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Abstract. There are good arguments to support the claim that deep
neural networks (DNNs) capture better feature representations than the
previous hand-crafted feature engineering, which leads to a significant
performance improvement. In this paper, we move a tiny step towards un-
derstanding the dynamics of feature representations over layers. Specif-
ically, we model the process of class separation of intermediate repre-
sentations in pre-trained DNNs as the evolution of communities in dy-
namic graphs. Then, we introduce modularity, a generic metric in graph
theory, to quantify the evolution of communities. In the preliminary ex-
periment, we find that modularity roughly tends to increase as the layer
goes deeper and the degradation and plateau arise when the model com-
plexity is great relative to the dataset. Through an asymptotic analysis,
we prove that modularity can be broadly used for different applications.
For example, modularity provides new insights to quantify the difference
between feature representations. More crucially, we demonstrate that the
degradation and plateau in modularity curves represent redundant layers
in DNNs and can be pruned with minimal impact on performance, which
provides theoretical guidance for layer pruning. Our code is available at
https://github.com/yaolu-zjut/Dynamic-Graphs-Construction.
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1 Introduction

DNNs have gained remarkable achievements in many tasks, from computer vision
[21,47,38] to natural language processing [54], which can arguably be attributed

https://orcid.org/0000-0003-0655-7814
https://orcid.org/0000-0002-8525-5672
https://orcid.org/0000-0003-2662-608X
https://orcid.org/0000-0003-1806-6676
https://orcid.org/0000-0002-7153-2755
https://orcid.org/0000-0002-6320-7012
https://orcid.org/0000-0002-8182-2852
https://orcid.org/0000-0003-3117-2211
https://github.com/yaolu-zjut/Dynamic-Graphs-Construction


2 Y. Lu et al.

10 5 0 5 10
10

5

0

5

10

Layer 1

10 5 0 5 10

10

5

0

5

10
Layer 2

10 5 0 5 10

10

5

0

5

10

Layer 3

10 0 10

10

5

0

5

10

Layer 4

10 0 10

10

0

10

Layer 5

20 10 0 10 20

20

10

0

10

20

Layer 6

20 0 20

20

10

0

10

20

Layer 7

20 0 20

20

10

0

10

20

30

Layer 8

2 4 6 8
Layer

0.2

0.4

0.6

0.8

Q

VGG11(92.11%)

airplane automobile bird cat deer dog frog horse ship truck

Fig. 1. (Left): t-SNE outputs for CIFAR-10 testing data after each layer in VGG11.
(Right): modularity curve of VGG11 on CIFAR-10. Best viewed in color.

to powerful feature representations learned from data [48,17]. Giving insight into
DNNs’ feature representations is helpful to better understand neural network be-
havior, which attracts much attention in recent years. Some works seek to charac-
terize feature representations by measuring similarities between the representa-
tions of various layers and various trained models [25,43,46,39,59,56,14]. Others
visualize the feature representations in intermediate layers for an intuitive un-
derstanding, revealing that the feature representations in the shallow layers are
relatively general, while those in the deep layers are more specific [7,72,50,58,36].
These studies are insightful, but fundamentally limited, because they ignore the
dynamics of DNNs or can only understand the dynamics of DNNs through qual-
itative visualization instead of quantitative study.

Hence, in this paper, we build upon previous studies and investigate the dy-
namics of intermediate layers. The left part of Fig. 1 shows t-SNE [34] outputs
for 500 CIFAR-10 testing samples after each convolutional layer in VGG11, from
which we are able to see how class separation in the feature representations pro-
gresses as the layer goes deeper. Inspired by this, we seek to quantify the process
of class separation of intermediate representations for better understanding the
dynamics of DNNs. Specifically, we treat each sample as a node, and there is an
edge between two nodes if their feature representations are similar in the corre-
sponding layer. Then we construct a series of graphs that share the same nodes,
which can be modeled as a dynamic graph due to the feature continuity. In this
way, we convert quantifying the process of class separation of intermediate repre-
sentations to investigate the evolution of communities in dynamic graphs. Then,
we introduce modularity to quantify the evolution of communities. As shown in
the right part of Fig. 1, the value of modularity indeed grows with the depth,
which is consistent with the process of class separation shown in the left part
of Fig. 1. This indicates that modularity provides a quantifiable interpretation
perspective for understanding the dynamics of DNNs.
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Then we conduct systematic experiments on exploring how the modularity
changes in different scenarios, including the training process, standard and ad-
versarial scenarios. Through further analysis of the modularity, we provide two
application scenarios for it: (i) representing the difference of various layers. (ii)
providing theoretical guidance for layer pruning. To summarize, we make the
following contributions:

• We model the class separation of feature representations from layer to layer
as the evolution of communities in dynamic graphs, which provides a novel
perspective for researchers to better understand the dynamics of DNNs.

