volution, which is inversely proportional to the second dimension of the systolic
array.

Depthwise Separable (DWS) Convolution The depthwise separable convo-
lution is the sequence of a depthwise convolution and a (standard) convolution.
Thus, the runtime and utilization are computed via addition of the respective
terms.

Fully Connected layers The runtime and utilization can be derived from the
convolution formulae by setting k1 = k2 = 1 and h = w = 1. Concretely, the
kernel size can be considered to be 1 ⇥ 1, while the fully connected layer has c
inputs and f outputs.



U-Boost NAS: Utilization-Boosted Di↵erentiable Neural Architecture Search 21

Table 4: Experimental results for CIFAR10 over 3 random seeds.

Accuracy (%, ") Runtime (µs, #) HV (#)

� 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0

Blackbox 91.4±1.07 90.2±0.25 91.3±0.66 90.4±0.83 209±57 155±9 147±14 122±2 1.47

Roofline 91.7±0.68 89.2±0.85 88.7±0.91 87.6±4.58 214±43 175±33 137±62 252±53 1.86

FLOPS 90.0±0.88 88.4±1.91 84.0±6.39 87.0±0.99 235±26 320±37 251±55 159±33 2.68

U-Boost 90.9±0.88 91.4±0.90 91.3±0.24 89.5±1.14 73±8 51±10 39±9 30±0 0.386

RUNTIMEfc =

⇠
c

s1

⇡⇠
f

s2

⇡
b (14)

UTILfc =
cf

s1s2
l

c
s1

m l
f
s2

m (15)

C Additional experimental results

In this Section, we present additional experiments on CIFAR10 and ImageNet100
datasets.

C.1 CIFAR10 dataset

Fig. 8 shows the cells found during the micro-architecture search stage for all

methods. The methods opt for di↵erent configurations. Specifically, the FLOPS
model selects mainly depthwise separable convolutions, since they correspond
to fewer operations. However, such convolutions result in very increased run-
times and severe mitigation in utilization, as Eq. 12 and Eq. 13 show. The
Roofline model operates on the compute-bound region and behaves identically
as the FLOPS model. The Blackbox model tries to compensate (in terms of uti-
lization) by omitting convolutions, including depthwise separable convolutions.
This suggests that it is able to understand that DWS are antithetical to the
utilization objective and opts for operations with no utilization overhead, such
as the identity and zero gates.

Table 4 presents the experimental results for CIFAR10 in more detail. The
proposed method achieves significantly lower runtimes for all � values outper-
forming the baselines in a range of ⇠ 2.8 � 5⇥. It is also worth mentioning
that the FLOPS and Roofline models do not exhibit decreasing runtimes as �
increases. They are also characterized by high variance in the runtime measure-
ments, indicating an unsophisticated search. This drawback can be attributed
to the loss function for the utilization term which does not take into account
the number of channels. The blackbox model and our proposed method have
lower standard deviations and a monotonically decreasing runtime. Finally, our
proposed method has better quality of exploration for the tradeo↵ of accuracy
and runtime, as the Hypervolume metric indicates.



22 A. C. Yüzügüler et al.

x
l�1

x
l�2

+ +

+

x
l

U-Boost

x
l�1

x
l�2

+ +

+

x
l

FLOPS

x
l�1

x
l�2

+ +

+

x
l

Black-box

x
l�1

x
l�2

+ +

+

x
l

Roofline

Convolution DepthWise Separable Convolution

Dilated Convolution

Zero

Identity+ Tensor addition

Fig. 8: Cell architectures found for � = 0.1 on the CIFAR10 dataset.



U-Boost NAS: Utilization-Boosted Di↵erentiable Neural Architecture Search 23

C.2 ImageNet100 dataset

Table 5 presents additional experimental results on ImageNet100. The FLOPS
and Roofline baselines exhibit significant drops in performance as more emphasis
is placed on runtime. U-Boost outperforms the other methods in terms of runtime
by a notable margin of ⇠ 2.1� 3.8⇥.

Table 5: imagenet100

Accuracy (%, ") Runtime (ms, #) HV (#)

� = 0.1 � = 1.0 � = 5.0 � = 0.1 � = 1.0 � = 5.0 (across �)

Blackbox 87.5 87.8 87.9 4.8 4.05 3.8 45.98

Roofline 86.5 84.0 74.2 4.7 3.5 2.9 100.62

FLOPS 87.2 78.4 80.2 6.1 3.45 3.42 102.02

U-Boost 87.8 87.9 86.3 2.2 1.05 0.77 13.94



24 A. C. Yüzügüler et al.

D Hyperparameters

The complete list of hyperparameters is presented in Table 6.

Table 6: Experiment Hyperparameters. � indicates that the ImageNet100 exper-
iment uses the same settings as the CIFAR10 experiment. †: the architecture for
ImageNet100 is produced by search on CIFAR10. MS: micro-architecture search,
CS: channel search, FT: final training.

CIFAR10 ImageNet100

ms no epoch 10 †
cs no epoch 30 †
ft no epoch 100 70

array size [128, 128] �
start arch train 0 �
weight vs arch 0.8 �
search sgd init lr 0.05 �
search sgd momentum 0.9 �
search sgd weight decay 3e-4 �
search weight grad clip 0.5 �
adam init lr 0.1 �
adam weight decay 0 �
init tau 1.0 �
tau anneal rate 0.95 �
min tau 0.001 �
search batch size 64 �
train batch size 256 �
train sgd init lr 0.1 �
train sgd momentum 0.9 �
train sgd weight decay 5e-4 �
train weight grad clip 0.5 �


