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Abstract. High-quality saliency maps are essential in several machine
learning application areas including explainable AI and weakly super-
vised object detection and segmentation. Many techniques have been de-
veloped to generate better saliency using neural networks. However, they
are often limited to specific saliency visualisation methods or saliency
issues. We propose a novel saliency enhancing approach called SESS
(Saliency Enhancing with Scaling and Sliding). It is a method and
model agnostic extension to existing saliency map generation methods.
With SESS, existing saliency approaches become robust to scale vari-
ance, multiple occurrences of target objects, presence of distractors and
generate less noisy and more discriminative saliency maps. SESS im-
proves saliency by fusing saliency maps extracted from multiple patches
at different scales from different areas, and combines these individual
maps using a novel fusion scheme that incorporates channel-wise weights
and spatial weighted average. To improve efficiency, we introduce a pre-
filtering step that can exclude uninformative saliency maps to improve
efficiency while still enhancing overall results. We evaluate SESS on
object recognition and detection benchmarks where it achieves signifi-
cant improvement. The code is released publicly to enable researchers
to verify performance and further development. Code is available at
https://github.com/neouyghur/SESS.

1 Introduction

Approaches that generate saliency or importance maps based on the decision of
deep neural networks (DNNs) are critical in several machine learning applica-
tion areas including explainable AI and weakly supervised object detection and
semantic segmentation. High-quality saliency maps increase the understanding
and interpretability of a DNN’s decision-making process, and can increase the
accuracy of segmentation and detection results.

Since the development of DNNs, numerous approaches have been proposed
to efficiently produce high-quality saliency maps. However, most methods have
limited transferability and versatility. Existing methods are designed for DNN
models with specific structures (i.e. a global average pooling layer), for cer-
tain types of visualisation (for details refer to Sec. 2), or to address a specific
limitation. For instance, CAM [24] requires a network with global average pool-
ing. Guided backpropagation (Guided-BP) [18] is restricted to gradient-based
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approaches. Score-CAM [20] seeks to reduce the method’s running-time, while
SmoothGrad [17] aims to generate saliency maps with lower noise.

In this work, we propose Saliency Enhancing with Scaling and Sliding (SESS),
a model and method agnostic black-box extension to existing saliency visuali-
sation approaches. SESS is only applied to the input and output spaces, and
thus does not need to access the internal structure and features of DNNs, and
is not sensitive to the design of the base saliency method. It also addresses mul-
tiple limitations that plague existing saliency methods. For example, in Fig. 1,
SESS shows improvements when applied to three different saliency methods. The
saliency map extracted with the gradient-based approach (Guided-BP) is dis-
criminative but noisy. Saliency maps generated by the activation-based method
Grad-CAM [14] and perturbation-based method RISE [12] generate smooth
saliency maps, but lack detail around the target object and fail to precisely
separate the target object from the scene. With SESS, the results of all three
methods become less noisy and a more discriminative boundary around the tar-
get is obtained.

Guided Backprob

ImageNet Class ID: 444 
(bicycle-built-for-two)

GradCAM RISESESSInput
(Gradient-based) (Activation-based) (Perturbation-based)

Fig. 1: Example results of three well-known deep neural network visualisation
methods with and without SESS. Each of these methods represents one type
of saliency map extraction technique. With SESS, all methods generate less
noisy and more discriminative saliency maps. The results are extracted with
ResNet50, and layer4 is used for Grad-CAM. Target ImageNet class ID is 444
(bicycle-built-for-two).

SESS addresses the following limitations of existing approaches:

– Weak scale invariance: Several studies claim that generated saliency maps
are inconsistent when there are scale differences [7,21], and we also observe
that generated saliency maps are less discriminative when the target objects
are comparatively small (See Fig. 1 and Fig. 8).

– Inability to detect multiple occurrences: Some deep visualisation meth-
ods (i.e., Grad-CAM) fail to capture multiple occurrences of the same object
in a scene [1,11]. (See Fig. 8).

– Impacted by distractors: Extracted saliency maps frequently incorrectly
highlight regions when distractors exist. This is especially true when the
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class of the distractor returns a high confidence score, or is correlated with
the target class.

– Noisy results: Saliency maps extracted with gradient based visualisation
approaches [15,19] appear visually noisy as shown in Fig 1.

