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Abstract. As AI technology is increasingly applied to high-impact, high-
risk domains, there have been a number of new methods aimed at making
AI models more human interpretable. Despite the recent growth of in-
terpretability work, there is a lack of systematic evaluation of proposed
techniques. In this work, we introduce HIVE (Human Interpretability of
Visual Explanations), a novel human evaluation framework that assesses
the utility of explanations to human users in AI-assisted decision mak-
ing scenarios, and enables falsifiable hypothesis testing, cross-method
comparison, and human-centered evaluation of visual interpretability
methods. To the best of our knowledge, this is the first work of its
kind. Using HIVE, we conduct IRB-approved human studies with nearly
1000 participants and evaluate four methods that represent the diver-
sity of computer vision interpretability works: GradCAM, BagNet, Pro-
toPNet, and ProtoTree. Our results suggest that explanations engender
human trust, even for incorrect predictions, yet are not distinct enough
for users to distinguish between correct and incorrect predictions. We
open-source HIVE to enable future studies and encourage more human-
centered approaches to interpretability research. HIVE can be found at
https://princetonvisualai.github.io/HIVE.

Keywords: Interpretability, Explainable AI (XAI), Human studies, Eval-
uation framework, Human-centered AI

1 Introduction

With the growing adoption of AI in high-impact, high-risk domains, there have
been a surge of efforts aimed at making AI models more interpretable. Motiva-
tions for interpretability include allowing human users to trace through a model’s
reasoning process (accountability, transparency), verify that the model is bas-
ing its predictions on the right reasons (fairness, ethics), and assess their level
of confidence in the model (trustworthiness). The interpretability research field
tackles these questions and is comprised of diverse works, including those that
provide explanations of the behavior and inner workings of complex AI mod-
els [6,7,25,27,50,61,64,73,77], those that design inherently interpretable mod-
els [10,13,14,15,17,18,38,48,53], and those that seek to understand what is easy
and difficult for these models [3,68,75] to make their behavior more interpretable.
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Fig. 1. Different forms of explanation. (Top left) Heatmap explanations (Grad-
CAM [61], BagNet [10]) highlight decision-relevant image regions. (Bottom left)
Prototype-based explanations (ProtoPNet [15], ProtoTree [48]) match image regions to
prototypical parts learned during training. This schematic is much simpler than actual
explanations. (Right) Actual ProtoPNet explanation example from the original paper.
While existing evaluation methods typically apply to only one explanation
form, HIVE evaluates and compares diverse interpretability methods.

Despite much methods development, there is a relative lack of standard-
ized evaluation methods for proposed techniques. Existing evaluation methods
for computer vision interpretability methods are focused on feature attribu-
tion heatmaps that highlight “important” image regions for a model’s predic-
tion. Since we lack ground-truth knowledge about which regions are actually
responsible for the prediction, different evaluation metrics use different proxy
tasks for verifying these important regions (e.g., measuring the impact of delet-
ing regions or the overlap between ground-truth objects and highlighted re-
gions) [26,34,50,51,70,74]. However, these automatic evaluation metrics are dis-
connected from downstream use cases of explanations; they don’t capture how
useful end-users find heatmaps in their decision making. Further, these metrics
don’t apply to other forms of explanations, such as prototype-based explanations
produced by some of the recent interpretable-by-design models [15,17,48].

In part due to these challenges, the interpretability of a proposed method is
often argued through a few exemplar explanations that highlight how a method
is more interpretable than a baseline model. However, recent works suggest that
some methods are not as interpretable as originally imagined and may engender
over-trust in automated systems [1,19,32,33,46,47,49,62]. They caution against
an over-reliance on intuition-based justifications and raise awareness for the need
of falsifiable hypotheses [44] and proper evaluation in interpretability research.

Our contributions. As more diverse interpretability methods are being pro-
posed, it is more important than ever to have a standardized and rigorous eval-
uation framework that allows for falsifiable hypothesis testing, cross-method
comparison, and human-centered evaluation. To this end, we develop HIVE
(Human Interpretability of Visual Explanations). HIVE evaluates diverse vi-
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sual interpretability methods by evaluating all methods on a common task. We
carefully design the tasks to reduce the effect of confirmation bias and human
prior knowledge in interpretability evaluation, and assess the utility of expla-
nations in AI-assisted decision making scenarios. HIVE also examines how well
interpretable-by-design models’ reasoning process aligns with that of humans,
and how human users tradeoff interpretability and accuracy.

