
No Token Left Behind: Explainability-Aided
Image Classification and Generation -

Supplementary Material

Roni Paiss1, Hila Chefer, and Lior Wolf

The Blavatnik School of Computer Science, Tel Aviv University

1 Explainability Method

We create relevance maps for the text tokens (denoted by Rtt), and for the image
tokens (denoted by Rii) following the method presented in [5]. We initialize the
maps as follows:

Rii = Ii×i, Rtt = It×t (1)

Next, we update the relevance maps by a forward pass on the attention layers.
We use gradients in order to average across the attention heads, as done in [5]:

Ā = Eh((∇A⊙A)+) (2)

where ⊙ is the Hadamard product,∇A :=
∂st,i
∂A for st,i which is the the similarity

score computed by CLIP for the text prompt t with the image i, and Eh is the
mean across the heads dimension. Note that the propagation of gradients by the
similarity score allows us to obtain explainability scores for the text that are
specific to the input image, i.e. different images induce different explainability
scores for each textual token and vice versa.

Finally, to incorporate each layer’s explainability map to the accumulated
relevancy maps, we use the propagation rule presented in [5] for self-attention
layers:

Rii ← Rii + Āi ·Rii (3)

Rtt ← Rtt + Āt ·Rtt (4)

where Āi, Āt are attention relevance maps for image self-attention layers and
text attention layers, respectively, which were calculated using Eq. 2.

To obtain relevance per each text token, we observe that CLIP uses the eot
token as a classification token, thus we simply use the row ofRtt that corresponds
to the eot token.

1 Work was done while the author was also working at Apple.
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Dataset ResNet-50 ResNet-101 ViT-B/16 ViT-B/32
CoOp Ours CoOp Ours CoOp Ours CoOp Ours

ImageNet 53.41 57.78 56.87 61.12 63.63 66.19 58.23 61.38

ImageNetV2 46.65 51.20 50.17 54.54 56.69 58.40 50.93 53.82

ImageNet-Sketch 27.90 32.41 34.43 37.58 41.70 44.66 35.33 38.75

ImageNet-A 20.45 21.89 26.63 28.74 45.58 46.03 27.92 30.6

ImageNet-R 50.31 57.16 58.93 63.95 71.24 73.77 61.18 65.49

Table 1. 1-shot accuracy (in percentage) of CLIP [10] with prompts produced by
the method of [12] (CoOp) and by our explainability-guided variant, with class name
tokens positioned at the end of the prompts. Results are averaged over 3 random seeds.

2 Additional prompt engineering results

We present additional results for few-shot classification, which were left out
of the main text for brevity. We do not present results for the class-specific
configuration due to the required computational resources.

2.1 Prompt engineering with class name at the end of prompt

As mentioned in Sec. 4.1 in the main text, Zhou et al. [12] proposed two options
for positioning the class name tokens in the optimized prompts, which achieved
similar results. The first has the class name positioned in the middle of the
prompt, i.e.: t = v1,...,v8,label,v9,...,v16, where v1,...,v16 are the prompt tokens,
and the second has the class name located at the end, i.e.: t = v1,...,v16,label.
The results of our explainability-based method for the middle positioning variant
are reported in the main text. The results for the end positioning variant are
presented in Tab. 1. As can be seen, our method consistently outperforms the
original method of [12] with the end positioning configuration, similar to the
middle positioning one.

2.2 Few-shot prompt engineering

Although this work focuses on the 1-shot scenario for prompt engineering, we
report the results for 2-shot and 4-shot optimization as well. Tab. 2 and 3 present
the accuracy achieved with the method proposed in [12] and with our method
for the unified prompt configuration, where a single prompt is optimized for all
class names. As can be seen in Tab. 2, our method consistently outperforms the
original method of [12] with a significant margin across the different datasets
and backbones in the 2-shot scenario. A similar situation occurs in the 4-shot
scenario, as can be seen in Tab. 3. Note that for some of the visual backbones,
the accuracy our method achieves for 1-shot optimization surpasses the accuracy
achieved by the original method in the 2-shot scenario, and the results for our
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Dataset ResNet-50 ResNet-101 ViT-B/16 ViT-B/32
CoOp Ours CoOp Ours CoOp Ours CoOp Ours

ImageNet 56.70 58.42 60.59 62.71 65.94 67.72 60.59 62.71

ImageNetV2 49.99 51.99 52.85 54.95 58.48 60.87 52.66 55.10

ImageNet-Sketch 29.31 31.46 36.03 37.95 43.06 45.79 37.18 39.70

ImageNet-A 21.85 22.19 26.98 28.83 45.69 46.96 28.68 30.87

ImageNet-R 52.03 56.34 60.73 63.54 71.15 74.22 61.84 64.92

Table 2. 2-shot accuracy (in percentage) of CLIP [10] with prompts produced by the
method [12] (CoOp) and by our explainability-guided variant. Results are averaged
over 3 random seeds.

