
18 Vandenhende et al.

A Implementation details

This section discusses additional implementation details of our experiments in
Sec. 4 and Sec. 5.

Data. We use the following publicly available datasets for fine-grained image
recognition: CUB [58], iNaturalist-2021 [55], and StanfordDogs [28]. The image
classifier implementation follows the typical implementation in PyTorch and
uses standard image augmentations (i.e., random resized cropping and random
horizontal flipping). We provide additional details for each dataset below:

– CUB: The CUB dataset consists of images of 200 bird species annotated
with keypoint locations of 15 bird parts, e.g., crown, beak, etc. Some of the
keypoint annotations distinguish between the left-right instances of parts:
‘left wing’ / ‘right wing’, ‘left leg’ / ‘right leg’, and ‘left eye’ / ‘right eye’.
We treat these as a single part during the evaluation of the Near-KP and
Same-KP metrics, i.e., ‘left wing’ and ‘right wing’ as ‘wing’.

– iNaturalist-2021: The iNaturalist-2021 dataset consists of various super-
categories (e.g., plants, insects, birds, etc.), covering 10,000 species in total.
The dataset contains a larger number of classes and more complex scenes
compared to other fine-grained image recognition datasets. Therefore, the
iNaturalist-2021 dataset can be considered as a more challenging testbed for
our approach. However, this dataset lacks keypoint annotations. We used
the bird supercategory for our quantitative evaluation in Sec. 4, and re-
quested human annotators to provide part keypoint information for 2,060
validation images. The keypoint definitions from the CUB dataset are used.
We did not perform a quantitative evaluation of other supercategories, as
these are considerably more challenging to annotate. Specifically, we identi-
fied the following challenges: (i) some supercategories do not have identifiable
parts (e.g., fungi), and (ii) some supercategories are too diverse, and do not
support common keypoint definitions across all sub-categories (e.g., plants,
mammals, insects, etc.). We do provide qualitative results on several of these
supercategories in Sec. C.

– StanfordDogs: The StanfordDogs dataset contains images of 120 dog breeds
taken from the ImageNet [19] dataset. The keypoint annotations are provided
by [10]. Again, we treat left-right instances of parts as the same part, i.e.,
left ear and right ear as just ear.

Classifier. The training follows the typical VGG-16 and ResNet-50 implemen-
tation in PyTorch [37] with 100 epochs. All models use pre-trained ImageNet [19]
weights. The training uses stochastic gradient descent with momentum 0.9 and
weight decay of 0.0001. We use batches of size 32 for the CUB and Stanford
Dogs datasets, and batches of size 256 for the iNaturalist-2021 dataset. The ini-
tial learning rate is selected via grid search and decreased by 10 at the 70-th and
90-th percentile of training.



Making heads or tails 19

Self-supervised models. We used the publicly available weights that were
provided by the authors of the respective works [13,23]. For DeepCluster and
SWAV, we adopt the models trained via the multi-crop augmentation from [13].
We pre-trained all models on ImageNet. Different pre-training schemes could be
used when considering more specialized domains like medical images.

Parts detector. We trained a parts detector on CUB. The parts detector
consists of a ResNet-50 backbone followed by a 1 × 1 convolutional layer. The
input images are 224× 224 pixels and the output has spatial dimensions 7× 7.
We project the ground-truth bird keypoint annotations onto a grid of shape 7×7
and train the parts detector to predict keypoint presence via a multi-class cross-
entropy loss. The loss is only applied to cells that contain at least one keypoint.
Training follows the classifier implementation but we decrease the number of
epochs to 50. The initial learning rate is 0.001. We evaluate the predictions via
the mean AP metric (excluding cells that contain no keypoints). The best model
obtains a mean AP of 92.3 on the validation set.

B Additional results

We report additional results that complement the ablation studies in the main
paper.