To demonstrate the extensibility and applicability of HIVE, we conduct IRB-
approved human studies with nearly 1000 participants and evaluate four existing
methods that represent different streams of interpretability work (e.g., post-hoc
explanations, interpretable-by-design models, heatmaps, and prototype-based
explanations): GradCAM [61], BagNet [10], ProtoPNet [15], ProtoTree [48]. To
the best of our knowledge, we are the first to compare interpretability methods
with different explanation forms (see Fig. 1) and the first to conduct human
studies of the evaluated interpretable-by-design models [10,15,48].

We obtain a number of insights through our studies:
– When provided explanations, participants tend to believe that the model

predictions are correct, revealing an issue of confirmation bias. For example,
our participants found 60% of the explanations for incorrect model predic-
tions convincing. Prior work has made similar observations for non-visual
interpretability methods [52]; we substantiate them for visual explanations
and demonstrate a need for rigorous evaluation of proposed methods.

– When given multiple model predictions and explanations, participants strug-
gle to distinguish between correct and incorrect predictions based on the
explanations (e.g., achieving only 40% accuracy on a multiple-choice task
with four options). This result suggests that interpretability methods need
to be improved to be reliably useful for AI-assisted decision making.

– There exists a gap between the similarity judgments of humans and prototype-
based models [15,48] which can hurt the quality of their interpretability.

– Participants prefer to use a model with explanations over a baseline model
without explanations. To switch their preference, they require the baseline
model to have +6.2% to +10.9% higher accuracy.
As interpretability is fundamentally a human-centric concept, it needs to

be evaluated in a human-centric way. We hope our work helps pave the way
towards human evaluation becoming commonplace, by presenting and analyzing
a human study design, demonstrating its effectiveness and informativeness for
interpretability evaluation, and open-sourcing the code to enable future work.

2 Related work

Interpretability landscape in computer vision. Interpretability research
can be described along several axes: first, whether a method is post-hoc or
interpretable-by-design; second, whether it is global or local; and third, the form
of an explanation (see [4,11,16,24,28,30,57,59] for surveys). Post-hoc explana-
tions focus on explaining predictions made by already-trained models, whereas
interpretable-by-design (IBD) models are intentionally designed to possess a
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more explicitly interpretable decision-making process [10,13,14,15,17,18,38,48,53].
Furthermore, explanations can either be local explanations of a single input-
output example or global explanations of a network (or its component parts).
Local, post-hoc methods include heatmap [25,50,61,63,64,73,77], counterfactual
explanation [29,65,69], approximation [56], and sample importance [37,71] meth-
ods. In contrast, global, post-hoc methods aim to understand global properties
of CNNs, often by treating them as an object of scientific study [6,7,27,36] or by
generating class-level explanations [55,78]. Because we focus on evaluating the
utility of explanations in AI-assisted decision making, we do not evaluate global,
post-hoc methods. IBD models can provide local and/or global explanations,
depending on the model type. Lastly, explanations can take a variety of forms:
two more popular ones we study are heatmaps highlighting important image
regions and prototypes (i.e., image patches) from the training set that form in-
terpretable decisions. In our work, we investigate four popular methods that span
these types of interpretability work: GradCAM [61] (post-hoc, heatmap), Bag-
Net [10] (IBD, heatmap), ProtoPNet [15] (IBD, prototypes), and ProtoTree [48]
(IBD, prototypes). See Fig. 1 for examples of their explanations.

Evaluating heatmaps. Heatmap methods are arguably the most-studied class
of interpretability work. Several automatic evaluation metrics have been pro-
posed [5,26,34,50,51,70,74], however, there is a lack of consensus on how to eval-
uate these methods. Further, the authors of [1,2] and BAM [70] highlight how
several methods fail basic “sanity checks” and call for more comprehensive met-
rics. Complementing these works, we use HIVE to study how useful heatmaps
are to human users in AI-assisted decision making scenarios and demonstrate
insights that cannot be gained from automatic evaluation metrics.

Evaluating interpretable-by-design models. In contrast, there has been
relatively little work on assessing interpretable-by-design models. Quantitative
evaluations of these methods typically focus on demonstrating their competi-
tive performance with a baseline CNN, while the quality of their interpretability
is often demonstrated through qualitative examples. Recently, a few works re-
visited several methods’ interpretability claims. Hoffmann et al. [33] highlight
that prototype similarity of ProtoPNet [15] does not correspond to semantic
similarity and that this disconnect can be exploited. Margeloiu et al. [47] an-
alyze concept bottleneck models [38] and demonstrate that learned concepts
fail to correspond to real-world, semantic concepts. In this work, we conduct the
first human study of three popular interpretable-by-design models [10,15,48] and
quantify prior work’s [33,48] anecdotal observation on the misalignment between
prototype-based models [15,48] and humans’ similarity judgment.