• We leverage modularity to quantify the evolution of communities in dynamic
graphs, which tends to increase as the layer goes deeper, but descends or
reaches a plateau at particular layers. To preserve the generality of modular-
ity, systematic experiments are conducted in various scenarios, e.g., standard
scenarios, adversarial scenarios and training processes.

• Additional experiments show that modularity can also be utilized to repre-
sent the difference of various layers, which can provide insights on further
theoretical analysis and empirical studies.

• Through further analysis on the degradation and plateau in the modularity
curves, we demonstrate that the degradation and plateau reveal the redun-
dancy of DNNs in depth, which provides a theoretical guideline for layer
pruning. Extensive experiments show that layer pruning guided by modu-
larity can achieve a considerable acceleration ratio with minimal impact on
performance.

2 Related Work

Many researchers have proposed various techniques to analyze certain aspects
of DNNs. Hence, in this section, we would like to provide a brief survey of the
literature related to our current work.

Understanding feature representations. Understanding feature repre-
sentations of a DNN can obtain more information about the interaction between
machine learning algorithms and data than the loss function value alone. Previ-
ous works on understanding feature representations can be mainly divided into
two categories. One category quantitatively calculates the similarities between
the feature representations of different layers and models [25,43,46,39,59,56,14].
For example, Kornblith et al. [25] introduce centered kernel alignment (CKA) to
measure the relationship between intermediate representations. Feng et al. [14]
propose a new metric, termed as transferred discrepancy, to quantify the differ-
ence between two representations based on their downstream-task performance.
Compared to previous studies which only utilize feature vectors, Tang et al. [56]
leverage both feature vectors and gradients into designing the representations
of DNNs. On the basis of [25], Nguyen et al. [43] utilize CKA to explore how
varying depth and width affects model feature representations, and find that
overparameterized models exhibit the block structure. Through further analy-
sis, they show that some layers exhibit the block structure and can be pruned
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with minimal impact on performance. Another category attempts to obtain an
insightful understanding of feature representations through interpreting feature
semantics [7,72,50,58,36]. Wang et al. [58] and Zeiler et al. [72] discover the hier-
archical nature of the features in the neural networks. Specifically, shallow layers
extract basic and general features while deep layers learn more specifically and
globally. Yosinski et al. [68] quantify the degree to which a particular layer is
general or specific. Besides, Donahue et al. [11] investigate the transfer of feature
representations from the last few layers of a DNN to a novel generic task.

Modularity and community in DNNs. Previous empirical studies have
explored modularity and community in neural networks. Some seek to investigate
learned modularity and community structure at the neuron level[63,64,62,8,22,69]
or at the subnetwork level [6,27]. Others train an explicitly modular architecture
[2,19] or promote modularity via parameter isolation [24] or regularization [9]
during training to develop more modular neural networks. Different from these
existing works, in this paper, we explore the evolution of communities at the
feature representation level, which provides a new perspective to characterize
the dynamics of DNNs.

Layer pruning. State-of-the-art DNNs often involve very deep networks,
which are bound to bring massive parameters and floating-point operations.
Therefore, many efforts have been made to design compact models. Pruning
is one stream among them, which can be roughly devided into three cate-
gories, namely, weight pruning [16,3,31], filter pruning [30,29,57] and layer prun-
ing [66,13,73,5,60,61]. Weight pruning compresses over-parameterized models
by dropping redundant individual weights, which has limited applications on
general-purpose hardware. Filter pruning seeks to remove entire redundant fil-
ters or channels instead of individual weights. Compared to weight pruning and
filter pruning, layer pruning removes the entire redundant layers, which is more
suitable for general-purpose hardware. Existing layer pruning methods mainly
differ in how to determine which layers need to be pruned. For example, Xu
et al. [66] first introduce a trainable layer scaling factor to identify the redun-
dant layers during the sparse training. And then they prune the layers with very
small factors and retrain the model to recover the accuracy. Elkerdawy et al.
[13] leverage imprinting to calculate a per-layer importance score in one-shot
and then prune the least important layers and fine-tune the shallower model.
Zhou et al. [73] leverage the ensemble view of block-wise DNNs and employ the
multi-objective optimization paradigm to prune redundant blocks while avoiding
performance degradation. Based on the observations of [1], Chen and Zhao [5],
Wang et al. [60], and Wang et al. [61], respectively, utilize linear classifier probes
to guide the layer pruning. Specifically, they prune the layers which provide
minor contributions on boosting the performance of features.