Selection of query-distractor classes. The experiments in Sec. 4 examine
counterfactual examples for query-distractor classes obtained via the confusion
matrix - for a query class c, we select the distractor class c′ as the class with
which images from c are most often confused. This procedure differs from the
approach in [22] which uses attribute annotations to select the most confusing
classes. In particular, the authors select c′ as the nearest neighbor class of c in
terms of the average attribute annotations provided with the dataset. We argue
that our setup is more generic as it does not use additional annotations. For
completeness, we provide results with both selection procedures in Table S1. We
observe that there are no significant differences in the results when adjusting the
selection procedure. In practice, the two selection procedures often generate the
same query-distractor class pairs. In conclusion, our selection procedure provides
a viable and more generic alternative to the method from [22].

Background as a metric. The CUB dataset contains mask annotations that
segment the foreground object. Prior work [22] used the object segmentation to
measure how often the counterfactuals select cells belonging to the foreground
object. Like the Same-KP metric, this foreground metric is a proxy for how
often the counterfactuals select discriminative cells, i.e., cells that explain the
class differences. For completeness, we report the results of the foreground metric
in Table S2. Our method outperforms the baseline [22] in terms of the foreground
metric, which indicates that we select more discriminative cells in the image. This



20 Vandenhende et al.

Table S1: Comparison of different methods to select the query-distractor
classes. We select the distractor class as the most confusing class in the confusion
matrix, or as the nearest neighbor class in terms of the average attribute annotations.
The results are reported for a VGG-16 classifier on CUB.

Method Selection Procedure Near KP Same KP #Edits

Goyal et al. [22]
Confusion Matrix 54.6 8.3 5.5
Attributes 55.0 8.6 5.4

Ours
Confusion Matrix 68.5 35.3 3.9
Attributes 68.6 35.6 3.9

Table S2: Ablation study of the foreground metric. The results are with VGG-16
on CUB. We compare the baseline [22] against our method.

Foreground Near KP Same KP #Edits

Goyal et al. [22] 94.2 54.6 8.3 5.5
Ours 99.1 (+4.9) 68.5 (+13.9) 35.3 (+23.0) 3.9

observation aligns with our conclusions in the paper based upon the Near-KP
metric. Note that the other metrics were discussed in Section 4.3.

Soft versus hard semantic constraint. We have modeled the semantic con-
sistency constraint in a soft way (see Eq. 4). That is, we select replacements that
balance the increase of gc′(·) with the semantic similarity of the image regions.
Alternatively, the constraint could be implemented in a hard way. That is, we
cluster the auxiliary spatial features first, e.g., K=50, and only replace query
cells with distractor cells from the same cluster. Table S3 compares the two
mechanisms. The hard constraint selects considerably less discriminative cells
(lower Near-KP and more edits) as it’s more restrictive of the cells that can be
replaced. In contrast, the soft constraint achieves better results, as it balances
the Ls and Lc losses in Eq. 4.

Table S3: Comparison of the hard and soft constraint mechanism. Results are
obtained with a VGG-16 classifier on CUB. We use a single distractor image.

Constraint Near KP Same KP #Edits

Hard 40.1 13.3 9.3
Soft 52.1 22.0 6.8

Clustering. We studied the part clustering accuracy via different auxiliary
models in Table 4. In this way, we verified whether the spatial feature represen-



Making heads or tails 21

tations of the auxiliary models are capable of disentangling parts. In this section,
we provide qualitative results of this experiment. Figure S1 visualizes clusters
found via a CUB classifier and DeepCluster model. We select several clusters
and highlight cells assigned to the same cluster. The DeepCluster features bet-
ter disentangle parts, i.e., cells assigned to the same cluster refer to the same
part.

D
e
e
p
C
lu
st
e
r

Beak Wing Tail Leg

C
U
B

C
la
ss
ifi
e
r

Background, Crown, Wing Nape, Tail, Throat, Wing Background, Nape, Wing Background, Legs, Nape, Tail

Fig. S1: Clustering visualizations. We study part disentanglement when clustering
the spatial features obtained with different auxiliary models. We highlight image regions
assigned to the same cluster (best viewed in color digitally). We indicate the parts found
in each cluster for the purpose of visualization.