Evaluating interpretability with human studies. Outside the computer vi-
sion field, human studies are commonly conducted for models trained on tabular
datasets [40,41,43,52,76]; however, these do not scale to the complexity of modern
vision models. Early human studies for visual explanations have been limited in
scope: They typically ask participants which explanation they find more reason-
able or which model they find more trustworthy based on explanations [35,61].
Recently, more diverse human studies have been conducted [8,9,23,49,62,63,80].
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Closest to our work are [23,49,62]. Shen and Huang [62] ask users to se-
lect incorrectly predicted labels with or without showing explanations; Nguyen
et al. [49] ask users to decide whether model predictions are correct based on
explanations; Fel et al. [23] ask users to predict model outputs in a concur-
rent work. Regarding [49,62], our distinction task also investigates how useful
explanations are in distinguishing correct and incorrect predictions. However,
different from these works, we ask users to select the correct prediction out of
multiple predictions to reduce the effect of confirmation bias and don’t show
class labels to prevent users from relying their prior knowledge. Regarding [23],
we also ask users to predict model outputs, but mainly as a supplement to our
distinction task. Further, we ask users to identify the model output out of mul-
tiple predictions based on the explanations, whereas [23] first trains users to be
a meta-predictor of the model by showing example model predictions and ex-
planations, and then at test time asks users to predict the model output for a
given image without showing any explanation. Most importantly, different from
[23,49,62], we evaluate interpretability methods beyond heatmaps and conduct
cross-method comparison. Our work is similar in spirit to work by Zhou et al. [79]
on evaluating generative models with human perception. For general guidance on
running human studies in computer vision, refer to work by Bylinskii et al. [12].

3 HIVE design principles

In this work, we focus on AI-assisted decision making scenarios, in particular
those that involve an image classification model. For a given input image, a
user is shown a model’s prediction along with an associated explanation, and
is asked to make a decision about whether the model’s prediction is correct or
more generally about whether to use the model. In such a scenario, explanations
are provided with several goals in mind: help the user identify if the model is
making an error, arrive at a more accurate prediction, understand the model’s
reasoning process, decide how much to trust the model, etc.

To study whether and to what extent different visual interpretability methods
are useful for AI-assisted decision making, we develop a novel human evaluation
framework named HIVE (Human Interpretability of Visual Explanations). In
particular, we design HIVE to allow for falsifiable hypothesis testing regarding the
usefulness of explanations for identifying model errors, cross-method comparison
between different explanation approaches, and human-centered evaluation for
understanding the practical effectiveness of interpretability.

3.1 Falsifiable hypothesis testing

We join a growing body of work that cautions against intuition-based justifica-
tion and subjective self-reported ratings in interpretability evaluation [1,44,39,60]
and calls for objective assessment with behavior indicators [42,52,72,76]. To this
end, we design two evaluation tasks, the agreement and distinction tasks, that
enable falsifiable hypothesis testing about the evaluated interpretability method.
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Fig. 2. Study user interfaces (UIs). We show simplified UIs for evaluating Pro-
toPNet [15] on the agreement task (top) and GradCAM [61] on the distinction task
(bottom). Full UI snapshots are in supp. mat. See Sec. 3 for description of the tasks.

In the agreement task, we present participants with one prediction-explanation
pair at a time and ask how confident they are in the model’s prediction based on
the explanation. We evaluate methods on this task in part because it is closer to
existing interpretability evaluation schemes that consider a model’s top-1 pre-
diction and its explanation [61], and also because it allows us to quantify the
degree to which participants believe in model predictions based on explanations.

The agreement task measures the amount of confirmation bias that arises
for a given interpretability method. However, it doesn’t measure the utility of
explanations in distinguishing correct and incorrect predictions, a crucial func-
tionality of explanations in AI-assisted decision making. Hence, we design and
use the distinction task as our main evaluation task. Here we simultaneously
show four predictions and their associated explanations for a given input image
and ask users to identify the correct prediction based on the provided expla-
nations. The distinction task also mitigates the effect of confirmation bias in
interpretability evaluation, as participants now have to reason about multiple
explanations at once. See Fig. 2 for the evaluation task UIs.