Adversarial samples. Although DNNs have gained remarkable achieve-
ments in many tasks [21,47,38,54], they have been found vulnerable to adver-
sarial examples, which are born of intentionally perturbing benign samples in a
human-imperceptible fashion [55,18]. The vulnerability to adversarial examples
hinders DNNs from being applied in safety-critical environments. Therefore, at-
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Fig. 2. A dynamic graph with 4 snapshots. Nodes of the same color represent that
they are in the same community and the thickness of the line represents the weight of
the edge. we use Eq. (1) to calculate the modularity.

tacks and defenses on adversarial examples have attracted significant attention
in machine learning. There has been a multitude of work studying methods to
obtain adversarial examples [18,35,44,4,53,40,37,28] and to make DNNs robust
against adversarial examples [51,65].

3 Methodology

3.1 Preliminary

We start by introducing some concepts in graph theory.
Dynamic graphs are the graphs that change with time [20]. In this paper,

we focus on edge-dynamic graphs, i.e., edges may be added or deleted from the
graph. Given a dynamic graph: DG = {G1,G2, · · · ,GT }, where T is the number
of snapshots. Repeatedly leveraging the static methods on each snapshot can
collectively look insight into the graph’s dynamics. Communities, which are
quite common in many real networks [70,33,23], are defined as sets of nodes that
are more densely connected internally than externally [41,42]. Ground-truth
communities can be defined as the sets of nodes with common properties, e.g.,
common attribute, affiliation, role, or function [67]. Modularity, as a common
measurement to quantify the quality of communities [15,42], carries advantages
including intelligibility and adaptivity. In this paper, we adopt modularity Q as
following:

Q =
1

2W

∑
ij

(
aij −

sisj
2W

)
δ(ci, cj), (1)

where aij is the weight of the edge between node i and node j, W =
∑

i

∑
jaij

is the sum of the weights of all edges, which is used as a normalization factor.
si =

∑
jaij and sj =

∑
iaij are the strength of nodes i and j, ci and cj denote

the community that nodes i and j belong to, respectively. δ(ci, cj) is 1 if node
i and node j are in the same community and 0 otherwise. In this paper, each
node represents an image with the corresponding label. Hence, these nodes can
be divided into the corresponding ground-truth communities, which we utilize
to calculate the modularity. Fig. 2 gives an example to intuitively understand
the evolution of communities, from which we find that the communities with a
high value of modularity tend to strengthen the intra-community connections
and weaken the inter-community connections.
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Fig. 3. Pipeline for the dynamic graph construction and the application scenarios of
the modularity metric. Best viewed in color, zoomed in for details.

3.2 Dynamic Graph Construction

Our proposed dynamic graph construction framework to understand the dynam-
ics of a given DNN is visually summarized in Fig. 3.

Considering a typical image classification problem, the feature representation
of the sample is transformed over the course of many layers, to be finally utilized
by a classifier at the last layer. Therefore, we can model this process as follows:

ỹ = fl+1(fl(. . . f1(x) . . . )), (2)

