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Abstract. The application of zero-shot learning in computer vision has
been revolutionized by the use of image-text matching models. The most
notable example, CLIP, has been widely used for both zero-shot classifi-
cation and guiding generative models with a text prompt. However, the
zero-shot use of CLIP is unstable with respect to the phrasing of the
input text, making it necessary to carefully engineer the prompts used.
We find that this instability stems from a selective similarity score, which
is based only on a subset of the semantically meaningful input tokens.
To mitigate it, we present a novel explainability-based approach, which
adds a loss term to ensure that CLIP focuses on all relevant semantic
parts of the input, in addition to employing the CLIP similarity loss
used in previous works. When applied to one-shot classification through
prompt engineering, our method yields an improvement in the recog-
nition rate, without additional training or fine-tuning. Additionally, we
show that CLIP guidance of generative models using our method signif-
icantly improves the generated images. Finally, we demonstrate a novel
use of CLIP guidance for text-based image generation with spatial condi-
tioning on object location, by requiring the image explainability heatmap
for each object to be confined to a pre-determined bounding box. Our
code is available at https://github.com/apple/ml-no-token-left-behind.

1 Introduction

State-of-the-art computer vision models are often trained as task-specific models
that infer a fixed number of labels. In contrast, [29] have demonstrated that by
training an image-text matching model that employs Transformers for encod-
ing each modality, tens of downstream tasks can be performed without further
training (“zero-shot”), with comparable accuracy to the state of the art [29].
Due to its zero shot capabilities and its semantic latent space, CLIP [29] has
been widely used in recent research to guide pretrained generative networks to
create images according to a text prompt [15, 10, 23] and edit an input image
according to a text description [20, 28, 26].

While CLIP shows great promise in zero-shot image classification tasks and
generative network guidance, it suffers from instabilities that often lead to bi-
ased similarity scores between non-matching text and image pairs. To mitigate

1 Work was done while the author was also working at Apple.
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these instabilities, [29] suggest a prompt engineering technique that averages the
embeddings of multiple textual templates. Since CLIP summarizes the relation
between a given image and a given text with a single similarity score, it can
present a myopic behavior and focus on specific elements within the sentence
and/or the image. In order to alleviate this issue, it is necessary to rely on an
additional signal. In this work, we propose using the explainability maps to steer
the optimization process towards solutions that rely on the relevant parts of the
input, and away from solutions that focus on irrelevant parts, or on a small
subset of the relevant parts. We explore two domains in which we guide CLIP
to account for the important tokens in an input prompt: one-shot classification
and zero-shot text-based image generation. For one-shot classification, we incor-
porate a loss based on the explainability scores of the class name in the prompt
engineering method proposed by [42]. Our results demonstrate that guiding the
prompt engineering process using explainability improves performance in both
the class-agnostic and the class-specific cases. In the domain of image editing
guided by text, we employ a similar explainability-based loss. This loss allows the
generative network to avoid local minima caused by focusing on irrelevant words
in the input text, by requiring the explainability scores of important tokens to
be high. We demonstrate that our method significantly improves the generated
images. Additionally, by applying similar principles to the image-side relevancy
map, we use the obtained heatmaps to facilitate CLIP-guided text-based image
generation with spatial conditioning. As far as we can ascertain, we are the first
to present a spatial layout to image method using CLIP. As we demonstrate, a
straightforward application of the similarity score over a requested bounding box
does not guarantee that the entire object will be contained within that bounding
box. When relying on the explainability heatmap, our method helps ensure that
the object does not deviate from the provided bounding box.