– Less discriminative results: Activation based approaches (e.g., Grad-
CAM) tend to be less discriminative, often highlighting large regions around
the target such that background regions are often incorrectly captured as
being salient.

– Fixed input size requirements: Neural networks with fully-connected
layers like VGG-16 [16] require a fixed input size. Moreover, models per-
form better when the input size at inference is the same as the input size
during training. As such, most visualisation methods resize the input to a
fixed size. This impacts the resolution and aspect ratio, and may cause poor
visualisation results [21].

SESS is a remedy for all of the limitations mentioned above. SESS extracts
multiple equally sized (i.e., 224× 224) patches from different regions of multiple
scaled versions of an input image through resizing and sliding window operations.
This step ensures that it is robust to scale variance and multiple occurrences.
Moreover, since each extracted patch is equal in size to the default input size
of the model, SESS takes advantage of high-resolution inputs and respects the
aspect ratio of the input image. Each extracted patch will contribute to the
final saliency map, and the final saliency map is the fusion of the saliency maps
extracted from patches. In the fusion step, SESS considers the confidence score
of each patch, which serves to reduce noise and the impact of distractors while
increasing SESS’s discriminative power.

The increased performance of SESS is achieved countered a reduction in ef-
ficiency due to the use of multiple patches. Quantitative ablation studies show
using more scales and denser sliding windows are beneficial, but increase compu-
tational costs. To reduce this cost, SESS uses a pre-filtering step that filters out
background regions with low target class activation scores. Compared to saliency
extraction, the inference step is efficient as it only requires a single forward pass
and can exploit parallel computation and batch processing. As such, SESS ob-
tains improved saliency masks with a small increase in run-time requirements.
Ablation studies show that the proposed method outperforms its base saliency
methods when using pre-filtering with a high pre-filter ratio. In a Pointing Game
experiment [22] all methods with SESS achieved significant improvements, de-
spite of a pre-filter ratio of 99% that excludes the majority of extracted patches
from saliency generation.

We quantitatively and qualitatively evaluate SESS and conduct ablation
studies regarding multiple scales, pre-filtering and fusion. All experimental re-
sults show that SESS is a useful and versatile extension to existing saliency
methods.

To summarize, the main contributions of this work are as follows:

– We propose, SESS, a model and method agnostic black-box extension to
existing saliency methods which is simple and efficient.
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– We demonstrate that SESS increases the visual quality of saliency maps, and
improves their performance on object recognition and localisation tasks.

2 Related Work

Deep Saliency Methods: Numerous deep neural network-based visualisation
methods have been developed in recent years. Based on how the saliency map is
extracted, they can be broadly categorised into three groups: gradient-based
[15,17,19], class activation-based[24,14,23,20], and perturbation-based [5,12,2]
methods.

Gradient-based methods interpret the gradient with respect to the input im-
age as a saliency map. They are efficient as they only require a single forward
and backward propagation operation. However, saliency maps generated from
raw gradients are visually noisy. Activation-based methods aggregate target class
activations of a selected network layer to generate saliency maps. Compared with
gradient-based methods, activation-based methods are less noisy, but are also less
discriminative and will often incorrectly show strong activations in nearby back-
ground regions. Perturbation-based methods generate saliency maps by measur-
ing the changes in the output when the input is perturbed. Perturbation-based
methods are slow when compared to most gradient- and activation-based ap-
proaches, as they require multiple queries.

Methods can also be split into black-box and white-box according to whether
they access the model architecture and parameters. Except for some perturbation-
based methods [12,5], saliency methods are all white-box in nature [15,17,19,24,14].
White-box methods are usually more computationally efficient than black-box
methods, and require a single forward and backward pass through the network.
However, black-box methods are model agnostic, while white-box methods may
only work on models with specific architectural features.