Ablation of pre-filtering operation. We study the influence of the pre-
filtering step from Sec. 3.3 in Table S4. Namely, we vary k in the selected top-k%
permutations to be used in the multi-distractor setup. As it can be observed,
our method is very robust to the choice of the value k, so we selected k in order
to achieve around x10 speedup over the vanilla multi-distractor approach.

Effect of receptive field. We discuss how the receptive field size of the classi-
fication network effects the quality of the counterfactuals. Large receptive fields
can lead to poorer localization and reduce the counterfactual’s quality. For ex-
ample, the ResNet-50 models with receptive field size 299 yield lower numbers
in Table 2 compared to their VGG-16 counterparts with receptive field size 212.
We tried to mitigate this behavior by using features from the earlier conv5 1

layer instead of conv5 3 for ResNet and found it improves results. For example,
on CUB, this change led to a reduction in the number of edits from 8.0 to 3.2.



22 Vandenhende et al.

Table S4: Ablation of pre-filtering operation that selects k% of permutations via
the semantic similarity loss. We study the influence of varying k%.

k% Near KP Same KP #Edits Time (s)

0.01 61.2 34.1 4.8 0.18
0.05 66.8 34.9 4.2 0.64
0.10 68.5 35.3 3.9 1.15
0.15 68.9 35.5 3.9 1.71
0.20 69.1 35.9 3.8 2.20
1.00 (no-prefiltering) 69.2 36.0 3.8 10.82

In the future, we could further address this issue by using features from earlier
layers with better localization. Alternatively, we could explore techniques which
control the receptive field size of the network.

Interpretation of Same-KP. Visualization of our counterfactual explanations
shows that we consistently identify class-specific and semantically matched parts
(see Figure 3). However, the absolute values of the Same-KP metric in Table 2
might still seem low (< 40%). There are two main reasons for this. First, we
project the keypoint annotations from the query and distractor images onto
the discrete spatial cells during evaluation, associating each cell with a set of
keypoints. Now, keypoints lying near the cell boundaries are assigned to only
one cell. At the time of evaluation, for such a keypoint, even if a neighboring cell
is chosen for replacement, Same-KP metric is penalized. Secondly, a keypoint
represents just a near center point of a semantic part, rather than the whole
part. Hence, a wing of the bird may actually belong to two adjoining spatial
cells, but the keypoint is only in one cell. Thus we also report Near-KP metric
which does not suffer form these issues. In conclusion, our counterfactuals are
faithful, which is also reflected in our qualitative results.

C Qualitative results

Additional qualitative examples. Figures S2-S3 show counterfactual ex-
amples generated with different methods on the CUB [58], iNaturalist-2021
Birds [55] and StanfordDogs [28] datasets. The model is ResNet-50. In each
case, we highlight the single best edit. We observe that our counterfactual ex-
planations consistently identify class-specific and semantically consistent image
regions. This is opposed to other counterfactual explanations [22,59] which often
replace regions of different parts.

Qualitative examples for other iNaturalist-2021 supercategories. The
paper only studied the birds supercategory on iNaturalist-2021, as other super-
categories are considerably harder to annotate with keypoint information (see
discussion in Sec. A). In this subsection, we demonstrate that our method can



Making heads or tails 23

be applied to other supercategories too via qualitative results. We train separate
image classifiers on the supercategories of ‘Mammals’, ‘Insects’, and ‘Ray-finned
Fishes’, and generate counterfactual explanations using our approach. The im-
age classifiers use a ResNet-50 model, and training follows the iNaturalist-2021
implementation detailed in Sec. A. Figure S5 shows the results for the single best
edit. Again, we find that our counterfactual explanations highlight class-specific
and semantically consistent image regions in the query and distractor images.
In conclusion, our method applies to a broad variety of fine-grained image clas-
sification tasks.