2 Related Work

Zero-shot classification Zero-shot classification in computer vision usually
refers to a model’s ability to generalize to unseen labels. While several works
used weakly labeled Google images as training data [3, 9, 14, 32, 35, 38, 40] the
method of [21] was perhaps the first to study zero-shot transfer learning to unseen
datasets, which is a broader approach to zero-shot classification. This approach
was adopted by CLIP [29], which trains an image-text matching engine using an
image encoder and a text encoder, via contrastive learning. The image encoder
architectures used are either ViT [12] or ResNet [16], and the text encoder is
based on a Transformer [37] with the modifications of [30]. CLIP was trained
on a set of 400M matching image-text pairs, and showed remarkable zero-shot
capabilities on the ImageNet dataset [11]. Following CLIP, [42] proposed few-
shot prompt engineering to enhance CLIP’s classification accuracy on unseen
datasets. Their approach opts to learn the textual templates fed to CLIP rather
than manually engineering them, as originally done by [29]. As we show, CLIP-
guided optimization methods such as CoOp [42] tend to focus on a sparse set of
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tokens in the input, and often neglect important parts of it. Our work attempts
to mitigate this issue by applying an explainability-based loss.

CLIP-guided Generation Following the success of CLIP in zero-shot classi-
fication, several works have used the similarity scores produced by CLIP to guide
pretrained generative networks. These methods usually construct a similarity-
based loss, encouraging a generator to produce the output with the desired
semantic attributes. Some of the applications of CLIP for guiding generative
networks include image manipulation [28], image essence transfer [6], style trans-
fer [15, 43], 3D object style editing [25], and image captioning [36]. While demon-
strating great capabilities, we show that methods such as StyleCLIP and VQ-
GAN+CLIP are limited by the tendency of CLIP to sometimes ignore meaning-
ful parts of the text. Our explainability-based loss addresses this issue.

Transformer Explainability Many methods were suggested for generating
a heatmap that indicates local relevancy, given an input image and a CNN [33, 4,
24, 34]. However, the literature on Transformer explainability is relatively sparse
and most methods focus on pure self-attention architectures [1, 8]. The recent
method of [7], which we employ in this work, is the first to also offer a compre-
hensive method for bi-modal networks.

3 Method

We begin by describing how to produce relevance values for each word and image
patch using CLIP. We then describe how our method is applied to one-shot
classification via prompt engineering and to zero-shot image generation.

3.1 Explainability

Given a pair of text t and image i, CLIP produces a score CLIP(t, i), which
determines how semantically similar the textual description t is to the image i.
The goal of the explainability method is to produce a relevance score for each
input text token and image patch in the computation of the similarity score
CLIP(t, i). The score of each token should reflect its impact on the similarity
score, and input tokens with the greatest influence on the similarity score should
receive a high relevancy score and vice versa. We employ the method described
in [7] (details in the supplementary) to produce a relevance score for each image
patch and text token, given the calculated similarity score. As the relevance
scores are calculated per token, we define the relevance score of a word to be the
maximal relevance score among its tokens. For each word W = w1, ..., wn, where
w1, ...wn are the tokens it contains, we define its relevance score Rexpl(W ) as
Rexpl(W ) = maxk∈w1,...,wn R[k], where R[k] is the relevance score of [7].

3.2 Prompt engineering

Image classification is the task of assigning a label from a set of possible classes
c ∈ C to an input image i. In order to adapt CLIP to different classification
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tasks, [29] propose employing prompt templates with each possible class c ∈ C
inserted, e.g. “A photo of a {label}.” These templates are necessary because in
the process of CLIP’s pre-training most textual inputs are full sentences rather
than single words. Let i be the input image to be classified, and let t denote
the textual template. t(c) denotes the template t, where the {label} placeholder
was replaced by the class name c. CLIP scores per class are obtained using the
similarity score between the input image and the class-template as follows:

Pr(output = c|i) = eCLIP(t(c),i)∑
c′∈C eCLIP(t(c′),i)

. (1)

[42] replace the manual selection of the textual templates with a few-shot
learning of it. Given the desired template length M , the template t(label) =
v1, ..., vi, {label}, vi+1, ..., vM is optimized with a cross-entropy loss using Eq. 1 to
extract the distribution. Note that the learned templates are prone to overfitting,
due to the small number of example images for each label, which can result in
prompts that describe distinctive parts of the images that are irrelevant to their
class, yielding a similarity score CLIP(t(c), i) that is not based on the class name.
This problem is most prominent in the one-shot scenario where the prompts are
optimized based on a single image per class. To help avoid this phenomenon,
our method employs a novel explainability-based loss. For each class c ∈ C and
image i, the similarity score CLIP(t(c), i) is produced, and then a normalized
explainability score is calculated. This score reflects the relevance of the class
c ∈ C to the similarity of the template and the image:

Sexpl(c) =
maxW∈c Rexpl(W )∑

U∈t(c)/c Rexpl(U)
(2)

where, as above, W ∈ c are the words comprising the label c ∈ C. The score
Sexpl(c) encapsulates the impact that the class name c has on the calculated
similarity score CLIP(t(c), i), in comparison to all other words in the sentence.
Our explainability-based loss is, therefore:

Lexpl = λexpl

−Sexpl(cgt) +
∑

c ̸=cgt∈C

Sexpl(c)


where cgt is the ground truth label, and λexpl is a hyperparameter. The first
term, −Sexpl(cgt) encourages the similarity score for the ground truth class to
be based on the class name tokens, in order to avoid focusing on other, irrelevant
tokens. The second term,

∑
c ̸=cgt∈C Sexpl(c) encourages the similarity score for

all the counterfactual classes to be based on tokens that are not the false class
name, since the class name does not correspond to the image.

3.3 Zero-shot text-guided image manipulation

Recent research [28, 20] demonstrates that CLIP can be effective for guiding gen-
erative networks that synthesize and edit images, by maximizing the similarity
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Fig. 1. Manipulations for “A person with purple hair”. StyleClip [28] produces a ma-
nipulation that is not consistent with the semantic meaning of the prompt, and the
color of the person’s shirt and the background are altered. Our method generates an
output that is faithful to the input text query, and the high values of the explainability
heatmaps are much more correlated with the prompt.

score between the desired text and image. As pointed out by [23], methods that
integrate a pre-trained generator with the CLIP score to allow text-based editing
suffer from instabilities, since similarity-based optimization often reaches local
minima that do not reflect the desired semantic meaning of the input query.

As shown in Fig. 1, this shortcoming is often manifested in the explainability
scores, and is caused by similarity scores relying only on a partial subset of the
semantic tokens in the text query. Thus, our method leverages the explainability
scores, to ensure that the output similarity scores are derived from all of the
tokens that determine the semantic meaning of the input text. Given a pre-
trained generator G (a mapping from a latent vector z to an output image), an
input image i, and an input text t, the goal of the optimization algorithm A is
to find a vector A(G, i, t) = z such that G(z) combines the visual appearance of
image i with the description in the text query t. In order to assess the correlation
between the manipulation G(z) and the desired semantic property in t, the
algorithm A uses the CLIP similarity score between the manipulated image
G(z) and the textual prompt t as a loss term Lsimilarity = −CLIP(G(z), t). This
loss is applied in addition to other loss terms that lead to a high visual similarity
between i and G(z).

As mentioned, Lsimilarity can produce biased similarity scores, which do not
reflect the semantic meaning in t, due to focusing only on a subset of the seman-
tically important words in t. Our method remedies this bias by adding a loss
term that encourages CLIP to attend to all semantic words in t.

Let S be the set of semantic words in t. Since the textual prompts for image
editing are of the format: ”a person/ man/ woman with {description}” or of
the format ”a {description} person/ man/ woman”, the set S is considered to
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be the words that comprise the description. Our method adds the following
explainability-based loss term to the optimization algorithm A:

Lexpl = −λexpl
1

|S|

(∑
s∈S

Rexpl(s)

)
, (3)

where λexpl is a hyperparameter. For example, in Fig. 1, the set of semantic
words is defined to be: S = {“purple′′, “hair′′}. This helps the optimization
process to favor results where the similarity score is based on the hair color of
the subject of the image. As can be seen in the figure, when our loss is not
applied, the optimization results in coloring the shirt and the background.

Choosing λexpl Our modified optimization algorithm has an additional hy-
perparameter λexpl. Since CLIP-based optimization is sensitive to the choice of
hyperparameters, it is better to set them based specifically on the input image
i, input text t, and generator G. In order to provide an automatic mechanism
for choosing λexpl, we consider a range of possible λexpl, and choose the value
of λexpl for which the similarity predicted by CLIP for the generated image and
the input text is maximal. Note that after applying our method, the similarity
scores become more stable, as they consider all semantic tokens in the input.

