
Contributions of Shape, Texture, and Color in
Visual Recognition (Appendix)

Yunhao Ge∗, Yao Xiao∗, Zhi Xu, Xingrui Wang, and Laurent Itti

University of Southern California
https://github.com/gyhandy/Humanoid-Vision-Engine

Appendix

A Details of Human Vision Engine (HVE)

A.1 Image Parsing and Foreground Identification

As described in the main paper Sec. 3.1, we use entity segmentation and fore-
ground object identification to simulate the preprocessing behavior of the human
vision system. An illustration is shown in Fig. 1.

The entity segmentation can parse an input image and output a set of binary
images masks. Each mask represents a single object or stuff in the image. For an
input raw image Iraw ∈ RH×W×C , we denote the image mask sets as {Imask,k},
where k = 1, 2, ..., denotes each different object. For each image mask Imask,k,

pixel I
(i,j)
mask,k equals to 1 if and only if pixel I

(i,j)
raw belongs to objects k, otherwise

equals to 0.

For foreground identification, we borrow the learned knowledge from a pre-
trained model which already learn the foreground class. As Grad-CAM [4] could
generate class-specific saliency map Mcam given the model’s prediction, which
represent how important each pixel contribute to the specific prediction. So the
pixel with a higher activation value is more likely belong to foreground. We first
use a pretrained model to generate a saliency map Mcam with Grad-Cam, and
then we can get the binary attention map Matt based on Mcam. For mask Matt,

pixel M
(i,j)
att equals to 1 if and only if pixel M

(i,j)
cam > τ (we set τ to be the median

value of Mcam), otherwise equals to 0.

After getting Matt, we can compute Intersection over union (IoU) score of
each image mask Imask,k,

Sk = SUM(Imask,k ∩Matt)/SUM(Imask,k)

Where SUM() calculates the number of pixels. Then we choose the one with
the highest score as the foreground mask.

* Yunhao Ge and Yao Xiao contributed equally

https://github.com/gyhandy/Humanoid-Vision-Engine


2 Y. Ge and Y. Xiao et al.

Original images segmentation Selected Foreground Shape Texture Color

Fig. 1: Example of the preprocessing result and feature extraction.



Contributions of Shape, Texture, and Color in Visual Recognition 3

(b)

(c)

(a)

Fig. 2: The process for extracting texture. We cut the image of the foreground
object into several square patches as shown in (a) and select the patch pool as
shown in (b). (c) is the final texture feature, the concatenation of k randomly
selected patches from the patches pool.

A.2 Feature Extractor

In HVE, with the preprocessed image I ∈ RH×W×C , we use the three indepen-
dent feature extractors to obtain the corresponding image feature: shape image
(Is), texture image (It), color image (Ic). Here, we will introduce more details
about the texture and color extractor.

Texture Extractor Fig. 2 visualizes the process of extracting texture. First,
to remove the color information, we convert the RGB object segmentation to
a grayscale image. Since we want to get rid of the influence of background and
extract the local texture feature as well as the global texture feature, we compute
the maximum circumscribed rectangle of the object by its 2D mask and resize
this rectangle part to get a 224 × 224 image. In this way, we can eliminate the
most background and focus on the object. Next, we will cut this new image into
several square patches. Specifically, We first cut this image into several square
patches, as shown in Fig. 2 (a), if the overlap ratio between the patch and the
original 2D object segment is larger than a threshold τ , we will add them to
a patch pool (we set τ to be 0.99 in our experiments, which means the over
99% area of the patch belong to the object), as shown in Fig. 2 (b). Since we
want to extract both local texture information (one patch) and global texture
information (whole image), we randomly select k patches from the patch pool
and concatenate them to a new texture image (It). We set k = 4 because we



4 Y. Ge and Y. Xiao et al.

want to concatenate those patches to a square image, which means k should be
a square number. If we set k = 1, we can get the maximum square patch of the
object but we lose some small, local texture. If we set k = 9, the patch will be
too small to contain useful information. To dynamically fit the object size and
minimize the texture information loss. The number of patches we cut from the
original image is dynamic. We will first cut the image into 9 square patches, if
we can get k = 4 valid patches that can be added into the patch pool from these
9 patches, we will stop processing this image. However, if we cannot get 4 valid
patches, we will cut the original images into 16, 25, 36... smaller patches until
we can get 4 valid patches. After concatenation, we can get the texture image
It, such as Fig. 2 (c). More results are shown in Fig. 1.