One concern with this setup is ensuring that participants use the provided
explanations rather than their knowledge to complete the task. We take two mea-
sures to remove the effect of human prior knowledge in our evaluations. First, we
evaluate all interpretability methods in the context of fine-grained bird species
classification [66], which is a challenging task for non-bird experts. Second, as
a more general measure, we omit the semantic class labels of the predictions.
This measure is particularly important when evaluating interpretability methods
in easier contexts, e.g., coarse-grained object classification with ImageNet [58],
because the task becomes too easy otherwise (i.e., participants can select the cor-
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rect prediction based on the class labels instead of using the explanations). Note
that ground-truth class labels are also omitted to simulate a realistic decision
making scenario where users do not have access to the ground truth.

3.2 Cross-method comparison

Existing evaluation methods typically apply to only one explanation form (e.g.,
heatmaps are compared against each other). In contrast, HIVE enables cross-
method comparison between different explanation forms by focusing on down-
stream uses of explanations and evaluating all methods on a common task.

However, there remains a number of practical roadblocks. First, different
methods may have been developed for different scenarios (e.g., fine-grained vs.
coarse-grained classification), requiring us to carefully analyze the effect of the
particular setting during evaluation. Second, different methods may be more
or less digestible to the users. While this is an inherent part of what we are
trying to evaluate, we also want to ensure that the evaluation task is doable
by study participants with limited machine learning background, given most
human studies in the field are run through Amazon Mechanical Turk. Hence, we
actualize a specific evaluation setup for each interpretability method by creating
an individual evaluation UI that respects the method’s characteristics (e.g., its
explanation form, dataset used for model training). We briefly describe the four
methods we evaluate in this work (see Fig. 1 for example explanations) and
their evaluation setups. When making any adaptations, we tried to present each
method in as favorable of a way as possible. More details are in supp. mat.

GradCAM [61]. GradCAM is a post-hoc method that produces a heatmap
that highlights important regions in an input image that contribute to a model’s
prediction. We evaluate GradCAM on ImageNet [58], which it was originally
developed for, as well as on CUB [66], for which we train a standard CNN model
to use as the underlying model for generating GradCAM heatmaps.

BagNet [10]. In contrast, BagNet is an interpretable-by-design model that col-
lects evidence for a class from small regions of an image. For each class, BagNet
creates a heatmap where higher values (i.e., darker red in our visualizations) im-
ply stronger evidence for the class. BagNet then sums the values in each heatmap
and predicts the class with the highest sum. We evaluate BagNet on ImageNet,
for which it was originally designed, as well as on CUB, for which we train a
new BagNet model using the authors’ code.

ProtoPNet [15]. The next two methods reason with prototypes, which are small
image patches from the training set that these models deem as representative
for a certain class. At test time, ProtoPNet compares a given image to the set
of prototypes it learned during training and finds regions in the image that are
the most similar to each prototype. It computes a similarity score between each
prototype-region pair, then predicts the class with the highest weighted sum of
the similarity scores. The ProtoPNet model for CUB learns 10 prototypes for
each of the 200 bird species (2,000 total) and produces one of the most complex
explanations. Its explanation for a single prediction consists of 10 prototypes and
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their source images, heatmaps that convey the similarity between matched im-
age regions and prototypes, continuous and unnormalized similarity scores, and
weights multiplied to the scores (see Fig. 1 right). In our evaluation, we abstract
away most technical details based on our pilot studies, and focus on showing the
most crucial component of ProtoPNet’s reasoning process: the prototype-image
region matches. We also ask participants to rate the similarity of each match
(see Fig. 2 top) to assess how well the model’s similarity judgment aligns with
that of humans. See supp. mat. for the task and explanation modification details.

ProtoTree [48]. Finally, the ProtoTree model learns a tree structure along with
the prototypes. Each node in the tree contains a prototype from a training image.
At each node, the model compares a given test image to the node’s prototype
and produces a similarity score. If the score is above some threshold, the model
judges that the prototype is present in the image and absent if not. The model
then proceeds to the next node and repeats this process until it reaches a leaf
node, which corresponds to a class. The ProtoTree model for CUB trained by the
authors has 511 decision nodes and up to 10 decision steps, and our pilot studies
revealed that is too overwhelming for participants. Thus in our evaluation, we
significantly simplify the decision process. Participants are shown the model’s
decisions until the penultimate decision node, and then are asked to make deci-
sions for only the final two nodes of the tree by judging whether the prototype in
each node is present or absent in the image. This leads the participants to select
one of the four (22) classes as the final prediction. One additional challenge is
that participants may not be familiar with decision trees and thus may have
trouble following the explanation. To help understanding, we introduce a simple
decision tree model with two levels, walk through an example, and present two
warm up exercises so that participants can get familiar with decision trees before
encountering ProtoTree. See supp. mat. for more information.