Dataset ResNet-50 ResNet-101 ViT-B/16 ViT-B/32
CoOp Ours CoOp Ours CoOp Ours CoOp Ours

ImageNet 59.50 59.87 62.84 63.59 68.20 68.90 63.12 64.14

ImageNetV2 52.04 52.22 55.31 56.25 61.39 61.85 54.72 56.57

ImageNet-Sketch 30.89 32.45 36.97 38.84 44.40 45.92 38.31 40.18

ImageNet-A 21.83 22.48 28.37 29.93 46.93 48.23 29.50 31.14

ImageNet-R 54.03 55.82 60.61 63.78 71.36 74.13 62.47 65.68

Table 3. 4-shot accuracy (in percentage) of CLIP [10] with prompts produced by the
method of [12] (CoOp) and by our explainability-guided variant. Results are averaged
over 3 random seeds.

method in the 2-shot scenario are very close to the results of the original method
in the 4-shot scenario. Since each i-shot, for i ∈ {2, 4} duplicates the size of
the training set compared to (i − 1)-shot, this is a strong indication for the
effectiveness of our method in improving generalization.

3 Relevance scores distribution over different POS

In order to understand the limitations of CLIP-guided optimization in general,
we study the importance of different speech parts (POS) to the prediction de-
livered by CLIP. We calculate the textual explainability scores for all matching
pairs of image and caption in MSCOCO [7] validation set. The explainability
scores for each caption are divided by the maximal explainability score in it,
to allow comparison of the relevancy of words between different sentences. We
extract the POS of each caption using the part-of-speech tagging architecture of
[2] with the Flair framework [1], and average the relevance scores of each POS
over the entire MSCOCO [7] validation set. Fig. 1 shows the average relevance
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Fig. 1. Average textual explainability score for different speech parts (POS), calculated
over the matching pairs of text and image in MSCOCO [7] validation set. The POS that
describe entities are colored in green, and preposition is colored in red. As can be seen,
when predicting that truly matching image and caption are similar, the nouns (objects)
are most relevant to the prediction, significantly more that the spatial positioning.

score of different speech parts, for all speech parts that appear at least 20 times
in the data.

As can be seen in Fig. 1 CLIP bases its similarity scores on the nouns sig-
nificantly more than any other speech part in the text, including prepositions
(IN) and adjectives (JJ), meaning that the existence of a given object in both
the caption and the image is more important for the similarity score prediction
than its detailed attributes or spatial position. This observation explains why
CLIP-guided optimizations often fail to follow spatial positions described in the
input text prompt.

4 Text-guided image generation

We describe a method for text-guided image generation that is similar in spirit
to the methods presented in the main text. For brevity, and since the benefit
of the proposed improvement is most apparent in the specific case of compound
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Selected basis by [8] [8] Selected basis by our method Our result

Fig. 2. Generated images conditioned on the prompt “a photo of a flaming dog” using
FuseDream [8] with and without our method. The word “flaming” is very dominant
and the original FuseDream basis selection results with mostly images of flames. This
unbalanced basis limits the ability of the optimization process to generate the dog and
leads to a small variation both in the background and the dog itself.

nouns, we exclude the results from the main text. Moreover, unlike the loss-
based approach used in the paper, the intervention here is only in the retrieval
mechanism used for the basis selection stage of the generative scheme.

The FuseDream method [8] improves upon a direct application of BigGAN [3]
for CLIP-guided text-based image generation. FuseDream employs a modified
CLIP score based on image augmentations, as follows:

AUGCLIP(t, i) = Ei′∼π(·|i)[CLIP(t, i
′)], (5)

where i′ is a random augmentation of i drawn from the distribution π(·|i). The
data augmentations are adopted from [11].