Visualization of multiple edits. Recall that our method iteratively replaces
cells between the query image and distractor image(s) until the model’s decision
changes. So far, we have only showed visualizations of the first cell edit. Fig-
ure S6 shows counterfactual explanations where we visualize all edits until the
model’s decision changes. For the purpose of visualization, we randomly selected
counterfactual explanations that require three cell replacements. In each case,
we observe that all edits select class-specific and semantically consistent image
regions. In conclusion, our method achieves the desired result, not only for the
first edit, but across all edits.

Visualization of failure cases. Figure S7 shows three failure cases, where our
counterfactual explanations replace regions referring to different bird parts. The
examples were generated for a ResNet-50 classifier trained on the CUB dataset.
We make the following observations. First, the failure cases seem to occur for (i)
odd looking birds; e.g., the query bird in Example 1 looks quite different from
other birds in the CUB dataset, and (ii) for query images where certain bird
parts fall outside the image; e.g., the discriminative parts of the query bird in
Example 2 and Example 3 fall outside the image. Second, we observe that other
methods make similar mistakes. In conclusion, the failure cases seem caused by
the challenging nature of the examples, rather than being a pitfall in our method.



24 Vandenhende et al.

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S2: Additional qualitative results on CUB [58]. We highlight the best
edit in the query image (left) and distractor image (right).



Making heads or tails 25

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S3: Additional qualitative results on iNaturalist-2021 Birds [55].
We highlight the best edit in the query image (left) and distractor image (right).



26 Vandenhende et al.

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

S
C
O
U
T

[5
9
]

Example 4 Example 5 Example 6

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S4:Additional qualitative results on StanfordDogs [28].We highlight
the best edit in the query image (left) and distractor image (right).



Making heads or tails 27

Example 1 Example 2 Example 3

Example 4 Example 5 Example 6

Example 7 Example 8 Example 9

Example 10 Example 11 Example 12

Example 13 Example 14 Example 15

Fig. S5: Qualitative results on other iNaturalist-2021 supercategories.
We show counterfactual explanations from our method on the following
iNaturalist-2021 supercategories: ‘Mammals’, ‘Ray-finned Fishes’ and ‘Insects’.
We highlight the best edit in the query image (left) and distractor image (right).



28 Vandenhende et al.

Q
u
e
ry

D
is
tr
a
ct
o
r

Q
u
e
ry

D
is
tr
a
ct
o
r

Q
u
e
ry

D
is
tr
a
ct
o
r

Example 1

Edit 1 Edit 2 Edit 3

Example 2

Edit 1 Edit 2 Edit 3

Example 3

Edit 1 Edit 2 Edit 3

Example 4

Edit 1 Edit 2 Edit 3

Example 5

Edit 1 Edit 2 Edit 3

Example 6

Edit 1 Edit 2 Edit 3

Fig. S6: Visualization of consecutive edits on CUB. Our counterfactual
explanations iteratively replace single cells until the model’s decision changes.
The figure highlights these consecutive edits in the query image and distractor
image(s). To generate the figure, we select counterfactual explanation that use
three edits.



Making heads or tails 29

S
C
O
U
T

[5
9
]

Example 1 Example 2 Example 3

G
o
y
a
l
e
t
a
l.

[2
2
]

O
u
rs

Fig. S7: Failure cases. We show some failure cases, where our counterfactual
explanations replace regions referring to different parts.



30 Vandenhende et al.

D Computational cost analysis

In this section, we perform a complexity analysis of our approach. Additionally,
we include a compute time analysis under the multi-distractor setup.