Color Extractor We have two different ways to extract the color feature Ic,
phase scrambling, and color blocks.

Phase scrambling For a given image I ∈ RH×W×C and a random matrix z ∈
RH×W , we use the 2D fast fourier transform (FFT) on channel j of the image
and get the output I∗j ∈ CH×W , where j = 1, 2, ..., C. We then caculate their
modulus rj and angle θj . Similarly, we apply the FTT to the random matrix
z and get the transformed result z∗ ∈ CH×W and its angle φ. With rj , θj , φ,
we can construct a new complex variable Tj = r · ei(θ+pφ), where p ∈ [0, 1] is a
scramble factor. After the mapping backing by 2D inverse fast fourier transform
and rescale the result to range [0, 255], the output will be the channel j of our
color feature Ic ∈ RH×W×C . This process can be described formally as:

I∗j = FFT(Ij) = ri · eiθj (1)

z∗ = FFT(z) = s · eiφ, (2)

Tj = r · ei(θj+pφ), (3)

Ic,j = rescale(IFFT(Tj)), (4)

where j = 1, 2, ..., C and Ic,j is the channel j of Ic. More results are shown in
Fig. 1.

Color Blocks The second method uses statistical color histogram representation
[7,2]. The original RGB color space is a three dimensional cubic {(r, g, b)|r, g, b ∈
[0, 255]}. In order to represent the distribution of color for each image, we first
choose 27 center points which are uniformly distributed in the entire color space.
The colors we choose are shown in Fig. 3. For an input image, we assign each pixel
to its closest center point by calculating their manhattan distance. By counting
how many pixels belong to each color center and calculating the percentage,
we can summarize the result to a color block image of size 224 × 224 as our
color feature Ic (the examples are shown in Fig. 4). The color block consists of
various stripes in different widths and colors. The color of stripes comes from
the color center and the width represents how many percent of pixels this center
covered in the input image. For instance, if there are 10% pixels assign to white



Contributions of Shape, Texture, and Color in Visual Recognition 5

Fig. 3: 27 Color centers for the color block.

Fig. 4: Example of color block representation. The first row is original images,
while the second row is the color blocks of those images.



6 Y. Ge and Y. Xiao et al.

and 90% pixels of black, we will generate a image whose 10% pixels are RGB
(255, 255, 255) and 90% pixels are RGB (0, 0, 0). This image (Ic) will not contain
any shape or texture information. Fig. 4 shows some examples of the color blocks.

Compared with phase scrambling, this method is more intuitive to under-
stand but may lose information when approximating RGB value in color space
to color centers.

A.3 Details about the Humanoid Neural Network

Table 1: Architecture of the humanoid neural network. N is the number of labels,
depending on which dataset is being used.

Layer Input → Output Shape Layer Information

Shape Encoder (224, 224, 1) → (7, 7, 512) ResNet18

Texture Encoder (224, 224, 1) → (7, 7, 512) ResNet18

Color Encoder (224, 224, 3) → (7, 7, 512) ResNet18

Concatenation Layer 3×(7, 7, 512) → (7, 7, 1536) -

Pooling Layer (7, 7, 1536) → (1, 1, 1536) Average Polling-(k7x7, s1, p0)

Flatten Layer (1, 1, 1536) → 1536 -

Hidden Layer 1536 → 512 Linear, ReLU

Output Layer 512 → N Linear, Softmax

The three encoders (Es, Et, Ec) use ResNet18 as backbone. Es takes shape
feature with size 224 × 224 × 1 as input, while Et takes texture feature with
size 224 × 224 × 1 and Ec takes color feature with size 224 × 224 × 3. They all
produce the feature with size 7 × 7 × 512. When training the encoders, these
output features are then passed into a fully connected layer, which output the
vectors with length N , the number of classes in the dataset.