3.3 Human-centered evaluation

HIVE complements existing algorithmic evaluation methods by bringing humans
back into the picture and taking a human-centered approach to interpretability
evaluation. The design of HIVE, particularly the inclusion/exclusion of class la-
bels in Sec. 3.1 and careful actualization of the evaluation setup in Sec. 3.2, is
focused on making this evaluation tractable for the participants and as fair as
possible with respect to different interpretability methods. We also went through
multiple iterations of UI design to present visual explanations in digestible bits
so as to not overwhelm participants with their complexity. Despite the chal-
lenges, there is a very important payoff from human studies. We are able to
evaluate different interpretability methods through participants’ 1) ability to
distinguish between correct and incorrect predictions based on the provided ex-
planations, simulating a more realistic AI-assisted decision-making setting, and
2) level of alignment with the model’s intermediate reasoning process in the case
of prototype-based, interpretable-by-design models. We also gain a number of
valuable insights that can only be obtained through human studies.



HIVE: Evaluating the Human Interpretability of Visual Explanations 9

3.4 Generalizability & Scalability

In closing we discuss two common concerns about human studies: generalizabil-
ity and scalability. We have shown HIVE’s generalizability by using it to eval-
uate a variety of methods (post-hoc explanations, interpretable-by-design mod-
els, heatmaps, prototype-based explanations) in two different settings (coarse-
grained object recognition with ImageNet, fine-grained bird recognition with
CUB). Further, a recent work by Ramaswamy et al. [54] uses HIVE to set up
new human studies, for evaluating example-based explanations and finding the
ideal complexity of concept-based explanations, demonstrating that HIVE can
be easily generalized to new methods and tasks. Regarding scalability, human
study costs are not exorbitant contrary to popular belief and can be budgeted
for like we budget for compute. For example, our GradCAM distinction study
cost $70 with 50 participants compensated at $12/hr. The real obstacles are
typically the time, effort, and expertise required for study design and UI devel-
opment; with HIVE open-sourced, these costs are substantially mitigated.

4 HIVE study design

In this section, we describe our IRB-approved study design. See supp. mat. and
https://princetonvisualai.github.io/HIVE for UI snapshots and code.
Introduction. For each participant, we first introduce the study and receive
their informed consent. We also request optional demographic data regarding
gender identity, race and ethnicity, and ask about the participant’s experience
with machine learning; however, no personally identifiable information was col-
lected. Next we explain the evaluated interpretability method in simple terms by
avoiding technical jargon (i.e., replacing terms like “image” and “training set”
to “photo” and “previously-seen photos”). We then show a preview of the eval-
uation task and provide example explanations for one correct and one incorrect
prediction made by the model to give the participant appropriate references.
The participant can access the method description at any time during the task.
Objective evaluation tasks. Next we evaluate the interpretability method on
a behavioral task (distinction or agreement) introduced in Sec. 3.1 and Fig. 2.
Detailed task descriptions are available in supp. mat.
Subjective evaluation questions. While the core of HIVE is in the objective
evaluation tasks, we also ask subjective evaluation questions to make the most
out of the human studies. Specifically, we ask the participant to self-rate their
level of understanding of the evaluated method before and after completing the
task, to investigate if the participant’s self-rated level of understanding under-
goes any changes during the task. After the task completion, we disclose the
participant’s performance on the task and ask the question one last time.
Interpretability-accuracy tradeoff questions. While interpretability meth-
ods offer useful insights into a model’s decision, some explanations come at the
cost of lower model accuracy. Hence in the final part of the study, we investigate
the interpretability-accuracy tradeoff participants are willing to make when com-
paring an interpretable method against a baseline model that doesn’t come with

https://princetonvisualai.github.io/HIVE
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any explanation. In high-risk scenarios a user may prefer to maximize model
performance over interpretability. However, another user may prefer to prior-
itize interpretability in such settings so that there would be mechanisms for
examining the model’s predictions. To gain insight into the tradeoff users are
willing to make, we present three scenarios: low-risk (e.g., bird species recogni-
tion for scientific or educational purposes), medium-risk (e.g., object recognition
for automatic grocery checkout), and high-risk (e.g., scene understanding for
autonomous driving). For each scenario, we then ask the participant to input
the minimum accuracy of the baseline model that would convince them to use it
over the model with explanations and also describe the reason for their choices.