3.4 Zero-shot text-to-image with spatial conditioning

While the textual descriptions provided to CLIP can include the spatial posi-
tioning of objects, images generated by optimizing CLIP similarity score with
such texts tend not to follow these spatial restrictions, as shown in Fig 4. We
attribute this to the nature of the task CLIP was trained on, which is predicting
how similar a given image is to a given text. The existence of matching entities
in both inputs is a stronger indication of their similarity than the positions of
the entities. This intuition is reflected in the distribution by speech parts (POS)
of the explainability scores calculated for CLIP, as shown in the supplementary.

To alleviate this shortcoming of providing spatial positioning with textual
description, we add spatial conditioning as an additional input. As far as we
can ascertain, CLIP has not been used before for image generation conditioned
on spatial masks. The somewhat related task of CLIP-based zero-shot image
inpainting was recently successfully performed by [26, 2], who point out that a
simple masking of the input image presented to CLIP, such that the similarity
score is only predicted based on a specific region of the image, does not guarantee
that the generated object will not deviate from the provided region.

Preventing the generator from producing objects outside the designated spa-
tial locations requires applying additional losses on the background or restricting
the optimization process such that only the parts of the latent vector that affect
the desired region of the image are optimized. These methods limit the spatial
conditioning to applications that receive an input image to be used as unaltered
background. However, since the explainability maps produced for CLIP indicate
the location of the objects, we can effectively limit the location of generated
objects using explainability.
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Algorithm 1 Obtain IoU loss from masks and image.

Input : (i) m1, ...,mk- bounding boxes of the objects to be generated, (ii) t1, ..., tk-
textual descriptions of the objects we wish to generate, (iii) C- a pre-trained CLIP
model. (iv) the input image i, (v) a threshold T over relevancy scores (vi) temp - a
temperature for the sigmoid operation (vii) expl - the image explainability algorithm
for CLIP, which outputs relevance scores for the image patches for each pair of image
and text.
Output : LIoU - an explainability-based IoU loss for the input masks m1, ...,mk, and
input image i.

1: LIoU ← 0
2: for j ∈ {1, . . . , k},:
3: Rj ← expl(i, tj)
4: Rj ← Rj/Rj .max()
5: pred maskj ← sigmoid((Rj − T ) ∗ temp)
6: intersection←

∑
p∈i(pred maskj [p] ·mj [p])

7: LIoU ← LIoU + 2∗intersection∑
p∈i pred maskj [p]+

∑
p∈i mj [p]

Our method employs an IoU-inspired loss based on the explainability of the
image modality. Alg. 1 describes how we produce the loss LIoU given the input
spatial conditioning masks m1, ...,mk and the input image i. For each bounding
box mj and the text tj describing the object we wish to generate in that location,
we generate the explainability for CLIP with the entire image i and text tj (L.3).
This explainability map represents the location in which the object is currently
found in the image by CLIP. We then transform the explainability map into
a semi-binary mask (L.5) by substracting a threshold value T and passing the
output through a sigmoid function with high temperature temp. This predicted
mask is then used to calculate a Dice Loss with respect to the ground truth object
mask (L.7). After calculating the IoU-based loss, we incorporate the similarity-

based loss L = −λexpl ·LIoU−
∑k

j=1 CLIP(i, tj), where λexpl is a hyperparameter,
and the sum calculates the CLIP similarity between the image and each object
we wish to generate, in order to ensure that all objects in {t1, ..., tk} appear in i.
λexpl, T and temp are chosen empirically, using examples from the MSCOCO [22]
validation set.

4 Experiments

We evaluate our method in various contexts, including one-shot prompt engi-
neering for image classification based on [42], zero-shot text-guided image ma-
nipulation based on [28], and zero-shot text-guided image generation with spatial
conditioning based on CLIP-guidance for VQGAN [13, 10].