During training the interpretable aggregation module, we freeze the three
encoders and concatenate their output features along the channel dimension
into a tensor of size 7 × 7 × 1536. This tensor is the input of the interpretable
aggregation module, which is a two-layer MLP. The final output is a vector with
length N , the number of classes in the dataset. The summary of the structure
of the three encoders and the aggregation module is shown in Table 1.

We use Adam optimizer with β1 = 0.9 and β2 = 0.999, and set batch size to
64, learning rate is 0.001.



Contributions of Shape, Texture, and Color in Visual Recognition 7

B Experiments Details

B.1 Influence of Random Selection in Texture Feature Extractor

We re-ran 10 times main paper Table.2 using different random seeds for texture
(patch selections and shuffling the order sequence). The mean and std shown in
Table. 2.

Table 2: Influence of Random Selection in Texture Feature Extractor.

contribution Shape Texture Color

Shape-bias DS 47.1% ± 2.7% 34.5% ± 2.2% 18.4% ± 1.4%
Texture-bias DS 5.2% ± 1.8% 62.4% ± 2.3% 32.3% ± 1.6%
Color-bias DS 12.4% ± 2.1% 19.1% ± 1.9% 68.5% ± 3.6%

B.2 More quantitative contribution summary results of Humanoid
NN

To further evaluate the contribution of shape texture and color, for each fea-
ture V (e.g., shape feature Vs), we compute the accuracy if we only use the
rest features (e.g., combine texture Vt and color Vc) as input, and calculate
the accuracy drop compared with using all three features as input (last column
in Table 1). That accuracy drop represents the “unsubstitutability” or the “ne-
cessity” or “non-redundant contribution” of that feature for visual recognition.
The results (Table. 3) are consistent with our previous results (main paper Table
1) on the contribution/importance of each feature. For example, in the shape
biased dataset, the largest accuracy drop is when we remove the shape feature.

Table 3: More quantitative contribution summary results of Humanoid NN

accuracy Shape + Texture Shape + Color Texture + Color all

Shape biased DS 94% 92% 86% 95%
Texture biased DS 89% 80% 83% 90%
Color biased DS 83% 88% 87% 92%

B.3 Different interpretable aggregation module

We conducted experiments to substitute the non-linear MLP with simple average
pooling followed by an output classification layer. Contributions are shown in
table. 4. While the numerical results differ, the ordering and conclusions remain
(e.g., shape texture is most important in the shape-biased dataset). The exper-
iments results show that the contribution result is robust to the aggregation
module.



8 Y. Ge and Y. Xiao et al.

Table 4: Average pooling interpretable aggregation module

Ave-Pool Shape ratio Texture ratio Color ratio

Shape biased DS 48% 40% 12%
Texture biased DS 1% 79% 20%
Color biased DS 1% 4% 95%

B.4 Sample Question of Human Experiments

We designed human experiments that asked participants to classify reduced im-
ages with only shape, texture, or color features. We publicly posted our question-
naires on the internet and sent the questionnaire link to the students and ma-
chine learning researchers in different universities. The reduced image contained
only shape, texture, or color information. To make sure that the participants
understood the class definitions well, we also showed them two example images
of each class at the bottom of the screen with the assigned class label written
below (for instance, some participants may not have been familiar with what the
”beach wagon” ImageNet class is). Here, as shown in Fig. 5, we demonstrate a
screenshot of an experiment trial in our experiments.