Since the optimization process is essentially a traversal in the latent space of a
pretrained BigGAN, aimed to locate the latent vector from which BigGAN gen-
erates an image that matches the text prompt, a key contribution of [8] regards
the initialization of this traversal. Instead of initializing the optimization pro-
cess with a randomly sampled latent vector, the FuseDream method randomly
generates M images using BigGAN, and selects the vectors in the BigGAN la-
tent space that generate the k images with the highest AUGCLIP score as a
basis B. This basis selection phase allows for shorter and easier navigation of
the latent space, as it is initialized closer to the target vector to be reached. Let
B = {v1, ..., vk} be the selected basis (where v1, ..., vk are latent vectors). The
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Fig. 3. Examples of selected bases and resulting generated images with FuseDream [8]
with and without our explainability guidance, on prompts with compound nouns pre-
sented in the user study. The basis selection of [8] results in basis images that severely
neglect relevant nouns from the prompts such as flag, cat, juice, and muffin, as re-
flected in both the images and their corresponding explainability scores. In contrast,
our method selects basis vectors that better correspond to the input prompts, resulting
in generated images that follow the semantic meaning of the texts.

FuseDream method optimizes the following:

max
{ϵi,wi}k

i=1

AUGCLIP

t, g

 k∑
j=1

wiϵi

 , (6)

where g is the BigGAN generator, the vectors are initialized to be the basis
vectors: ϵj = vj , and the coefficients are initialized as: wj =

1
k . The final output

image after the optimization is: iout = g
(∑k

j=1 wiϵi

)
. Since the basis selection

relies solely on the similarity score predicted by CLIP, it can exhibit a neglecting
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behavior, resulting in a retrieved basis that is unbalanced and fails to represent
the semantic meaning of the input text. An example can be seen in Fig. 3, for
the phrase “a photo of a strawberry muffin”, all images chosen as the basis
of FuseDream feature strawberries, which leads to a sub-optimal initialization
of the optimization process, resulting in output images that are shaped like a
strawberry, rather than a muffin. This can be attributed to the fact that for the
images corresponding to strawberries, CLIP predicts a similarity score that is
based mostly on the word “strawberry”, disregarding the word “muffin”. Fig. 2
presents another example, for the basis produced for the prompt “a photo of a
flaming dog”, in which the word “flaming” is emphasized over “dog”. In order
to overcome this sensitivity, our method accounts for the explainability scores of
the produced similarity, instead of simply considering the pure similarity scores,
by adding Lexpl from Eq. 4 in the main text to the AUGCLIP score to select
the basis vectors. This ensures that the basis vectors indeed reflect the entire
semantic content of the textual prompt.

Choosing the set of semantic words S: Eq. 4 in the main text uses a
set of semantic words S to ensure that the similarity score predicted by CLIP is
based on the true semantic meaning of the input text. In order to produce the
set S automatically, our method uses a part-of-speech tagging architecture [2]
with the Flair framework [1] to automatically extract all words that correspond
to nouns in the input text prompt t. Next, the FuseDream [8] method is used to
generate an image i by the description t, and a relevance score Rexpl is computed
for each word in t w.r.t. the generated image i, as described in Sec. 3.1 in the
main text. The set S is defined as follows:

S = {ti ∈ tnoun s.t. Rexpl(ti) < 0.7}, (7)

where tnoun is the set of words in t that are classified by the part-of-speech tagger
as nouns. Therefore, the loss in Eq. 4 in the main text emphasizes all nouns in
the input prompt with a relevance score lower than 0.7 for the produced image
i. Intuitively, each noun represents an object that should appear in the image i,
therefore nouns that have a low relevance score either do not appear or appear
only partially in the image i. The loss in Eq. 4 in the main text ensures that
the neglected objects of i will appear once it is applied to the modified basis
selection. In our experiments, we set: λexpl=0.1.

4.1 FuseDream experiments

We conduct all our experiments with the default setting from the FuseDream [8]
code base, using a BigGAN [3] generator for 512 resolution images, with 10
basis vectors for each image generation. To evaluate the visual quality of both
methods, we conduct a user study, with 46 participants. The study presents the
users with 53 textual prompts, for which we generate corresponding images with
FuseDream [8], and with our modified method described above. Users are asked
to choose the image that corresponds best to the textual description or mark
both as equally successful. 46 of the presented prompts are the visual exam-
ples presented in [8], so as to compare our method against the most visually



8 R. Paiss et al.

Basis size FuseDream Ours

M=5 21.26 20.66
M=10 24.67 23.96

Table 4. FID [6] (lower is better) calculated on images generated with FuseDream [8]
and with our method according to 30, 000 randomly sampled prompts from the
MSCOCO validation set. Both FuseDream and our method use a pretrained Big-
GAN [3] generator for 512 resolution images. Our method slightly improves the results
of FuseDream.