4.1 One-shot prompt engineering

We compare the classification accuracy of CLIP using the prompts optimized
with CoOp [42] and with our method, as described in Sec. 3.2. Following [42],
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Original Ground truth class label Counter factual class label
image CoOp [42] Ours CoOp [42] Ours

Fig. 2. A qualitative comparison of prompt engineering using CoOp [42] with and
without our method on 2 exemplary samples from ImageNetV2 [31]. We present the
relevance maps for the ground truth class chosen by our method (“necklace”, “jigsaw”),
and the counterfactual class chosen by CoOp (“bolo tie”, “maraca”). The learned
vectors for the prompt are annotated by the letter “v” in the textual explainability
maps, since the vectors do not represent actual tokens. As can be seen, for the ground
truth classes “necklace” and “jigsaw”, our prompts encourage CLIP to focus on the
class name in the input text, while CoOp leads CLIP to consider unrelated tokens. This
can cause CLIP to produce biased similarity scores based on the engineered prompts.

we evaluate the methods on ImageNet [11] test set, ImageNetV2 [31], ImageNet-
Sketch [39], ImageNet-A [18], and Imagenet-R [17].

Following [42], two scenarios are tested: unified prompt engineering and class-
specific prompt engineering. In the unified scenario, a single prompt is optimized
for all class names. In the class-specific (CSC) case, a different prompt is op-
timized per class. Note that for all datasets, the prompts are optimized using
labeled examples only from the ImageNet training set, in order to test the ro-
bustness of the optimized prompts on different ImageNet variations.

For both methods we test different backbones for the visual encoder of CLIP
(see Tab. 1), including variations of ViT [12] and of ResNet [16]. Following [42],
we optimize a template with M = 16 tokens. We also include results for M = 4,
as it was noted to sometimes achieve superior results on ImageNet.

Two options for positioning the class name tokens in the prompt were re-
ported in [42], with similar outcomes. The first has the class name located in
the middle of the prompt, i.e.: t = v1, ..., v8, {label}, v9, ..., v16, where v1, ..., v16
are the prompt tokens, and the second has the class name located at the end,
i.e.: t = v1, ..., v16, {label}. In the main text we report the results of the former;
for the latter, see the supplementary. We use λexpl = 1 for experiments that use
ViT-B/16 as backbone and λexpl = 3 for all other backbones.
Tab. 1 shows the 1-shot accuracy of CoOp and our method, in addition to 0-shot
manual prompt selection and linear probing of the image embedding produced
by CLIP, which are the baselines used by CoOp [42]. 2-shot and 4-shot results are
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Image ImageNet ImageNetV2 INet-Sketch ImageNet-A ImageNet-R
backbone Unified CSC Unified CSC Unified CSC Unified CSC Unified CSC

ResNet-50

0-shot 58.18 - 51.34 - 33.32 - 21.65 - 56.00 -
LP 21.70 - 17.78 - 5.57 - 0.11 - 0.07 -
CoOp M=16 54.45 28.40 47.11 23.92 28.12 11.80 19.97 10.39 50.38 26.83
CoOp M=4 57.63 35.88 50.34 30.49 30.18 16.28 21.43 13.45 53.53 32.06
Ours M=16 58.13 31.90 51.30 26.82 32.49 13.52 22.12 11.77 57.73 29.26
Ours M=4 59.05 38.79 52.33 33.58 32.59 18.25 22.74 14.33 57.15 34.63

ResNet-101

0-shot 61.62 - 54.81 - 38.71 - 28.05 - 64.38 -
LP 26.41 - 21.75 - 9.61 - 0.08 - 0.07 -
CoOp M=16 57.84 33.51 51.25 26.98 33.80 15.78 26.82 14.28 59.02 32.40
CoOp M=4 60.41 38.96 53.68 33.43 36.71 21.19 27.94 16.91 61.08 40.27
Ours M=16 61.76 36.01 55.02 31.07 37.96 18.70 29.56 15.97 63.92 36.02
Ours M=4 62.31 40.77 55.65 35.18 38.51 21.88 30.07 17.80 65.33 40.44