where f1(·), f2(·), · · · , fl(·) are n functions to extract feature representations of
layers from bottom to top, fl+1(·) and l denote the classifier and the number
of layers, respectively. In this paper, we treat a bottleneck building block or a
building block as a layer for ResNets [21] and take a sequence of consecutive
layers, e.g., Conv-BN-ReLu, as a layer for VGGs [52]. We randomly sample N
samples X = {x1, x2, . . . , xN} with corresponding labels Y = {y1, y2, . . . , yN}
from the test set and feed them into a well-optimized DNN with fixed param-
eters to obtain an intermediate representation set R = {r1, r2, · · · , rl}, where
ri ∈ RN×Ci×Wi×Hi denotes the feature representations in i-th layer, Ci, Wi and
Hi are the number of channels, width and height of feature maps in i-th layer,
respectively. Then we apply a flatten mapping f : RN×C×W×H → RN×M to
each element in R, where M = C ×W ×H . In order to capture the underlying
relationship of samples in feature space, we construct a series of k-nearest neigh-
bor (k-NN) graphs Gi = (Ai, ri), where Ai is the adjacency matrix of the k-NN
graph in i-th layer. Specifically, we calculate the similarity matrix S = RN×N

among N nodes using Eq. (3).

S i
jk =


ri,j

T ri,k
||ri,j || ||ri,k||

, if j ̸= k

0, if j = k

, (3)

where ri,j and ri,k are the feature representation vectors of samples j and k
in i-th layer. According to the obtained similarity matrix S i

jk, we choose top
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k similar node pairs for each node to set edges and corresponding weights, so
as to obtain the adjacency matrix Ai. Now, we obtain a series of k-NN graphs
{Gi = (Ai, ri)|i = 1, 2, · · · , l}, which reveal the internal relationship between
feature representations of different samples in various layers. Due to the conti-
nuity of feature representations, i.e., feature representation of the current layer is
obtained on the basis of the previous one. Hence, these k-NN graphs are relevant
to each other and can be treated as multiple snapshots of the dynamic graph
DG = {G1,G2, · · · ,Gl} at different time intervals.

Then we revisit the dynamic graph for a better understanding of community
evolution. Fig. 2 exhibits a demo, from which we can intuitively understand the
process of community evolution in the dynamic graph.DG consists of l snapshots,
each snapshot shares same nodes (samples) and reveals the inherent correlations
between samples in the corresponding layer. Therefore, our dynamic graph is ac-
tually an edge-dynamic graph. Due to the existence of ground-truth label of each
sample, we can easily divide samples into K ground-truth communities. Hence,
we can calculate the modularity of each snapshot in DG using Eq. (1) together
with the ground-truth communities. According to the obtained modularity of
each snapshot, we finally obtain a modularity set Q = {Q1,Q2, · · · ,Ql}, which
reveals the evolution of communities in the dynamic graph.

4 Experiments

Our goal is to intuitively understand the dynamics in well-optimized DNNs.
Reflecting this, our experimental setup consists of a family of VGGs [52] and
ResNets [21] trained on standard image classification datasets CIFAR-10 [26],
CIFAR-100 [26] and ImageNet [49] (For the sake of simplicity, we choose 50
classes in original ImageNet, termed as ImageNet50). Specifically, we leverage
stochastic gradient descent algorithm with an initial learning rate of 0.01 to
optimize the model. The batch size, weight decay, epoch and momentum are
set to 256, 0.005, 150 and 0.9, respectively. The statistics of pre-trained models
and ImageNet50 are shown in Appendix B. All experiments are conducted on
two NVIDIA Tesla A100 GPUs. If not special specified, we set k = 3, N = 500
for CIFAR-10 and ImageNet50, k = 3, N = 1000 for CIFAR-100 to construct
dynamic graphs.

4.1 Understanding the Evolution of Communities

We systematically investigate the modularity curves of various models and repeat
each experiment 5 times to obtain the mean and variance of modularity curves.
From the results reported in Fig. 4, we have the following observations:

• The modularity roughly tends to increase as the layer goes deeper.
• On the same dataset, the frequency of degradation and plateau existing in the
modularity curve gradually increases as models get deeper. Specifically, the
modularity curve gradually reaches a plateau on CIFAR-10 and CIFAR-100
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Fig. 4. Modularity curves of different models. C10, C100 and I50 denote CIFAR-10,
CIFAR-100 and ImageNet50, respectively. Shaded regions indicate standard deviation.
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Fig. 5. Modularity curves of ResNets on ImageNet.

at the deep layer as VGG gets deeper. Compared to VGGs, the modularity
curve of ResNets descends, reaches a plateau, or rises very slowly mostly
happening in the repeatable layers.

• According to the modularity curves of VGG16 and VGG19, we can see that
as the complexity of the dataset increases, the plateau gradually disappears.