Approaches can also be one-shot or multi-shot in nature. One-shot approaches
require a single forward and backward pass. Most gradient- and activation-based
methods are single-shot. However, multi-shot variants are developed to obtain
further improvements. For example, SmoothGrad [17] generates a sharper vi-
sualisations through multiple passes across noisy samples of the input image.
Integrated Gradients (IG) [19] addresses the “gradient saturation” problem by
taking the average of the gradients across multiple interpolated images. Aug-
mented Grad-CAM [10] generates high-resolution saliency maps through multi-
ple low-resolution saliency maps extracted from augmented variants of the input.
Smooth Grad-CAM++ [11] utilises the same idea proposed in SmoothGrad to
generate sharper saliency maps. To the best of our knowledge, all perturbation
methods are multi-shot in nature, as they require multiple queries to the model,
each of which has a different perturbation.

Attempts have been made to make multi-shot approaches more efficient. Most
such approaches seek to create perturbation masks in an efficient way. Dabkowski
et al. [2] generates a perturbation mask with a second neural network. Score-
CAM [20] uses class activation maps (CAM) as masks; and Group-CAM [23]
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follows a similar idea, but further reduces the number of masks through the
merging of adjacent maps.

The proposed SESS is a method and model agnostic saliency extension. It can
be a “plug-and-play” extension for any saliency methods. However, like pertur-
bation methods, it requires multiple queries. As such, for the sake of efficiency,
single-shot and efficient multi-shot approaches are most appropriate for use with
SESS.

Enhancing Deep Saliency Visualisations: Many attempts have been made
to generate discriminative and low-noise saliency maps. Early Gradient-based
methods are visually noisy, and several methods have been proposed to address
this. Guided-BP [18] ignores zero gradients during backpropagation by using a
RELU as the activation unit. SmoothGrad [18] takes the average gradient of
noisy samples [17] to generate cleaner results.

The first of the activation-based methods, CAM, is model sensitive. It re-
quires the model apply a global average pooling over convolutional feature map
channels immediately prior to the classification layer [12]. Later variants such as
Grad-CAM relax this restriction by using average channel gradients as weights.
However, Grad-CAM [14] is also less discriminative, and is unable to locate
multiple occurrences of target objects. Grad-CAM++ [1] uses positive partial
derivatives of features maps as weights. Smooth Grad-CAM++ [11] combines
techniques from both Grad-CAM++ and SmoothGrad to generate sharper vi-
sualisations.

Perturbation methods are inefficient, as they send multiple queries to the
model. For example, RISE [12] sends 8000 queries to the model to evaluate the
importance of regions covered by 8000 randomly selected masks. Recent works
reduce the number of masks by using channels in CAMs as masks. For instance,
Score-CAM uses all channels in CAMs, while Group-CAM further minimises the
number of masks by grouping the channels of CAMs.

All the aforementioned methods have successfully improved certain issues
relating to saliency methods, but have limited transferability and versatility.
In comparison, SESS is a model and method agnostic extension, which can be
applied to any existing saliency approach (though we note that single-pass or
efficient multi-pass methods are most suitable). Moreover, SESS is robust to
scale-variance, noise, multiple occurrences and distractors. SESS can generate
clean and focused saliency maps, and significantly improves the performance of
saliency methods for image recognition and detection tasks.

3 Saliency Enhancing with Scaling and Sliding (SESS)

In this section, we introduce SESS. A system diagram is shown in Figure 2, and
the main steps are described in Algorithm 1. The implementation of SESS is
simple and includes six steps: multi-scaling, sliding window, pre-filtering, saliency
extraction, saliency fusion, and smoothing. The first four steps are applied to
the input space, and the last two steps are applied at the output space. SESS
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Fig. 2: The SESS Process: SESS includes six major steps: multi-scaling, sliding
window, pre-filtering, saliency extraction, saliency fusion and smoothing.

is therefore a black-box extension and a model and method agnostic approach.
Each of these steps will be discussed in detail in this section.