B.5 Contributions of Features in Different Tasks

Table 5: Local bias for CUB classes.

ratio shape texture color

Bewick Wren 44.8% 21.3 33.8%
Gadwall 43.6% 24.2% 32.2%
Brown Pelican 41.6% 33.0% 25.4%
American Pipit 6.8% 72.7% 20.4%
Eared Grebe 5.6% 70.3% 24.1%
Harris Sparrow 13.5% 64.1% 22.4%
Kentucky Warbler 0.1% 0.7% 99.2%
Cape May Warbler 0.3% 1.2% 98.5%
Gray crowned Rosy Finch 1.1% 1.5% 97.4%

Fig. 6 shows more example images of the iLab dataset [1]. In the figure, we
can see that the military vehicles are always in the unique green, which matches
with the result in our experiment that color is the most discriminative feature
to classify military among other vehicles.

We also compute local bias for each class in CUB dataset [8]. For each fea-
ture among shape, texture, and color, we select the top 3 classes whose feature



Contributions of Shape, Texture, and Color in Visual Recognition 9

Fig. 5: A screenshot of an experiment trial in our human experiments.



10 Y. Ge and Y. Xiao et al.

original 
image

shape texture color

boat

car

mil

pickup

semi

van

Fig. 6: Example images for ilab-20M classes.



Contributions of Shape, Texture, and Color in Visual Recognition 11

Original images shape texture color

Top-3 Shape 
Biased

Top-3 Texture 
Biased

Top-3 Color 
Biased

Fig. 7: Example images for CUB classes. The first 3 rows show the top-3 classes
in CUB whose shape contribution is highest; The middle 3 rows show top-3
classes whose texture contribution is highest; The last 3 rows show top-3 classes
whose color contribution is highest. Table. 5 shows the quantity biased results
for these classes.



12 Y. Ge and Y. Xiao et al.

contributions are the highest, and we show the bias for these 9 classes in Ta-
ble. 5. To show more details of these top classes for each feature, we show the
example images in Fig. 7. For the first three-row classes, the shape is the most
discriminative feature to classify them among other birds; for the middle three-
row classes, the texture is the most discriminative feature, while color is the
most discriminative feature to classify the last three-row classes.

C Details of Humanoid Application

C.1 Process of Open-world Zero-shot Learning

Class zebra fowl wolf sheep apple

shape root horse, donkey
turkey, goose

cock
hyena, fox,

tiger
goat, bull

tomato, orange,
pear

texture root
tiger,

piano keys
turkey, penguin fox, dog dog, goat cherry, tomato

color root panda, penguin turkey dog
elephant,

goat
cherry, tomato

Table 6: More open-world zero-shot learning result.

As describe in main paper Sec.5.1, we conduct open-world zero-shot learning
with HVE. Here, we describe more details about the experiment.

In step 1, to represent learnt knowledge, we use feature extractors Es, Et, Ec

to get the shape, texture, and color representation V
(k,i)
s , V

(k,i)
t , V

(k,i)
c of the ith

image of seen class k. Then, given an unseen class image Iun, we use the same
feature extractors to get its feature-wise representation V ′

s , V
′
t , V

′
c . To retrieve

learnt classes as description, we calculate the average distance dkm between Iun
and images of other class k in the latent space on feature m, described formally
as

dkm =
1

nk

∑
i∈Tk

d(k,i)m =
1

nk

∑
i∈Tk

||V ′
m − V (k,i)

m ||2, (5)

where m ∈ {s, t, c} is “shape”, “texture” or “color”, Tk represents images of seen
class k in the training set and nk is the number of images in class k. For example,
given a wolf image, we can get Rs = {hyena, fox, tiger}, Rt = {fox,dog}, Rc =
{dog}. We provide more examples in table.6.

After we get Rs = {hyena, fox, tiger}, Rt = {fox,dog}, Rc = {dog}, we use
ConceptNet [6] and word embedding to predict its label (Step 2 in main paper
Sec. 5.1). Specifically, if we directly use the candidate pool got from ConceptNet
and calculate their ranking score, the top 5 results are animal, four-legged animal,



Contributions of Shape, Texture, and Color in Visual Recognition 13

mammal, wolf, fox. We can find wolf are the first concrete class we can obtain,
which achieved our open-world zero-shot classification.