ViT-B/16

0-shot 66.73 - 60.83 - 46.15 - 47.77 - 73.76 -
LP 32.26 - 27.33 - 16.48 - 0.10 - 0.08 -
CoOp M=16 63.66 38.86 56.53 33.55 40.96 22.59 43.93 23.30 69.33 42.76
CoOp M=4 66.93 46.20 60.14 40.28 44.97 28.26 47.44 31.87 72.12 51.16
Ours M=16 67.09 40.78 60.28 35.25 45.71 23.77 48.29 25.03 74.9 44.43
Ours M=4 67.62 48.74 61.07 42.58 46.33 30.34 49.46 34.08 75.66 53.75

ViT-B/32

0-shot 62.05 - 54.79 - 40.82 - 29.57 - 65.99 -
LP 27.03 - 22.38 - 11.32 - 0.12 - 0.08 -
CoOp M=16 57.64 33.42 50.24 28.39 35.12 17.63 27.53 13.84 59.46 34.30
CoOp M=4 61.48 40.66 54.01 34.52 38.26 22.76 29.56 18.58 63.11 41.12
Ours M=16 62.55 38.63 55.14 33.23 40.40 21.08 31.22 16.8 67.22 39.64
Ours M=4 63.69 42.98 55.84 37.21 40.23 24.26 30.78 20.48 66.49 44.22

Table 1. 1-shot accuracy (in percentage) of linear probing (LP) and CLIP [29] with
prompts produced by the method of [42] (CoOp) or with our explainability-guided
variant, with various image backbones. All methods are trained on ImageNet and
evaluated on several variants. Unified stands for training a single prompt for all classes,
and CSC (class-specific) stands for optimizing a prompt for each class name. Results
are averaged over 3 random seeds.

available in the supplementary. As can be seen, both linear probing and CoOp
are heavily overfitting and actually achieve significantly lower accuracy than
0-shot results. Using the explainability-based loss, our method is consistently
able to improve upon CoOp, leading to higher accuracy across all backbones, all
datasets, and both scenarios (unified and CSC).

A Sensitivity analysis for λexpl is presented in Fig. 5, showing that the
improvement in accuracy is consistent across a large range of λexpl values. Fig. 2
presents a qualitative comparison of using CoOp with and without our method,
see caption for a detailed description.

4.2 Zero-shot text-guided image manipulation

Next, we compare our explainability-based optimization (Sec. 3.3) with the opti-
mization presented in [28]. There are three methods for text-based image editing
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Fig. 3. A qualitative comparison between StyleCLIP (SC) and our method on 4 differ-
ent textual prompts. (a) “A man with a beard”, (b) “A person with purple hair”, (c)
“A blond man”, (d) “A person with grey hair”. For each prompt we present examples
where StyleCLIP is successful (right column), and unsuccessful (left column). For the
failure cases, the optimization in StyleCLIP hardly modifies the original image, lead-
ing to a high identity preservation score when no semantic change was applied. When
StyleCLIP is successful, our method produces similar or identical results.

using StyleGAN [19] presented by [28] - latent optimization, mapper training,
and global directions extraction. We focus on latent optimization, since our focus
is on zero-shot methods and the other two methods employ additional training.
As described in Sec. 3.3, we add the explainability-based loss from Eq. 3 to the
optimization algorithm of [28]. We choose the set of hyperparameters for our
explainability-based loss from the set: λexpl = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}, and
use the best value for λexpl according to the highest CLIP similarity score.

Since the optimization in [28] requires a different hyperparameter setting for
each prompt, we select prompts that appear in the paper or official code, and
use the same hyperparameters (in other words, we do not manually select the
hyperparameters for our method). Next, we choose 20 random seeds to be used
across all our experiments to generate the images to be edited, i. For each image
i, and text prompt t we produce the edited image with StyleCLIP’s optimization,
and with our modified optimization.

For evaluation, we extract all examples where our method produces a different
output than StyleCLIP, i.e., all cases where the automatic procedure selected
λexpl ̸= 0, and conduct a user study among 46 users. Users were asked to evaluate
each manipulation by the similarity between the manipulated image and the
input prompt t and by the loss of identity between the manipulated image and
the original image i, both on a scale of 1− 5 (higher is better).