Since previous works [58,72] have shown that shallow layers extract general
features while deep layers learn more specifically. Hence, feature representations
of the same category are more similar in deep layers than in shallow layers, which
can be seen in Fig. 1. Therefore, the samples in the same community (category)
tend to connect with each other, i.e., the modularity increases as the layer goes
deeper. In this sense, the growth of modularity quantitatively reflects the pro-
cess of class separation in feature representations inside the DNNs. Besides, the
tendency of modularity is consistent with the observation of [1], which utilizes
linear classifier probes to measure how suitable the feature representations at
every layer are for classification. Compared to [1] that requires training a linear
classifier for each layer, our modularity provides a more convenient and effective
tool to understand the dynamics of DNNs.

According to the second and third findings, we can draw a conclusion that
the degradation and plateau arise when model complexity is great relative to the
dataset. With the relative complexity of the model getting greater, a little bit
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Fig. 7. Hyperparameter sensitivity analysis.

of performance improvement costs nearly doubling the number of layers, e.g.,
ResNet18 and ResNet34 on CIFAR-10. Many successive layers are essentially
performing the same operation over many times, refining feature representa-
tions just a little more each time instead of making a more fundamental change
of feature representations. Hence, these features representations exhibit a sim-
ilar degree of class separation, which explains the existence of the plateau and
degradation in the modularity curves. To further explore the relationship be-
tween the degradation as well as plateau and model relative complexity, we use
pre-trained ResNets in torchvision1 to conduct experiments on ImageNet. From
Fig. 5 we find that the tendency of modularity curves is almost consistent with
the observation in Fig. 4(b). The main difference lies in the modularity curves
of ResNet101 and ResNet152 trained on ImageNet50 exhibit the degradation
and plateau in the middle layer, while those trained on ImageNet do not, which
further confirms the conclusion we make. Additional experiment on exploring
the evolution of communities is presented in Appendix A.1.

4.2 Modularity Curves of Adversarial Samples

In Section 4.1, we discuss the modularity curves of normal samples. Here, we
would like to explore the modularity curves of adversarial samples. Specifically,

1 https://pytorch.org/vision/stable/index.html
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we first utilize FGSM [18], PGD [35], JSMA [44], CW [4], OnePixel [53] and
Local Search [40] to attack the pre-trained VGG16 and ResNet18 on CIFAR-10
for generating adversarial samples. To make it easier for others to reproduce
our results, we utilize default parameter settings in AdverTorch [10] to obtain
untargeted adversarial samples. The attack success rate is 100% for each attack
mode. Then we randomly choose 500 adversarial samples in each attack mode,
set k = 3 to construct dynamic graphs and plot modularity curves. As shown in
Fig. 6(a), we can find that the modularity curve of adversarial samples can reach
a smaller peak than normal samples, which can be interpreted as adversarial
attacks blur the distinctions among various categories.

4.3 Modularity during Training Time

During the training process, the model is considered to learn valid feature rep-
resentations. In order to explore the dynamics of DNNs in this process, we con-
duct experiments on ResNet18 and VGG16. Specifically, in the first 30 training
epochs, we save the model file and test accuracy of every epoch. Then we con-
struct a dynamic graph for each model and calculate the modularity of each
snapshot in this dynamic graph. Fig. 6(b) shows the modularity and accuracy
curves on ResNet18 and VGG16, from which we find that the values of modular-
ity in shallow layers nearly keep constant or small fluctuations. We believe that
is because feature representations in shallow layers are general [58,72], samples
in the same category do not cluster together. Hence, despite learning effective
feature representations, the value of modularity does not increase significantly.
Compared to shallow layers, feature representations in deep layers are more spe-
cific. With the improvement of model performance, the valid feature representa-
tions gradually learned by the model make intra-community connections tighter,
which explains the modularity curves of deep layers are almost proportional to
the accuracy curve. These phenomena may give some information about how the
training evolves inside the DNNs and guide the intuition of researchers. Besides,
we provide the experiment on randomly initialized models in Appendix A.2.

4.4 Ablation Study

To provide further insight into the modularity, we conduct ablation studies to
evaluate the hyperparameter sensitivity of the modularity. The batch size N and
the number of edges k that each node connects with are two hyperparameters.