To show the quantitative results of our method, we realize that, although
the first 3 results (animal, four-legged animal, mammal) in the previous wolf
example is somewhat correct, we want to get a more concrete answer which is a
wolf. Thus, we design a fixed candidate which excludes these broad words and
only contains unseen classes and some disturbances. In this way, we can get a
quantitative accuracy without the influence of those broad words like animal,
fruit, bird.

Here, we provide the experiment setting of our seen class list and our candi-
date pool. Our seen classes list totally contain 36 classes, they are horse, tiger,
panda, penguin, piano keys, cheetah, hyena, dog, lemon, koala, fur, squirrel, fox,
rabbit, goose, sea lion, elephant, otter, duck, cock, chimpanzee, goat, orange,
ball, bull, tomato, cherry, pear, turkey, seal, porpoise, alpaca, pigeon, lion, don-
key, bear. Our candidate pool totally contains 20 classes which are fowl, zebra,
bear, wolf, husky, swan, giraffe, jackal, peach, sheep, seal, apple, banana, train,
bag, balloon, car, pen, table, eagle. The results are shown in the main paper
Table 5.

C.2 Detail of Prototypical network

As described in the main paper Sec.5.1, we conduct one-shot learning using the
prototypical network [5]. Here, we provide more details about the experiment.
Prototypical network use the same training and test set with HVE. It is not clear
for a prototypical networks to direct conduct zero-shot in the released code, so we
provide a easier mode, one-shot for each test class, and use its one-shot setting.
To train the prototypical network, we set the input image size as 3× 224× 224,
hidden dimension as 64, learning rate as 1e − 3. We use their official code and
follow the same training strategy as [5]. During testing, we use 5-way 1-shot
setting, table.5 in the main paper provide the final result of the prototypical
network.

C.3 Cross-features retrieval accuracy

Here we report the cross feature retrieval accuracy described in Sec. 5.2 in the
main paper.

Table 7: Cross-features retrieval accuracy on biased datasets (DS).

input shape texture color
retrieval shape texture color shape texture color shape texture color

shape biased DS 86% 81% 74% 76% 77% 66% 64% 61% 60%
texture biased DS 52% 51% 41% 67% 73% 63% 52% 57% 54%
color biased DS 59% 56% 54% 56% 61% 59% 67% 75% 75%



14 Y. Ge and Y. Xiao et al.

C.4 The GAN model in Cross Feature Imagination

shape

texture

color

Shape feature
Color feature

Texture feature
Fusion feature

Residual blocks

Fusion

Fig. 8: The architecture of the GAN generator in cross feature imagination.

As introduced in main paper Sec. 5.2, we design a cross-feature pixel2pixel
GAN model to generate the final image.

Fig. 8 shows the architecture of the generator. In order to ensure the quality
of image generation, we set k = 1 when extracting the texture feature (the
selection of k is introduced in Sec. A.2). Each feature, shape, texture, and color
are encoded by a sequence of convolutions maps to Fs,i, Ft,i, Fc,i, i = 1, 2, ...,K.
These features are fused into Fi by K feature fusion modules. As for fusion
modules, we apply AdaIN and L residual blocks to blend the different features.
The outputs are de-convoluted into Hi, i = 1, 2, ...,K, and then we get the final
result. In our experiments, we use K = 5 and L = 5.

We use the same discriminator and loss function as [3]. In training the GAN
model. We use Adam optimizer with β1 = 0.5 and β2 = 0.999 for both generator
and discriminator, and set batch size to 16. The model is trained for 200 epochs
on the training set, and we use the learning rate at 2e−4 in the first 100 epochs
and 2e-5 from epoch 100 to 200. To compare our result, we use the original
pix2pix GANs [3] as our baseline model. The GAN model takes one type of
feature as input and the original image as output. We trained three separate
pix2pix GANs for each feature.