Computational complexity. We perform a back-of-the-envelope calculation
of the number of multiply-add computations (MACs) in our framework. To sim-
plify the analysis, we consider the computational cost of performing a single edit.
Recall from Sec. 3 that the computational complexity of the classification loss
(Lc in Eq. 2) and semantic loss (Ls in Eq. 3) can be summarized as:

CLc
= 2 · Cf + h2w2 · Cg (5)

CLs
= 2 · Cu + h2w2 · Cdot. (6)

We compute counterfactual explanations using the 7×7×512 spatial features
of the max pooling2d 5 layer in VGG-16 [47]. The evaluation of the classification
loss Lc uses 318.8× 109 MACs (≈ 2 · 15.4× 109 for f + h2w2 · 1.2× 108 for g),
while the semantic loss Ls computation uses 8.2× 109 MACs (≈ 2 · 4.1× 109 for
u + h2w2 · 2.0 × 103 for the dot-product in the softmax s). We conclude that
the classification loss is expensive to compute due to it’s quadratic dependence
on the number of cells hw and the relatively high cost of evaluating the decision
network g(·). In contrast, the semantic loss does not suffer from it’s quadratic
term because the dot-product operation is inexpensive to compute. In conclusion,
Ls can be computed more efficiently compared to Lc.

The pre-filtering operation from Sec. 3.3 relies on the fast computation of
the semantic similarity loss to realize a speed-up. For example, we select the
top-10% most similar cells (k = 0.1) according to the semantic loss, and then
only consider the classification loss for this subset of cells. This reduces the
complexity of Lc to 59.6× 109 MACs (≈ 2 · 15.4× 109 for f + kh2w2 · 1.2× 108

for g). As a result, the overall computational cost is reduced from 327× 109 to
67×109 MACs, meaning our framework holds a significant speed advantage over
methods that compute Lc exhaustively [22].

This analysis does not consider the memory aspect of computing Lc and
Ls. It’s worth noting that the similarity loss also holds an advantage in terms
of memory usage compared to the classification loss. Specifically, in order to
compute the classification loss for all h2w2 permutations, we need to construct
all permutations in memory. This involves the allocation of h2w2 spatial cell
matrices by replacing cells in f(I) with cells from f(I ′). In contrast, computing
the similarity loss does not require to allocate O(h2w2) extra memory as it does
not involve replacing cells. Instead, the semantic loss operates directly on the
spatial feature matrices of the auxiliary model, i.e., u(I) and u(I ′).
Compute time analysis in a multi-distractor setup: Figure S8 reports
the average computation time per edit (on a single V-100 GPU) as a function
of the number of distractor images. We note that our method which includes
a pre-filtering operation (Sec. 3.3) scales linearly with the number of distractor
images and is about an order of magnitude faster compared to [22].



Making heads or tails 31

1 5 10 15 20
0

0.5

1

1.5

2

2.5

Number of distractor images

T
im

e
/
E
d
it
[s
]

Goyal et al. [22]
Ours

Fig. S8: Time analysis of multi-distractor setup.

E Attributes

E.1 Implementation details

We provide additional implementation details of how we add natural language
attribute information to the visual counterfactual explanations in Sec. 5. Recall,
the classifier is a ResNet-50 model trained to identify bird species on CUB. The
spatial feature extractor f computes the h × w × d spatial feature output of
the last convolutional layer, and g performs a global average pooling operation
followed by a linear classifier.

Parts detector. We reuse the CUB parts detector from Sec. A. The parts
predictor is used to select the top-3 parts for the spatial cells that are being
replaced in the counterfactual.

Attribute classifiers. We train linear classifiers to predict part-attributes on
top of the average-pooled features from f(·). The part-attributes are derived
from the attribute annotations used by [30]. Specifically, we only use attributes
that refer to parts for which we have keypoint locations. This results in 77
attributes in total. We train linear classifiers to predict the part-attributes via a
multi-class cross-entropy loss. The training uses SGD with momentum 0.9 and
initial learning rate 0.04. We use batches of size 64 and train for 100 epochs.
The learning rate is decayed by 10 after 70 and 90 epochs. We use weight decay
1e-6.