pleasing results by FuseDream. We focus on the examples where our method
produces a different result than FuseDream, meaning the set S contains at least
one word. The other 7 prompts are prompts containing compound nouns, such
as ”strawberry muffin” or ”orange kimono”, as we found these cases tend to
exhibit neglect by CLIP. For each example, we use the majority of the answers
to determine which method produced the best image. In 33 of the 53 images
(62.26%) the participants ruled that our method produced an image that cor-
responds better to the input text. Additionally, the average ratings for the 7
prompts that contain compound nouns show that in 86.6% of the cases, users
voted for our method as producing the results most compatible with the textual
descriptions. See Fig. 3 for a full comparison between the selected basis and the
final images produced by our method and FuseDream for 4 of the 7 prompts con-
taining compound nouns. As can be seen, our method selects basis images that
correspond better to the target semantic prompt; therefore it generates images
that reflect the textual descriptions.

Next, following the metrics presented in [8], we present the Fréchet inception
distance (FID) [6] on a subset of 30, 000 randomly sampled prompts from the
MSCOCO [7] validation set. As can be seen in Tab 4, our method slightly im-
proves the FID score over FuseDream, indicating that, in accordance with the
user study, our method either preserves the successful results of FuseDream, or
improves the produced images, in cases where the similarity-based optimization
fails to capture the entire textual description

5 StyleCLIP user study results

Tab. 5 presents the StyleCLIP user study results with standard deviation per
metric. Notice that standard deviations tend to be high since some of the manip-
ulations performed by both methods fail, resulting in low quality scores. As can
be seen, our standard deviation for the quality score is consistently lower than
StyleCLIP’s (with the exception of prompt (c) where both are very similar), in-
dicating that our manipulations are more stable. Fig. 4, 5, 6, 7 present the seeds
from the StyleCLIP user study where our method generates a different result
than that of StyleCLIP, out of the 20 random seeds used for the study. For the
other seeds, our method produces the same result as StyleCLIP (λexpl = 0). As
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Method Quality Identity

SC 2.92 (± 1.86) 3.61 (± 0.68)
Ours 4.28 (± 0.54) 2.23 (± 0.72)

Method Quality Identity

SC 1.17 (± 0.18) 4.13 (± 0.27)
Ours 2.29 (± 1.39) 3.51 (± 0.8)

(a) (b)

Method Quality Identity

SC 3.93 (± 1.40) 3.67 (± 0.80)
Ours 4.28 (± 0.50) 2.63 (± 0.86)

Method Quality Identity

SC 2.59 (± 1.80) 3.82 (± 0.78)
Ours 3.27(± 1.51) 3.10(± 1.01)

(c) (d)
Table 5. Results of the user study comparing text-based image editing with StyleCLIP
(SC) and our method on 4 different textual prompts. (a) “A man with a beard”, (b) “A
person with purple hair”, (c) “A blond man”, (d) “A person with grey hair”. Quality
refers to the similarity between the prompt and the manipulation; Identity refers to
the identity preservation of the manipulation. Scores are averaged across 20 random
seeds, on a scale of 1-5 (higher is better). Notice that standard deviations tend to be
high since some of the manipulations preformed by both methods fail, resulting in low
quality scores.

mentioned in the main text, for prompts that entail a change of identity such as
”a blond man” and ”a man with a beard”, our method causes a more significant
identity change in accordance with the prompt.

6 Zero-shot text to image generation with spatial
conditioning

6.1 Parameter sensitivity for λexpl, T and temp

The sensitivity of our method for spatially conditioned image generation to its
hyperparameters λexpl, T and temp is studied in Tab. 6, 7, and 8 respectively.
The temperature temp is used along with a sigmoid function to transform the
continuous and normalized explainabiltiy scores into semi-binarized map. As
can be seen in Tab. 6, setting temp = 1 reduces all DETR metrics significantly.
However, values in a wide range of 10-40 all produce reasonable results.

As can bee seen in Tab. 7 and 8, our method works well with different values
for λexpl and T , resulting with significantly better metrics than the baselines.

