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We first provide additional baselines for the ablation study showing the im-
portance of the identity mapping. Then, we discuss the experimental details for
the out-of-distribution analysis presented in the main paper, The code for the
BayesCap is available at https://github.com/ExplainableML/BayesCap.

1 More Ablation Studies

1.1 Identity Degradation.

We study the identity degradation performance for TTDApac just like we do for
BayesCap in the main manuscript. The results of the experiments on super-
resolution and deblurring task are shown in Figure 1.

Fig. 1: Impact of the identity mapping. Degrading the quality of the identity
mapping (SSIM) at inference, leads to poorly calibrated uncertainty (UCE). κ
represents the magnitude of noise used for degrading the identity mapping. (Left)
super-resolution on set5 dataset and (Right) Deblurring on GoPro dataset.

We notice that, at the beginning when the input samples are not degraded
the UCE for TTDApac is very high, this happens because the TTDApac leads to
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an uncertainty map that already has a very high value at every pixel and is
not in agreement with the lower per-pixel error (between the prediction and the
groundtruth) as evident from Figure 4 and 5 in the main manuscript. As the in-
put sample becomes more noisy (i.e., increasing κ), the quality of the predictions
degrade sharply leading to higher error values, whereas the uncertainty values
obtained using TTDApac do not change much. This leads to better agreement
between the high error and the uncertainty values causing UCE to decrease with
increasing κ. Moreover, this also indicates that TTDApac does not provide well-
calibrated uncertainty estimates. To shed more light on this phenomena, we also
study the UCE trend for two more baseline tasks, where the uncertainty maps
are set to constants (0.015 and 0.95). For a low-value constant (0.015) uncer-
tainty map, as we degrade the input samples, the quality of output prediction
also deteriorates and the disagreement between per-pixel uncertainty and error
increases, leading to higher UCE values, therefore there is an increasing UCE
trend. For a high-value constant (0.95) uncertainty map, as we degrade the input
samples, the quality of output prediction also deteriorates leading to higher error
values which are also closer to higher values of per-pixel uncertainty, leading to
more agreement between uncertainty and error and lower UCE values, therefore
there is a decreasing UCE trend. Note that this does not indicate well-calibrated
uncertainty estimates. This phenomena is observed for both the super-resolution
(Figure 1-Left) and deblurring (Figure 1-Right).

1.2 Necessity of the Identity Mapping Term.

We ablate our BayesCap by removing the identity mapping loss, i.e., by using
the following loss to train BayesCap

ϕ∗ = argmin
ϕ
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− log
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and compare it with SRGAN on the BSD100 dataset for image super-resolution.
Our results 0.34/0.028 UCE score and 0.23/0.45 C.Coeff (for ablation/BayesCap
resp.) indicate that the identity mapping is essential to learn the calibrated
uncertainties.

Model UCE C.Coeff

No Idenity Mapping 0.34 0.23
BayesCap 0.028 0.45

Table 1: Ablation study for the task of image super-resolution with and without
the identity mapping.
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1.3 Comparison with Generalized Gaussian Scratch Model.

Scratch is the model trained from scratch that corresponds to Kendall et al. [2].
For completeness, we also perform experiments with Scratch model modified
to predict the parameters of the Generalized Gaussian distribution, where the
fidelity loss term is given by the following equation,

Lfidelity =
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where, Lcontent is the content loss from [4] and the total loss function used for
training the network is given by

Ltotal = λ2Lfidelity + λ3Ladversarial

Where Ladversarial is given by,

Ladversarial =

j=M∑
j=1

− logDθD (GθG(x
j))

where, xj represents jth image and M is the total number of images in the
dataset. For super-resolution on the BSD100 dataset, the following are the re-
sults:

Model PSNR UCE

GGD-Scratch 24.78 0.033
Scratch 24.39 0.057
BayesCap 25.16 0.028

Table 2: Additional model for the task of image super-resolution that models
output as Generalized Gaussian Distribution (GGD)

1.4 Effect of Post-Hoc Calibration Methods.

We apply post-hoc calibration (variance scaling) from [3], that is, we find the
optimal scale (s∗) by optimizing,

s∗ = argmin
s

N log(s) +
1

s2

N∑
i=1

|ŷi − yi|2

σ̂i
2

We then rescale the derived variances using the optimal scale (s∗). We find that
the calibration of other models remains worse compared to our BayesCap as
shown in the following for super-resolution task on BSD100:

1.5 Additional Metrics for Calibration.

We additionally include the Expected Calibration Error (ECE), Sharpness and
Negative Log Likelihood (NLL) metrics comparing our BayesCap with Scratch

and DO respectively for image super-res. on BSD100 to measure calibration of
the uncertainties [5,1], as shown below:



4 U. Upadhyay et al.

Model UCE C.Coeff

Scratch 0.036 0.41
BayesCap 0.028 0.45

Table 3: Variance scaling for post hoc uncertainty calibration for the task of
image super-resolution

Model ECE Sharpness NLL

BayesCap 0.83 1.65 0.21
Scratch 1.26 2.55 0.35
DO 4.47 8.41 0.47

Table 4: Additional metrics for uncertainty calibration for the task of image
super-resolution

2 Application: Out-of-Distribution Analysis

In the main paper, we provide an application for the derived uncertainties from
our method to detect OOD samples in depth estimation task. We used a model
trained with KITTI dataset (i.e., MonoDepth2) and evaluate the model on data
from KITTI test set (i.e., in distribution), test set for Indian Driving dataset
(i.e., out of distribution), and also on test set of Places365 dataset (i.e., severely
out of distribution). We used the following methods to detect OOD samples.

Using pretrained features for OOD detection. We computed the mean
features for the KITTI validation set images using the feature extracted from the
intermediate layer of pretrained MonoDepth2 model, say M , with intermediate
feature represented by Ml(·) (shown below),

Fmean =
1

|KITTI val|

i=|KITTI val|∑
i=1

Ml(xi) ∀xi ∈ KITTI val (1)

Then, at inference we extract the same intermediate feature for the image being
analysed and compute the L2 distance between the KITTI validation set mean
feature and the features of the analysed images.

ft = Ml(xt) ∀xt ∈ Inference set (2)

dt = ||ft −Fmean||2 (3)

is xt OOD? =

{
True, if dt ≥ τ

False, dt < τ
(4)

Using autoencoder features for OOD detection. We computed the
mean features for the KITTI validation set images using the feature extracted
from the bottleneck layer of the autoencoder (say A , with bottleneck feature
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represented by Ab(·)) trained on top of a pretrained MonoDepth2 model, i.e.,

Fmean =
1

|KITTI val|

i=|KITTI val|∑
i=1

Ab(M (xi)) ∀xi ∈ KITTI val (5)

Then, at inference we extract the same bottleneck feature for the image being
analysed and compute the L2 distance between the KITTI validation set mean
feature and the features of the analysed images.

ft = Ab(M (xt)) ∀xt ∈ Inference set (6)

dt = ||ft −Fmean||2 (7)

is xt OOD? =

{
True, if dt ≥ τ

False, dt < τ
(8)

Using mean uncertainty for OOD detection. At inference, we com-
puted the mean uncertainty values for the images in the inference set using the
BayesCap (say B, with uncertainty map represented by Bu) trained on top of
pretrained MonoDepth2 model, and use that to decide if a sample is OOD, i.e.,

ut = mean(Bu(M (xt))) ∀xt ∈ Inference set (9)

is xt OOD? =

{
True, if ut ≥ τ

False, ut < τ
(10)
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