5 Experiments

5.1 Experimental details

Datasets & Models. We evaluate all interpretability methods on classification
tasks and use images from the CUB [66] test set and the ImageNet [58] validation
set to generate model predictions and explanations. On CUB, we evaluate all
four methods: GradCAM [61], BagNet [10], ProtoPNet [15], ProtoTree [48]. On
ImageNet, we evaluate GradCAM and BagNet. See supp. mat. for details.
Human studies. For each study, i.e., an evaluation of one interpretability
method on one task (distinction or agreement), we recruited 50 participants
through Amazon Mechanical Turk (AMT). In total, we conducted 19 studies
with 950 participants; see supp. mat. for the full list. The self-reported machine
learning experience of the participants was 2.5 ± 1.0, between “2: have heard
about...” and “3: know the basics...” The mean study duration was 6.9 minutes
for GradCAM, 6.6 for BagNet, 13.6 for ProtoPNet, and 10.4 for ProtoTree. Par-
ticipants were compensated based on the state-level minimum wage of $12/hr.
Statistical analysis. For each study, we report the mean task accuracy and
standard deviation of the participants’ performance which captures the variabil-
ity between individual participants’ performance. We also compare the study
result to random chance and compute the p-value from a 1-sample t-test.1 When
comparing results between two groups, we compute the p-value from a 2-sample
t-test. Results are deemed statistically significant under p < 0.05 conditions.

5.2 The issue of confirmation bias

Let us first examine how the four methods perform on the agreement task, where
we present participants with one prediction-explanation pair at a time and ask
how confident they are in the model’s prediction. Results are summarized in
Tab. 1. On CUB, participants found 72.4% of correct predictions convincing for

1 We compare our results to chance performance instead of a baseline without expla-
nations because we omit semantic class labels to remove the effect of human prior
knowledge (see Sec. 3.1); so such a baseline would contain no relevant information.
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Table 1. Agreement task results. For each study, we show mean accuracy, standard
deviation of the participants’ performance, and mean confidence rating in parentheses.
Italics denotes methods with accuracy not statistically significantly different from 50%
random chance (p > 0.05); bold denotes the highest performing method in each group.
In all studies, participants leaned towards believing that model predictions
are correct when provided explanations, regardless of if they are actually
correct. For example, for GradCAM on CUB, participants thought 72.4% of correct
predictions were correct and 100− 32.8 = 67.2% of incorrect predictions were correct.
These results reveal an issue of confirmation bias. See Sec. 5.2 for a discussion.

CUB GradCAM [61] BagNet [10] ProtoPNet [15] ProtoTree [48]

Correct 72.4% ± 21.5 (2.9) 75.6% ± 23.4 (3.0) 73.2% ± 24.9 (3.0) 66.0% ± 33.8 (2.8)
Incorrect 32.8% ± 24.3 (2.8) 42.4% ± 28.7 (2.7) 46.4% ± 35.9 (2.4) 37.2% ± 34.4 (2.7)

ImageNet GradCAM [61] BagNet [10] - -

Correct 70.8% ± 26.6 (2.9) 66.0% ± 27.2 (2.8) - -
Incorrect 44.8% ± 31.6 (2.7) 35.6% ± 26.9 (2.7) - -

GradCAM, 75.6% for BagNet, 73.2% for ProtoPNet, and 66.0% ProtoTree. How-
ever, they also thought 67.2% of incorrect predictions were correct for GradCAM,
57.6% for BagNet, 53.6% for ProtoPNet, and 62.8% for ProtoTree. Similarly on
ImageNet, participants found 70.8% of correct predictions convincing for Grad-
CAM and 66.0% for BagNet, yet also believed in 55.2% and 64.4% of incorrect
predictions, respectively. These results reveal an issue of confirmation bias: When
given explanations, participants tend to believe model predictions are correct,
even if they are wrong. Still, the confidence ratings are overall higher for cor-
rect predictions than incorrect predictions, suggesting there is some difference
between their explanations. More results and discussion are in supp. mat.