6.2 Zero-shot text to image generation with spatial conditioning
visualizations

Fig. 8, 9 present additional examples of our method for zero-shot text to im-
age generation with spatial conditioning. Fig. 10 presents the generated images
along with their explainability maps. Our explainability guidance enforces that
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Original Image StyleCLIP Ours

Fig. 4. Results of the StyleCLIP [9] user study on the prompt “A man with a beard.”
The examples above represent the seeds where our method generates a different result
than that of StyleCLIP, out of the 20 random seeds selected for the study. For the
other seeds, our method produces the same result as StyleCLIP (λexpl = 0).

the objects remain within the provided bounding boxes, and the relevancy maps
demonstrate the effectiveness of the explainability method in detecting the ob-
jects within each box. As can be seen, for most cases, our method successfully
generates the images such that each object is contained within its designated
bounding box, while the similarity-based baselines tend to deviate from the pro-
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Original Image StyleCLIP Ours

Fig. 5. Results of the StyleCLIP [9] user study on the prompt “A blond man.” The
examples above represent the seeds where our method generates a different result than
that of StyleCLIP, out of the 20 random seeds selected for the study. For the other
seeds, our method produces the same result as StyleCLIP (λexpl = 0).

vided bounding boxes, which is also reflected in artifacts in the explainability
maps.
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Original Image StyleCLIP Ours

Fig. 6. Results of the StyleCLIP [9] user study on the prompt “A person with purple
hair.” The examples above represent the seeds where our method generates a different
result than that of StyleCLIP, out of the 20 random seeds selected for the study. For
the other seeds, our method produces the same result as StyleCLIP (λexpl = 0).

temp Precision Recall F1 AP AR AP0.5

1 52.1 72.8 53.6 8.4 21.3 23.4
10 67.5 76.4 66.7 23.5 38.6 49.8
20* 71.7 63.4 62.6 26.2 40.0 56.5
30 72.6 53.0 56.8 23.3 36.0 52.2
40 72.4 46.6 52.1 19.0 34.1 44.8

Table 6. Precision, recall, F1, average precision, and average recall for spatially condi-
tioned image generation with our method, with different values for the hyperparameter
temp. Metrics are averaged across 100 random samples from the MSCOCO [7] vali-
dation set and four random seeds. Average precision and average recall are calculated
using DETR [4]. * The value used for our method
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Original Image StyleCLIP Ours

Fig. 7. Results of the StyleCLIP [9] user study on the prompt “A person with grey
hair.” The examples above represent the seeds where our method generates a different
result than that of StyleCLIP, out of the 20 random seeds selected for the study. For
the other seeds, our method produces the same result as StyleCLIP (λexpl = 0).

T Precision Recall F1 AP AR AP0.5

0.05 68.8 66.7 62.4 20.8 34.8 44.9
0.1* 71.7 63.4 62.6 26.2 40.0 56.5
0.2 73.4 56.3 58.6 22.2 37.2 52.2
0.3 73.7 53.8 56.7 20.8 34.8 44.9
0.5 71.5 58.1 57.3 19.3 33.4 41.4

Table 7. Precision, recall, F1, average precision, and average recall for spatially con-
ditioned image generation with our method, with different values for the threshold T .
Metrics are averaged across 100 random samples from the MSCOCO [7] validation
set and four random seeds. Average precision and average recall are calculated using
DETR [4]. * The value used for our method



14 R. Paiss et al.

Input Textual Similarity- Similarity- Ours
conditioning conditioning based based 2

Fig. 8. Examples of spatially conditioned images generated with the similarity-based
baselines and with our explainability-based method.
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Input Textual Similarity- Similarity- Ours
conditioning conditioning based based 2

Fig. 9. Examples of spatially conditioned images generated with the similarity-based
baselines and with our explainability-based method.
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spatial Similarity- Similarity- Ours
conditioning based 1 based 2

Fig. 10. Examples of spatially conditioned images generated with the similarity-based
baselines and with our explainability-based method, along with the relevance maps pro-
duced for the images and their matching text prompts. The leftmost column presents
the spatial conditioning provided to each method, each of the bounding boxes (red,
blue) serves as a mask for the generation process. For each method, the left image is
the generated results, the middle image is the explainability map for the object con-
ditioned with the red bounding box, and the right image is the explainability map
for the object conditioned with the blue bounding box. As can be seen, the relevancy
maps correspond well to the objects for our methods, while the baselines suffer from
significant artifacts.
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λexpl Precision Recall F1 AP AR AP0.5

0.1√
r(m)

70.5 62,4 61.3 22.1 37.0 48.2

0.15√
r(m)

* 71.7 63.4 62.6 26.2 40.0 56.5

0.2√
r(m)

71.7 64.1 62.7 24.4 38.5 51.3

Table 8. Precision, recall, F1, average precision, and average recall for spatially condi-
tioned image generation with our method, with different values for λexpl. r(m) denotes
the ratio between the area of the mask and the area of the entire image. Metrics are
averaged across 100 random samples from the MSCOCO [7] validation set and four
random seeds. Average precision and average recall are calculated using DETR [4]. *
The value used for our method
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