Algorithm 1 SESS

Input: Image I, Model f , Target class c, Scale n, Window size (w, h), Pre-filtering
ratio r

Output: Saliency map Lc
sess

1: M,P ← []
2: for i ∈ [1, . . . , n] do . Scaling
3: M .append(resize(I, 224 + 64 × (i− 1)))
4: end for
5: for m ∈M do . Extracting patches
6: P .append(sliding-window(m, w, h))
7: end for
8: B ← batchify(P )
9: Sc ← f(B, c) . Sc as activation scores of class c

10: Sc
fil., Pfil. ← pre-filtering(Sc, P , r) . filter out patches whose class c activation

score is lower than top (100− r)%
11: A ← saliency extraction(Pfil., f , c) . get saliency maps of patches after

pre-filtering
12: L ← calibration(Pfil., A) . L is a tensor with shape n× w × h
13: L′ ← L⊗ Sc

fil. . Apply channel-wise weight
14: Lc

sess = weighted average(L′) . Apply binary weights to obtain the average of the
non-zero values

15: return Lc
sess
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Multi-scaling: Generating multiple scaled versions of the input image I is the
first step of SESS. In this study, the number of scales, n, ranges from 1 to 12.
The set of sizes of all scales is equal to {224 + 64 ∗ (i− 1)|i ∈ {1, 2, . . . , n}}. The
smallest size is equal to the default size of pre-trained models, and the largest
size is approximately four times the smallest size. The smaller side of I is resized
to the given scale, while respecting the original aspect ratio. M represents the
set of all Is at different scales. Benefits of multi-scaling include:

– Most saliency extraction methods are scale-variant. Thus saliency maps gen-
erated at different scales are inconsistent. By using multiple scales and com-
bining the saliency results from these, scale-invariance is achievable.

– Small objects will be distinct and visible in salience maps after scaling.

Sliding window: For efficiency the sliding window step occurs after multi-
scaling, which calls n resizing operations. A sliding window is applied to each
image in M to extract patches. The width w and height h of the sliding window
is set to 224. Thus patch sizes are equal to the default input size of pre-trained
models in PyTorch1. The sliding operation starts from the top-left corner of the
given image, and slides through from top to bottom and left to right. By default,
for efficiency, the step-size of the sliding window is set to 224, in other words there
is no overlap between neighbouring windows. However, patches at image bound-
aries are allowed to overlap with their neighbours to ensure that the entire image
is sampled. The minimum number of generated patches is

∑n
i=1d0.25i+ 0.75e2.

When I has equal width and height and n = 1, only one patch of size 224× 224
will be extracted, and SESS will return the same results as it’s base saliency
visualisation method. Thus, SESS can be viewed as a generalisation of existing
saliency extraction methods.
Pre-filtering: To increase the efficiency of SESS, a pre-filtering step is intro-
duced. Generating saliency maps for each extracted patch is computationally ex-
pensive. Generally, only a few patches are extracted that contain objects which
belong to the target class, and they have comparatively large target class ac-
tivation scores. Calculating target class activation scores requires only a for-
ward pass, and can be sped-up by exploiting batch operations. After sorting the
patches based on activation scores, only patches that have a score in the top
(100 − r)% of patches are selected to generate saliency maps. Here, we denote
r the pre-filter ratio. When r = 0, no pre-filter is applied. As shown in Fig. 3,
when r increases only the region which covers the target object remains, and the
number of patches is greatly reduced. For instance, only four patches from an
initial set of 303 patches are retained after applying a pre-filter with r = 99, and
these patches are exclusively focussed on the target object. Of course, a large
pre-filter ratio i.e., r > 50 will decrease the quality of the generated saliency
maps as shown in Fig. 3. Note we use notation Sc

fil to represent the class “c”
activation scores of the remaining patches after filtering.
Saliency extraction: The saliency maps for the patches retained after pre-
filtering are extracted with a base saliency extraction method. Any saliency

1 https://pytorch.org
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r=0, #patches=303 r=50, #patches=152 r=90, #patches=31 r=99, #patches=4

Fig. 3: Visualisation of regions and saliency maps after pre-filtering, when com-
puting saliency maps for the target classes “tiger cat” (top row) and “bull mas-
tiff” (bottom row). All patches that overlap with the red region are removed
after pre-filtering.

extraction method is suitable; however real-time saliency extraction methods
including Grad-CAM, Guided-BP and Group-CAM are recommended for effi-
ciency. Each extracted saliency map is normalised with Min-Max normalisation.
Saliency fusion: Since each patch is extracted from a different position or a
scaled version of I, a calibration step is applied before fusion. Each saliency
map is overlayed on a zero mask image which has the same size as the scaled I
from which it was extracted. Then all masks are resized to the same size as I.
Here, notation L represents the channel-wise concatenation of all masks. L has
n channels of size w×h. Before fusion, a channel-wise weight is applied. Sc

fil, the
activation scores of patches after filtering, is used as the weight. The weighted
L′ is then obtained using,