Interpretable basis decomposition. We perform the interpretable basis de-
composition as follows. Consider a counterfactual that replaces a cell i in f(I)
with a cell i′ from f(I ′). First, we determine the attributes that should be used for
the decomposition. To this end, we take the union of detected parts in cell i and
i′ first, and then select the attributes that are associated with the detected parts,
e.g., if one of the parts is ‘wing’ we select attributes like ‘has wing color::blue’.
We then apply the algorithm from [64] to decompose the weights of the linear



32 Vandenhende et al.

layer in g in terms of the selected attribute classifiers. The decomposition is
performed for the query f(I) and counterfactual f(I∗).

Additional examples. Figure 7 shows additional examples, where our method
succeeds in adding attribute information to our visual counterfactual explana-
tions. In each case, the returned attribute belongs to class c but not to class c′,
or vice-versa. Thus, the returned attributes are discriminative of the classes c
and c′.

Example 1

Remove black color from the throat.

Example 2

Add multi-color pattern to the wing.

Example 3

Add buff color to the throat.

Example 4

Add grey color to the wing.

Example 5

Remove black color from the nape.

Example 6

Remove black color from the forehead.

Example 7

Remove cone shape from the beak.

Example 8

Remove black color from the belly.

Example 9

Add black color to the legs.

Fig. S9: Language-based counterfactuals. We identify the attribute that is
most important for chaenging the model’s decision.



Making heads or tails 33

F Licenses

We include the licenses for images from iNaturalist used in our visualizations.

Table S5: Authors and Creative Commons Copyright notice for images in Figure S3.
lauriekoepke: CC BY-NC 4.0, walterflocke: CC BY-NC 4.0, leo v: CC
BY-NC 4.0, Herbert Herbinia: CC BY-NC 4.0, leptim: CC BY-NC
4.0, leptim: CC BY-NC 4.0, nanorca13: CC BY-NC 4.0, toucan55: CC
BY-NC 4.0, Jim Brighton: CC BY-NC 4.0, wildmouse3: CC BY-NC
4.0, Will Richardson: CC BY-NC 4.0, Amado: CC BY-NC 4.0, Este-
ban Munguia: CC BY-NC 4.0, jamesbeat: CC BY-NC 4.0, jamesbeat:
CC BY-NC 4.0, N. Mahathi: CC BY-NC 4.0, ddun: CC BY-NC 4.0,
John G. Phillips: CC BY-NC 4.0.

Table S6: Author and Creative Commons Copyright notice for images in Figure S5.
Daniel George: CC BY-NC 4.0, thehaplesshiker: CC BY-NC 4.0,
tiyumq: CC BY-NC 4.0, Rohit Chakravarty: CC BY-NC 4.0, unger-
lord: CC BY-NC 4.0, dushenkov: CC BY-NC 4.0, jenhenlo: CC BY-
NC 4.0, amniotasmarinos6: CC BY-NC 4.0, Lawrence Troup: CC BY-
NC 4.0, Andrew Deacon: CC BY-NC 4.0, Torbjorn von Strokirch: CC
BY-NC 4.0, 金翼白眉: CC BY-NC 4.0, Andrés Matos: CC BY-NC
4.0, Christoph Moning: CC BY-NC 4.0, asandlermd: CC BY-NC 4.0,
Eric Giles: CC BY-NC 4.0, Paul Cools: CC BY-NC 4.0, Laura Kim-
berly: CC BY-NC 4.0, sterling: CC BY 4.0, elisabraz: CC BY-NC
4.0, Tom Warnert: CC BY-NC 4.0, Don Loarie: CC BY 4.0, Marlo
Perdicas: CC BY 4.0, luca tringali: CC BY-NC 4.0, pmmullins: CC
BY-NC 4.0, Erik Schlogl: CC BY-NC 4.0, sea-kangaroo: CC BY-NC-
ND 4.0, Jason Grant: CC BY-NC 4.0, Donald Hobern: CC BY 4.0,
Richard Ling: CC BY-NC-ND 4.0, BeachBumAgg: CC BY-NC 4.0,
Tony Strazzari: CC BY-NC 4.0.