In Fig. 9, we show more results about the imagination on the test set when
different types of features are given (denoted as sub-image a, b, c). With one
feature (Line I), the retrieval model can find the other two plausible features
(Line II), and then the GAN model can imagine the whole objects (Line III).
Comparing the imagination results and the original images to which the input
features belong (Line-IV), we can find that they have a similar input feature,
while the other two features of the imagination images are decided by the re-
trieved features.



Contributions of Shape, Texture, and Color in Visual Recognition 15

(a) Given shape, retrieve texture and color, and imagine the whole object.

(b) Given texture, retrieve shape and color, and imagine the whole object.

(c) Given color, retrieve shape and texture, and imagine the whole object.

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

Fig. 9: Results of the imagination when different types of features are given (see
sub-images a, b, c). Given one feature (Line I), the retrieval model can find the
other two plausible features (Line II), and then the GAN model can imagine the
whole objects (Line III). Line IV shows the original images of the input features.

D Discussion of Limitations and Future Work

As we use Grad-Cam as the foundation for selecting foreground parts, sometimes
models could output the wrong saliency map (for example, the pre-trained mod-
els may regard water as the most important object for classifying a boat. As a
result, our image parsing pipeline would take water as the foreground). So how
to select accurate foreground parts is the first step we need to improve in the
future.

After getting the foreground part of images, we use three feature extractors to
mimic the process of humans perceiving this world. Our feature extractors are far
away from perfect. In this work, we concatenate four square patches to get It, but



16 Y. Ge and Y. Xiao et al.

this introduced two lines in the It (the line between different squares). These lines
may cause confusion to the neural networks. What’s more, 4 patches may not be
the best choice to represent the object’s texture. Some classes are too complex
to be represented by only 4 patches. For example, cars have windows, metal,
rubber, paint, and plastic. Different parts of cars could have different textures. 4
square patches can represent the texture of cars to some degree, but if we want to
get the representation of all texture information without any omission, we need
to improve the work process of the texture extractors. However, the main goal
of our model design is to summarize the contributions by end-to-end learning,
with minimal human-introduced bias and assumptions in the architecture design.
We mainly provide the first fully objective, data-driven, and indeed first-order,
measure of the respective contributions.

In the open-world zero-shot learning experiment, we use a prototype dataset
that contains limited classes, we will explore this direction with a larger dataset.

We think our HVE take a small but important step towards, from a humanoid
perspective, better understanding the contributions of shape, texture, color to
classification, zero-shot learning, imagination, and beyond.

Dataset copyright. We used publically available data. ImageNet, CUB, iLab-
20M.

Imagenet license: Researcher shall use the Database only for non-commercial
research and educational purposes We use a subset of the ILSVRC2012 dataset
(ImageNet) and iLab-20M. The object in iLab-20M is toy vehicles, under Cre-
ative Commons CC-BY license. They do not contain any personally identifiable
information offensive content.



Contributions of Shape, Texture, and Color in Visual Recognition 17

References

1. Borji, A., Izadi, S., Itti, L.: ilab-20m: A large-scale controlled object dataset to
investigate deep learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2221–2230 (2016)

2. Gao, M., Du, Y., Ai, H., Lao, S.: A hybrid approach to pedestrian clothing color at-
tribute extraction. In: 2015 14th IAPR International Conference on Machine Vision
Applications (MVA). pp. 81–84. IEEE (2015)

3. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

4. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE international conference on computer vision. pp. 618–626
(2017)

5. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems 30 (2017)

6. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: An open multilingual graph of
general knowledge. In: Thirty-first AAAI conference on artificial intelligence (2017)

7. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for
real-world applications. IEEE Transactions on Image Processing 18(7), 1512–1523
(2009)

8. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-
200-2011 dataset (2011)


	Contributions of Shape, Texture, and Color in Visual Recognition (Appendix)