L′ = L⊗ Sc
fil. (1)

Finally, a weighted average that excludes non-zero values is applied at each
spatial position for fusion. The modified weighted average is used over uniform
average to ignore the zero saliency values introduced during the calibration step.
Thus, the saliency value at (i, j) of the final saliency map becomes,

Lsess(i, j) =

∑n
i=1 L

′(n, i, j) ∗ σ(L′(n, i, j))∑n
i=1 σ(L′(n, i, j))

, (2)

where σ(x) = 1 if x > θ, else σ(x) = 0, and θ = 0. A Min-Max normalisation
is applied after fusion.
Smoothing: Visual artefacts typically remain between patches after fusion, as
shown in Fig. 4. Gaussian filtering is applied to eliminate these artefacts. This
paper sets the kernel size to 11 and σ = 5.

4 Experiments

In this section, we first conduct a series of ablation studies to find the optimal
hyper-parameters and show the significance of the steps in our approach. Then,
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(a) input (b) before smoothing (c) after smoothing

Fig. 4: An example of the effect of the smoothing step. After the smoothing step,
edge artefacts are removed and the generated saliency is more visually pleasing.

we qualitatively and quantitatively evaluate the efficiency and effectiveness of
SESS compared to other widely used saliency methods.

4.1 Experimental Setup

All experiments are conducted on the validation split of the three publicly avail-
able datasets: ImageNet-1k [13], PASCAL VOC07 [3] and MSCOCO2014 [9].
Pre-trained VGG-16 (layer: Feature.29) [16] and ResNet-50 (layer: layer4) [6]
networks are used as backbones in our experiments. We used Grad-CAM [14],
Guided-BP [18] and Group-CAM [23] as base saliency extraction methods. Grad-
CAM and Guided-BP are selected as widely used representations of activation-
based and gradient-based approaches. We selected Group-CAM as a representa-
tive perturbation-based method given it’s efficiency.

In qualitative experiments, the number of scales and the pre-filter ratio are
set to 12 and 0, and smoothing is applied. In quantitative experiments, to reduce
computation time and fair comparison, we employ fewer scales and higher pre-
filtering ratios, and omit the smoothing step.

4.2 Ablation Studies

We conduct ablation studies on 2000 random images selected from the valida-
tion split of ImageNet-1k [13]. ImageNet pre-trained VGG-16 and ResNet-50
networks are used during the ablation study, and Grad-CAM is used as the
base saliency method. Insertion and deletion scores [12] are used as evaluation
metrics. The intuition behind this metric is that deletion/insertion of pixels
with high saliency will cause a sharp drop/increase in the classification score
of the target class. The area under the classification score curve (AUC) is used
as the quantitative indicator of the insertion/deletion score. A lower deletion
score and a higher insertion score indicates a high-quality saliency map. We
also reported the overall score as in [23], where the overall score is defined as
AUC(insertion)−AUC(deletion). The implementation is the same as [23]. 3.6%
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of pixels are gradually deleted from the original image in the deletion test, while
3.6% of pixels are recovered from a highly blurred version of the original image
in the insertion test.
Scale: To study the role of multi-scale inputs, we tested different numbers of
scales with insertion and deletion tests. As Figure 5 shows, for both VGG-16 and
ResNet-50, when the number of scales increases, the insertion scores increase and
the deletion scores decrease. Improvements begin to plateau once five scales are
used, and converge once ten scales are used. Overall, the improvement is clear
even when using images from the ImageNet dataset, where the main object
typically covers the majority of the image, and the role of scaling is less apparent.
Pre-filtering ratio: To find a high pre-filtering ratio which increases efficiency
whilst retaining high performance, we test 10 different global filters from 0 to 0.9.
The insertion score decreases as the pre-filter ratio increases, while the deletion
scores fluctuate just slightly until the pre-filter ratio reaches 0.6, after which they
increase sharply. This shows pre-filter ratio can be set to 0.5 for both high quality
and efficiency. However, we used a pre-filter ratio larger than 0.9 in quantitative
experiments.
Channel-wise weights: In the fusion step of SESS, channel-wise weights are
applied. Figure 7 qualitatively shows the role of the channel-wise weights. With
the channel-wise weights, the extracted saliency maps are more discriminative,
better highlighting relevant image regions. Without the channel-wise weights,
background regions are more likely to be detected as salient.