5.3 Objective assessment of interpretability

Next we discuss findings from our main evaluation task, the distinction task,
where we ask participants to select the correct prediction out of four options
based on the provided explanations. Results are summarized in Tab. 2.
Participants perform better on correctly predicted samples. On cor-
rectly predicted samples from CUB, the mean task accuracies are 71.2% on
GradCAM, 45.6% on BagNet, 54.5% on ProtoPNet and 33.8% on ProtoTree, all
above the 25% chance baseline. That is, participants can identify which of the
four explanations correspond to the ground-truth class correctly predicted by
the model. On incorrect predictions, however, the accuracies drop from 71.2%
to 26.4% for GradCAM and from 45.6% to 32.0% for BagNet, and we observe a
similar trend in the ImageNet studies. These results suggest that explanations
for correct predictions may be more coherent and convincing than those for in-
correct predictions. Even so, all accuracies are far from 100%, indicating that the
evaluated methods are not yet reliably useful for AI-assisted decision making.
Participants struggle to identify the model’s prediction. For GradCAM
and BagNet, we ask participants to select the class they think the model predicts
(output prediction) in addition to the class they think is correct (distinction). For
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Table 2. Distinction and output prediction task results. For each study, we
report the mean accuracy and standard deviation of the participants’ performance.
Italics denotes methods that do not statistically significantly outperform 25% random
chance (p > 0.05); bold denotes the highest performing method in each group. In the
top half, we show the results of all four methods on CUB. In the bottom half, we
show GradCAM and BagNet results on ImageNet, without vs. with ground-truth class
labels. Overall, participants struggle to identify the correct prediction or the
model output based on explanations. See Sec. 5.3 for a discussion.

CUB GradCAM [61] BagNet [10] ProtoPNet [15] ProtoTree [48]

Distinction
Correct 71.2% ± 33.3 45.6% ± 28.0 54.5% ± 30.3 33.8% ± 15.9
Incorrect 26.4% ± 19.8 32.0% ± 20.8 - -

Output prediction
Correct 69.2% ± 32.3 50.4% ± 32.8 - -
Incorrect 53.6% ± 27.0 30.0% ± 24.1 - -

ImageNet GradCAM [61] with labels BagNet [10] with labels

Distinction
Correct 51.2% ± 24.7 49.2% ± 30.8 38.4% ± 28.0 34.8% ± 27.7
Incorrect 30.0% ± 22.4 27.2% ± 20.3 26.0% ± 18.4 27.2% ± 18.7

Output prediction
Correct 48.0% ± 28.3 48.0% ± 35.6 46.8% ± 29.0 42.8% ± 27.4
Incorrect 35.6% ± 24.1 33.2% ± 25.2 34.0% ± 24.1 32.8% ± 25.5

BagNet, this is a straightforward task where participants just need to identify the
most activated (most red, least blue) heatmap among the four options, as BagNet
by design predicts the class with the most activated heatmap. However, accuracy
is not very high, only marginally above the distinction task accuracy. This result
suggests that BagNet heatmaps for the top-4 (or top-3 plus ground-truth) classes
look similar to the human eye, and may not be suitable for assisting humans
with tasks that involve distinguishing one class from another. For GradCAM,
participants also struggle on this task but to a lesser degree.

Showing ground-truth labels hurts performance. For GradCAM and Bag-
Net, we also investigate the effect of showing ground-truth class labels for the
presented images. We have not been showing them to simulate a realistic decision
making scenario where users don’t have access to the ground truth. However,
since the task may be ambiguous for datasets like ImageNet whose images may
contain several objects, we run a second version of the ImageNet studies showing
ground-truth class labels on the same set of images and compare results. Some-
what surprisingly, we find that accuracy decreases, albeit by a small amount,
with class labels. One possible explanation is that class labels implicitly bias
participants to value heatmaps with better localization properties, which could
be a suboptimal signal for the distinction and output prediction tasks.

Automatic evaluation metrics correlate poorly with human study re-
sults. We also analyze GradCAM results using three automatic metrics that
evaluate the localization quality of post-hoc attribution maps: pointing game [74],
energy-based pointing game [67], and intersection-over-union [77]. In the agree-
ment studies, we find near-zero correlation between participants’ confidence in
the model prediction and localization quality of heatmaps. In the distinction
studies, we also do not see meaningful relationships between the participants’
choices and these automatic metrics. These observations are consistent with the
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findings of [49,23], i.e., automatic metrics poorly correlate with human perfor-
mance in post-hoc attribution heatmap evaluation. See supp. mat. for details.