Fig. 3 presents sample results from our user study (See the supplementary for
full results). Notice that for challenging manipulations, such as using the prompt
“a man with a beard” on a woman, StyleCLIP tends to leave the input image
i almost unchanged. In contrast, in many of these cases, our method compels
the optimization to reach a solution that fits the required semantic edit. We
present the results of the user study for each prompt in Tab. 2 (see results with
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A man with a beard A person with purple hair A blond man A person with grey hair

Method Quality Identity Quality Identity Quality Identity Quality Identity

SC 2.92 3.61 1.17 4.13 3.93 3.67 2.59 3.82
Ours 4.28 2.23 2.29 3.51 4.28 2.63 3.27 3.10

Table 2. A user study comparing text-based image editing with StyleCLIP (SC) and
our method on 4 different textual prompts: “A man with a beard”, “A person with
purple hair”, “A blond man”, “A person with grey hair”. Quality refers to the similarity
between the prompt and the manipulation; Identity refers to the identity preservation
of the manipulation. Scores are averaged across 20 random seeds, on a scale of 1-5
(higher is better).

standard deviation in the supplementary). As can be seen, our method produces
results that are consistently rated by users as more similar to the target text.
However, StyleCLIP, which, as can be seen in Fig. 3, often leaves the images
unchanged, obtains a higher identity preservation score. Evidently, the gap in
the identity score is much bigger for the prompts “A man with a beard” and
“A blond man”. These prompts modify the gender of the subject of the image
i, thereby requiring a more substantial identity change.

4.3 Zero-shot text-to-image with spatial conditioning

We use CLIP-guided VQGAN as implemented by [10]. Since, as far as we
can ascertain, there is no previous literature on zero-shot CLIP-guided text-
to-image generation with spatial conditioning on the location of the generated
objects, we use two variations of a similarity-based CLIP loss to create base-
lines without explainability conditioning. The first baseline employs the loss
Lmasked =

∑
t∈{t1,...,tk}

∑
m∈{m1,...,mk} −CLIP(im, t), where im is the image i

masked according to bounding box m, i.e. for each mask m, we black out all
pixels outside m, in order to ensure that the objects identified by CLIP re-
side within the bounding boxes, and t is a prompt of the form “a photo of
{label}” where ”label” is the target class to be generated in bounding box m.
This masking technique has also been employed in previous works [26, 2], for
CLIP-guided image inpainting. The second similarity-based baseline we con-
sider employs the loss Lmasked in addition to the similarity loss in the un-
masked image Lsimilarity =

∑
t∈{t1,...,tk} −CLIP(i, t). This baseline uses the

loss: L = Lsimilarity + Lmasked, which considers both the information inside
the bounding boxes and the information in the entire image.

As mentioned in Sec. 3.4, since a simple similarity-based loss has no spatial
restrictions, the baselines produce objects outside the input bounding box (see
Fig. 4), while our loss produces objects within the bounding box, thanks to
spatial conditioning based on explainability. Moreover, the examples in Fig. 4
demonstrate the ability of our method to generate images in a variety of cases,
including multiple bounding boxes with varying heights and widths (see the
supplementary for additional examples and visualizations of the explainability
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Input Textual Similarity- Similarity- ours
conditioning conditioning based based 2

Fig. 4. A qualitative comparison between the two similarity-based baselines and our
method for CLIP-guided zero-shot text-based image generation with spatial condition-
ing. Textual conditioning refers to specifying the spatial positioning of objects within
the text prompts, for example ”a vase on a table”. Additional examples are presented
in the supplementary.

maps). As smaller bounding boxes require stronger supervision, we set λexpli for
object i to be λexpli =

0.15√
r(mi)

, where mi is the bounding box assigned to object

i and r(mi) is the ratio between the area of the mask and the area of the entire
image. The threshold T is set to 0.1 and temp is set to 20.

In order to provide quantitative metrics for our spatially conditioned text-to-
image generation, we use the validation set from MSCOCO [22] which contains
bounding boxes for each object in the image. In order to ensure a varying number
and size of objects, while maintaining enough background to allow object-free
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Similarity- Similarity- Ours
based based 2

Precision 46.4 26.9 71.7
Recall 48.3 30.5 63.4
F1 40.5 24.28 62.6
AP 8 5.4 26.2
AR 21.6 19 40
AP0.5 18 15.4 56.5

Table 3. Precision, recall, F1, average
precision, and average recall for spatially
conditioned image generation with our
method, and two similarity-based baselines
(results in percentage). Metrics were aver-
aged across 100 random samples from the
MSCOCO [22] validation set and four ran-
dom seeds. Average precision and average
recall are calculated using DETR [5].