(a) Insertion curve (b) Deletion curve (c) Overall curve

Fig. 5: Ablation study considering scale factor in terms of deletion (lower AUC
is better), insertion (higher AUC is better), and overall score (higher AUC is
better) on the ImageNet-1k validation split (on a randomly selected set of 2k
images).

4.3 Image Recognition Evaluation

Here, we also use the insertion and deletion metrics to evaluate the performance
of the proposed SESS. We evaluate SESS with three base saliency extraction ap-
proaches (Grad-CAM, Guided-BP and Group-CAM) and two backbones (VGG-
16 and ResNet-50) on 5000 randomly selected images from the ImageNet-1k
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(a) Insertion curve (b) Deletion curve (c) Overall curve

Fig. 6: Ablation study considering the pre-filtering operation in terms of deletion
(lower is better), insertion (higher is better), and overall (higher is better) scores
on the ImageNet-1k validation split (on a randomly selected set of 2k images).

Input SESS (w/o weights) +
GBP

SESS (w/ weights) +
GBP

SESS (w/o weights) +
GradCAM

SESS (w/ weights) +
GradCAMID

270 
white
wolf

243 
bull 

mastiff

Fig. 7: Impact of the channel-wise weights: The use of the channel-wise weights
suppresses activations in background regions, and results in a more focussed
saliency map.

validation split. Considering the efficiency, the number of scales and pre-filter
ratio are set to 10 and 0.9. With SESS, all three methods with two different back-
bones achieve improvements, especially Guided-BP whose overall score increases
by nearly 5%.

4.4 Qualitative Results

This section qualitatively illustrates how much visual improvement SESS brings
over the base visualisation approaches such as Grad-CAM [14] and Guided-
BP [18]. As a baseline, we selected five visualisation approaches: Guided-BP,
SmoothGrad [17], RISE [12], Score-CAM [20] and Grad-CAM. ResNet-50 is se-
lected as the backbone for all methods. We selected challenging cases for queries,
including instances with multiple occurrences of the target classes, the presence
of distractors, small targets, and curved shapes.
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Method Model/layer SESS Insertion (↑) Deletion (↓) Over-all (↑)

Grad-CAM [14]
ResNet-50

68.1 12.1 56.0
X 68.6 11.3 57.3

VGG-16
60.6 9.1 51.5

X 60.3 8.1 52.2

Guided-BP [18]
ResNet-50

47.8 11.0 36.8
X 53.0 12.0 41.0

VGG-16
38.8 6.8 32.0

X 44.3 6.9 37.4

Group-CAM [23]
ResNet-50

68.2 12.1 56.2
X 68.8 11.3 57.4

VGG-16
61.1 8.8 52.3

X 61.1 8.1 53.1

Table 1: Comparison in terms of deletion (lower is better), insertion (higher is
better), and the overall (higher is better) scores on a randomly selected set of
5000 images from the ImageNet-1k validation split.

As shown in Fig. 8, visualisation results with SESS are more discrimina-
tive and contain less noise. SESS reduces noise and suppresses distractors from
the saliency maps, while making the Grad-CAM maps more discriminative and
robust to small scales and multiple occurrences.

4.5 Running Time

We calculated the average running time of Grad-CAM, Guided-BP and Group-
CAM with/without SESS on a randomly selected set of 5000 images from the
ImageNet-1k validation split. Since SESS’s running time is decided by the pre-
filter ratio and the number of scales, we calculated SESS’s running time with two
scales (6 and 12) and three pre-filtering ratios (0, 50%, 99%). For comparison, we
also calculated the average running time of RISE [12], Score-CAM [20] and XRAI
[8]. These experiments are conducted with an NVIDIA T4 Tensor Core GPU
and four Intel Xeon 6140 CPUs. Results are given in Table 2. With SESS, the
average computation time increased, though it is substantially reduced by using
a higher pre-filter ratio and a lower number of scales. Compared to perturbation-
based methods, activation/gradient-based methods with SESS are efficient. For
instance, in the worst case, SESS requires 16.66 seconds which is still over twice
as fast as RISE and XRAI, which require more than 38 seconds for a single
enquiry.