5.4 A closer examination of prototype-based models

We are the first to conduct human studies of ProtoPNet and ProtoTree which
produce some of the most complex visual explanations. As such, we take a closer
look at their results to better understand how human users perceive them.

A gap exists between similarity ratings of ProtoPNet & ProtoTree
and those of humans. We quantify prior work’s [33,48] anecdotal observation
that there exists a gap between model and human similarity judgment. For Pro-
toTree, the Pearson correlation coefficient between the participants’ similarity
ratings and the model similarity scores is 0.06, suggesting little to no relation-
ship. For ProtoPNet, whose similarity scores are not normalized across images,
we compute the Spearman’s rank correlation coefficient (ρ = −0.25, p = 0.49
for distinction and ρ = −0.52, p = 0.12 for agreement). There is no significant
negative correlation between the two, indicating a gap in similarity judgment
that may hurt the models’ interpretability. See supp. mat. for more discussion.

Participants perform relatively poorly on ProtoTree, but they under-
stand how a decision tree works. Since the previously described ProtoTree
agreement study does not take into account the model’s inherent tree structure,
we run another version of the study where, instead of asking participants to rate
each prototype’s similarity, we ask them to select the first step they disagree with
in the model’s explanation. The result of this study (52.8% ± 19.9%) is similar
to that of the original study (53.6%±15.2%); in both cases, we cannot conclude
that participants outperform 50% random chance (p = 0.33, p = 0.10). To ensure
participants understand how decision trees work, we provided a simple decision
tree example and subsequent questions asking participants if the decision tree
example makes a correct or incorrect prediction. Participants achieved 86.5%
performance on this task, implying that the low task accuracy for ProtoTree is
not due to a lack of comprehension of decision trees. See supp. mat. for details.

5.5 Subjective evaluation of interpretability

To complement the objective evaluation tasks, we asked participants to self-rate
their level of method understanding three times. The average ratings are 3.7±0.9
after the method explanation, 3.8± 0.9 after the task, and 3.5± 1.0 after seeing
their task performance, which all lie between the fair (3) and good (4) ratings.
Interestingly, the rating tends to decrease after participants see their task per-
formance (p < 0.05). Several participants indicated that their performance was
lower than what they expected, whereas no one suggested the opposite, suggest-
ing that participants might have been disappointed in their task performance,
which in turn led them to lower their self-rated level of method understanding.
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5.6 Interpretability-accuracy tradeoff

In the final part of our studies, we asked participants for the minimum accuracy
of a baseline model they would require to use it over the evaluated interpretable
model with explanations for its predictions. Across all studies, participants re-
quire the baseline model to have a higher accuracy than the model that comes
with explanations, and by a greater margin for higher-risk settings. On average,
participants require the baseline model to have +6.2% higher accuracy for low-
risk, +8.2% for medium-risk, and +10.9% for high-risk settings. See supp. mat.
for the full results and the participants’ reasons for their choices.

6 Conclusion

In short, we introduce and open-source HIVE, a novel human evaluation frame-
work for evaluating diverse visual interpretability methods, and use it to evaluate
four existing methods: GradCAM, BagNet, ProtoPNet, and ProtoTree.

There are a few limitations of our work: First, we use a relatively small sample
size of 50 participants for each study due to our desire to evaluate four methods,
some under multiple conditions. Second, while HIVE takes a step towards use
case driven evaluation, our evaluation setup is still far from real-world uses of
interpretability methods. An ideal evaluation would be contextually situated
and conducted with domain experts and/or end-users of a real-world application
(e.g., how would bird experts choose to use one method over another when given
multiple interpretability methods for a bird species recognition model).

Nonetheless, we believe our work will facilitate more user studies and en-
courage human-centered interpretability research [20,21,22,45], as our human
evaluation reveals several key insights about the field. In particular, we find that
participants generally believe model predictions are correct when given expla-
nations for them. Humans are naturally susceptible to confirmation bias; thus,
interpretable explanations will likely engender trust from humans, even if they
are incorrect. Our findings underscore the need for evaluation methods that
fairly and rigorously assess the usefulness and effect of explanations. We hope
our work helps shift the field’s objective from focusing on method development
to also prioritizing the development of high-quality evaluation methods.
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4. Arrieta, A.B., Dı́az-Rodŕıguez, N., Ser, J.D., Bennetot, A., Tabik, S., Barbado,
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