Whether batch size N has a non-negligible impact on the modular-
ity curve? we set N = 200, 500, 1000, 2000, 5000, k = 3 to repeat experiments
on CIFAR-10 with pre-trained VGG16 and ResNet18. In Fig. 7(a), we show that
smaller N has relatively lower modularity in early layers but N has less influence
on modularity in final layers. Generally speaking, different values of N have the
same tendency on modularity curves.

Whether k has a non-negligible impact on the modularity curve?
we set N = 500, k = 3, 5, 7, 9, 11 to repeat the above experiments. Fig. 7(b)
shows that the different selections of k have a negligible impact on modularity
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because the modularity curves almost overlap together. We observe the similar
tendency even when k is large (see Appendix A.3 for details)).

Hence, we can conclude that the modularity is reliable for hyperparameters.

5 Application Scenarios of Modularity

In Section 4, we investigate the dynamics of DNNs, from which we gain some
insights. On this basis, we provide two application scenarios for the modularity.

5.1 Representing the Difference of Various Layers

In addition to quantifying the degree of class separation of intermediate repre-
sentations, modularity can also be used to represent the difference of various
layers like previous works [25,43,46,39,59,56,14]. Instead of directly calculating
the similarity between two feature representations, we compute the difference
of modularity of two layers because our modularity reflects the global attribute
of the corresponding layer, i.e., the degree of class separation. Specifically, we
calculate the difference matrix D, with its element defined as Dij = |Qi − Qj |.
Qi and Qj denote the value of modularity in i-th and j-th layer, respectively.
We visualize the result as a heatmap, with the x and y axes representing the
layers of the model. As shown in Fig. 8(a), the heatmap shows a block structure
in representational difference, which arises because representations after residual
connections are more different from representations inside ResNet blocks than
other post-residual representations. Moreover, we also reproduce the result of
linear CKA [25] in Fig. 8(b), from which we can see the same block structure.
Note that we measure the difference of various layers while [25] focuses on the
similarity, so the darker the color in Fig. 8(b), the less similar.

5.2 Guiding Layer Pruning with Modularity

In Section 4.1, we find that the degradation and plateau arise when model com-
plexity is great relative to the dataset. Previous works have demonstrated that
DNNs are redundant in depth [71] and overparameterized models exist many
consecutive hidden layers that have highly similar feature representations [43].
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Fig. 9. The modularity curves of VGGs and ResNets of different depths.
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Fig. 10. Experiments on pruning the irredundant layers.

Informed by these conclusions, we wonder if the degradation and plateau offer
an intuitive instruction in identifying the redundant layers. Hence, we assume
that the plateau and degradation make no contribution or negative contribution
to the model. In other words, these layers we consider are redundant and can be
pruned with acceptable loss. To verify our assumption, we conduct systematic
experiments on CIFAR-10, CIFAR-100 and ImageNet50.

Pruning the redundant layers. Since the plateau mostly appears in the
last few layers of VGG19, we remove the Conv-BN-ReLu in VGG19 one by one
from back to front to obtain a series of variants. As for ResNet152, we remove
the bottleneck building blocks from back to front in stage 3 (the degradation and
plateau mostly emerge in stage 3) to get variant models. Detailed structures are
shown in Appendix B. For example, VGG19 1 denotes VGG19 prunes 1 layer.
Then we finetune these variant models with the same hyperparameter setting
as section 4.1. The left part of Fig. 9 shows the results of VGGs on CIFAR-
10, from which we find that the modularity curves of different VGG almost
overlap together. The only difference between these modularity curves is whether
the plateau emerges in the last few layers. Specifically, the modularity curve of
VGG19 6 does not have the plateau, while VGG19 1 has the obvious plateau.
Moreover, the plateau gradually disappears as the layer is removed one by one
from back to front. Note that these variant models have similar performance,
which proves that the plateau is indeed redundant. The middle part and right
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part of Fig. 9 show the modularity curves of different ResNet on CIFAR-10
and ImageNet50. These modularity curves almost coincide in the shallow layers,
while the plateau gradually narrows with the continuous removal of the middle
layers. Consequently, this strongly proves that the plateau can be pruned with
minimal impact on performance.