4.6 Localisation Evaluation

In this section, we evaluate SESS using the Pointing Game introduced in [22].
This allows us to evaluate the performance of the generated saliency maps on
weakly-supervised object localisation tasks. The localisation accuracy of each
class is calculated using Acc = #Hits/(#Hits+ #Misses). #Hit is increased
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Fig. 8: Qualitative comparison with SOTA saliency methods. Target class IDs
and inputs images are shown in the first two columns. Later columns show
saliency maps for (from left to right) Guided-BP, SmoothGrad, RISE, Score-
CAM, Grad-CAM, Grad-CAM with SESS, and Guided-BP with SESS.

Method
Without

With SESS

SESS
Pre-filter=0%
Scale=6/12

Pre-filter=50%
Scale=6/12

Pre-filter=99%
Scale=6/12

Grad-CAM [14] 0.03 1.23/3.96 0.84/2.36 0.42/0.70

Guided-BP [18] 0.04 1.29/4.09 0.86/2.37 0.41/0.73

Group-CAM [23] 0.13 4.42/16.66 2.54/8.54 0.51/0.92

RISE [12] 38.25 - - -

Score-CAM [20] 2.47 - - -

XRAI [8] 42.17 - - -

Table 2: Comparison of average run-time (in seconds) of a single query from a
set of 5000 randomly selected images from the ImageNet-1K validation split.

by one if the highest saliency point is within the ground-truth bounding box of
the target class, otherwise #Misses is incremented. The overall performance is
measured by computing the mean accuracy across different categories. Higher
accuracy indicates better localisation performance.

We conduct the Pointing Game on the test split of PASCAL VOC07 and
the validation split of MSCOCO2014. VGG16 and ResNet50 networks are used
as backbones, and are initialised with the pre-trained weights provided by [22].



14 O. Tursun et al.

For implementation, we adopt the TorchRay 2 library. Grad-CAM, Guided-BP
and Group-CAM are chosen as base saliency methods. For efficiency and fair
comparison, we set the pre-filter ratio to 99% and the number of scales to 10.
As per [22], the results of both the “all” and “difficult” sets are reported. The
“difficult” set includes images with small objects (covering less than 1/4 of the
image) and distractors.

Results are shown in Table 3. With SESS, all three methods achieved signif-
icant improvements, especially on the “difficult” set. The average improvement
for all cases is 11.2%, and the average improvement for difficult cases is 19.8%.
Grad-CAM with SESS achieved SOTA results. The results further demonstrate
that the multi-scaling and sliding window steps of SESS are beneficial when scale
variance and distractors exist.

Method SESS
VOC07 Test (All/Diff) COCO Val. (All/Diff)
VGG16 ResNet50 VGG16 ResNet50

Grad-CAM [14]
86.6/74.0 90.4/82.3 54.2/49.0 57.3/52.3

X 90.4/80.8 93.0/86.1 62.0/57.8 67.0/63.2

Guided-BP [18]
75.9/53.0 77.2/59.4 39.1/31.4 42.1/35.3

X 79.4/64.2 86.0/75.7 39.5/34.5 44.0/39.4

Group-CAM [23]
80.2/64.9 84.2/71.0 47.4/41.1 48.6/42.4

X 89.5/79.8 92.4/85.3 61.2/56.9 66.2/62.3

RISE [12] 86.9/75.1 86.4/78.8 50.8/45.3 54.7/50.0

EBP [22] 77.1/56.6 84.5/70.8 39.8/32.8 49.6/43.9

EP [4] 88.0/76.1 88.9/78.7 51.5/45.9 56.5/51.5

Table 3: Comparative evaluation on the Pointing Game [22].

5 Conclusion

In this work, we proposed SESS, a novel model and method agnostic exten-
sion for saliency visualisation methods. As qualitative results show, with SESS,
the generated saliency maps are more visually pleasing and discriminative. Im-
proved quantitative experimental results on object recognition and detection
tasks demonstrate that SESS is beneficial for weakly supervised object detec-
tion and recognition tasks.
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