Fig. 5. 1-shot accuracy (in percentage) on
the ImageNet test set for different choices
of λexpl for all visual backbones of CLIP.
The accuracy achieved by the baselines is
denoted as λexpl = 0.

generation, which is challenging for CLIP-guided VQGAN, we filter the layout
as follows: we keep the k largest bounding boxes whose commutative area is less
than 50% of the image, where adding the next largest bounding box would result
in occupying more than 50% of the image. By focusing on the largest objects
we also help ensure that the size of each bounding box suffices for the CLIP
encoder. For our first experiment, we sample 100 MSCOCO images at random,
and use our method and the similarity-based baselines to generate images cor-
responding to the annotated spatial layout. We then produce an explainability
map for each text description t, as described in Alg. 1 (L.2-3). We use these
maps as soft semantic segmentation, binarize them using thresholds produced
with Otsu’s method [27], and calculate the precision, recall, and F1 scores of the
binarized maps with the ground truth bounding boxes m1, ..,mk. Note that both
precision and recall are limited and cannot reach 100% due to the square shape
of the bounding boxes, which is not suited to non-square objects. Precision is
also limited because images often contain more than one instance of a specific
class, leading to a high explainability score for the other occurrences as well. As
can be seen in Tab. 3, our method significantly outperforms the baselines.
Next, we use object detection to evaluate the quality of the generated objects,
as well as the overlap between their location and the target spatial condition.
DETR [5] is used to produce bounding boxes for each object. These bounding
boxes are evaluated against the input spatial conditioning masks using the av-
erage precision and average recall scores. As can be seen in Tab. 3, our method
greatly outperforms the baselines in this evaluation as well, implying that the
explainability signal is indeed indicative enough to enforce spatial restrictions
over an image.
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5 Discussion

In our experiments, we presented a generic application of explainability to im-
prove classification, image editing, and image synthesis. There are also specific
situations in which a limited view of the input is detrimental and where ex-
plainability can help ensure a more even distribution of information pooling.
One such case, studied in the supplementary, is that of compound nouns, e.g.
“apple juice” or “blueberry muffin”. As we show, state-of-the-art zero-shot text-
to-image generation engines might overly emphasize or ignore some of the tex-
tual input, leading to misinterpretation of the text. The method we present for
equalizing the contributions to avoid such neglect not only leads to considerably
better image outputs for such cases, but also slightly improves the FID score for
other sentences. See the supplementary for full details of the method implemen-
tation, visual examples, and the results of a user study conducted against results
obtained with a state-of-the-art method. In order to demonstrate the wide ap-
plicability of our approach, we have modified multiple zero-shot and one-shot
approaches. While the baseline approaches are impressive, we do note that they
are not yet ready to replace supervised methods. Prompt engineering is not
yet competitive with supervised methods, CLIP-guided VQGAN often gener-
ates substandard images, and StyleCLIP optimization method often fails and
requires different parameters for each prompt. Therefore, other signals need to
be considered to allow zero-shot applications to compete against fully supervised
ones. Explainability, as we show, is an example of such beneficial signal.

6 Conclusions

While explainability methods are constantly improving, their use as a feedback
mechanism to improve classification or generation methods is still relatively un-
explored. As far as we can ascertain, their utilization as such a building block
is currently limited to weakly supervised segmentation [41, 7]. In this work, we
show how explainability can help overcome the neglect problem of bi-modal
transformers, which have become a cornerstone in the current rapid evolution of
zero-shot methods. We demonstrate how preventing neglect, as reflected through
the lens of the explainability score, helps improve one-shot classification, zero-
shot image editing, and zero-shot layout-conditioned image generation. In the
first two domains, neglect is prevented in the text domain, while in the latter,
the constraint on the heatmap is placed in the image domain.
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