Pruning the irredundant layers. In the previous paragraph, we verify
that removing redundant layers will not affect the accuracy. Here, we wonder
whether removing irredundant layers will result in a significant performance
drop. Hence, we conduct further experiments on CIFAR-10 and CIFAR-100 with
VGG11 (According to the modularity curves in Fig. 4, we think VGG11 is rel-
atively irredundant on CIFAR-10 and CIFAR-100). We remove the Conv-BN-
ReLu in VGG11 one by one from back to front to obtain a series of variants
and finetune them. Fig. 10(a) exhibits the modularity curves of those variants,
from which we can see that they can finally reach almost the same peak. Next
we calculate the corresponding variation of accuracy brought about by pruning
the layer. Specifically, we calculate the variation of modularity ∆Q of the final
layer with ∆Q = Qi −Qi−1, where Qi denotes the modularity of i-th layer that
we want to prune. Finally, we calculate the variation of accuracy ∆Acc using
∆Acc = Acci−Accj , where Acci and Accj represent the accuracy of the original
model and pruned model, respectively. Fig. 10(b) shows the results, from which
we can find that on CIFAR-10, removing the layer that modularity increases
0.01 results in nearly no influence (0.01%) on model performance, while pruning
the layer that has a 0.16 increment on modularity results in 0.57% degradation.
With the complexity of the dataset increasing, this gap becomes more obvious.
On CIFAR-100, pruning the layer that modularity goes up 0.08 leads to a 0.37%
drop in accuracy, while a variation of 0.26 in modularity causes a variation of
2.11% in accuracy. Hence, we draw a conclusion that the variation of accuracy
is proportional to the variation of modularity, which means pruning irredundant
layers will result in a more significant drop in performance than removing redun-
dant layers. Besides, This phenomenon becomes more obvious as the complexity
of the dataset increases.

Practicality of layer pruning by modularity. According to the above
experimental results, we are able to conclude that modularity can be used to
provide effective theoretical guidance for layer pruning. Here, we would like
to evaluate its practicality. Specifically, we first plot the modularity curve of
the original model, then we prune the layer where the curve drops, reaches a
plateau or grows slowly, finally we finetune the new model. We adapt number
of parameters and required Float Points Operations (denoted as FLOPs), to
evaluate model size and computational requirement. We leverage a package in
pytorch[45], which terms thop2 to calculate FLOPs and parameters. Table 1
shows the performance of different layer pruning methods [5,61] on ResNet56
for CIFAR. Compared with Chen et al, our method provides considerable bet-
ter parameters and FLOPs reductions (43.00% vs. 42.30%, 60.30% vs. 34.80%),
while yielding a higher accuracy (93.38% vs. 93.29%). Compared to DBP-0.5,

2 https://github.com/Lyken17/pytorch-OpCounter
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Table 1. Pruning results of ResNet56 on CIFAR-10. PR is the pruning rate.

Method Top-1% Params(PR) FLOPs(PR)

ResNet56 93.27 0% 0%
Chen et al [5] 93.29 42.30% 34.80%
DBP-0.5 [61] 93.39 / 53.41%

Ours 93.38 43.00% 60.30%

our method shows more advantages in FLOPs reduction (60.30% vs. 53.41%),
while maintaining a competitive accuracy (93.38% vs. 93.39%).

According to the above experiments, we demonstrate the effectiveness and
efficiency of layer pruning guided by modularity.

6 Conclusion and Future Work

In this study, through modeling the process of class separation from layer to
layer as the evolution of communities in dynamic graphs, we provide a graph
perspective for researchers to better understand the dynamics of DNNs. Then we
develop modularity as a conceptual tool and apply it to various scenarios, e.g.,
the training process, standard and adversarial scenarios, to gain insights into the
dynamics of DNNs. Extensive experiments show that modularity tends to rise as
the layer goes deeper, which quantitatively reveals the process of class separation
in intermediate layers. Moreover, the degradation and plateau arise when model
complexity is great relative to the dataset. Through further analysis on the
degradation and plateau at particular layers, we demonstrate that modularity
can provide theoretical guidance for layer pruning. In addition to guiding layer
pruning, modularity can also be used to represent the difference of various layers.

We hope the simplicity of our dynamic graph construction approach could
facilitate more research ideas in interpreting DNNs from a graph perspective.
Besides, we wish that the modularity presented in this paper can make a tiny step
forward in the direction of neural network structure design, layer pruning and
other potential applications. Recent work has shown that Vision Transformers
can achieve superior performance on image classification tasks [32,12]. In the
future, we will further explore the dynamics of Visual Transformers.
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