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Abstract. We investigate the contributions of three important features
of the human visual system (HVS) — shape, texture, and color — to
object classification. We build a humanoid vision engine (HVE) that ex-
plicitly and separately computes shape, texture, and color features from
images. The resulting feature vectors are then concatenated to support
the final classification. We show that HVE can summarize and rank-
order the contributions of the three features to object recognition. We
use human experiments to confirm that both HVE and humans predom-
inantly use some specific features to support the classification of specific
classes (e.g., texture is the dominant feature to distinguish a zebra from
other quadrupeds, both for humans and HVE). With the help of HVE,
given any environment (dataset), we can summarize the most important
features for the whole task (task-specific; e.g., color is the most impor-
tant feature overall for classification with the CUB dataset), and for each
class (class-specific; e.g., shape is the most important feature to recog-
nize boats in the iLab-20M dataset). To demonstrate more usefulness of
HVE, we use it to simulate the open-world zero-shot learning ability of
humans with no attribute labeling. Finally, we show that HVE can also
simulate human imagination ability with the combination of different
features.

1 Introduction

The human vision system (HVS) is the gold standard for many current com-
puter vision algorithms, on various challenging tasks: zero/few-shot learning
[35,31,50,40,48], meta-learning [2,29], continual learning [43,52,57], novel view
imagination [59,16], etc. Understanding the mechanism, function, and decision
pipeline of HVS becomes more and more important. The vision systems of hu-
mans and other primates are highly differentiated. Although HVS provides us a
unified image of the world around us, this picture has multiple facets or features,
like shape, depth, motion, color, texture, etc. [15,22]. To understand the contri-
butions of the most important three features — shape, texture, and color — in
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Fig. 1: (a): Contributions of Shape, Texture, and Color may be different among
different scenarios/tasks. Here, texture is most important to distinguish zebra
from horse, but shape is most important for zebra vs. zebra car. (b): Humanoid
Vision Engine takes dataset as input and summarizes how shape, texture, and
color contribute to the given recognition task in a pure learning manner (E.g., In
ImageNet classification, shape is the most discriminative feature and contributes
most to visual recognition).

visual recognition, some research compares the HVS with an artificial convolu-
tional Neural Network (CNN). A widely accepted intuition about the success of
CNNs on perceptual tasks is that CNNs are the most predictive models for the
human ventral stream object recognition [7,58]. To understand which feature
is more important for CNN-based recognition, recent paper shows promising re-
sults: ImageNet-trained CNNs are biased towards texture while increasing shape
bias improves accuracy and robustness [32].

Due to the superb success of HVS on various complex tasks [35,2,43,59,18],
human bias may also represent the most efficient way to solve vision tasks. And
it is likely task-dependent (Fig. 1). Here, inspired by HVS, we wish to find a
general way to understand how shape, texture, and color contribute to a recog-
nition task by pure data-driven learning. The summarized feature contribution is
important both for the deep learning community (guide the design of accuracy-
driven models [32,21,14,6]) and for the neuroscience community (understanding
the contributions or biases in human visual recognition) [33,56].

It has been shown by neuroscientists that there are separate neural pathways
to process these different visual features in primates [1,11]. Among the many
kinds of features crucial to visual recognition in humans, the shape property is
the one that we primarily rely on in static object recognition [15]. Meanwhile,
some previous studies show that surface-based cues also play a key role in our
vision system. For example, [20] shows that scene recognition is faster for color
images compared with grayscale ones and [38,36] found a special region in our
brain to analyze textures. In summary, [9,8] propose that shape, color and texture
are three separate components to identify an object.

To better understand the task-dependent contributions of these features, we
build a Humanoid Vision Engine (HVE) to simulate HVS by explicitly and sep-
arately computing shape, texture, and color features to support image classifica-
tion in an objective learning pipeline. HVE has the following key contributions:
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(1) Inspired by the specialist separation of the human brain on different features
[1,11], for each feature among shape, texture, and color, we design a specific
feature extraction pipeline and representation learning model. (2) To summarize
the contribution of features by end-to-end learning, we design an interpretable
humanoid Neural Network (HNN) that aggregates the learned representation of
three features and achieves object recognition, while also showing the contribu-
tion of each feature during decision. (3) We use HVE to analyze the contribution
of shape, texture, and color on three different tasks subsampled from ImageNet.
We conduct human experiments on the same tasks and show that both HVE and
humans predominantly use some specific features to support object recognition
of specific classes. (4) We use HVE to explore the contribution, relationship,
and interaction of shape, texture, and color in visual recognition. Given any en-
vironment (dataset), HVE can summarize the most important features (among
shape, texture, and color) for the whole task (task-specific) and for each class
(class-specific). To the best of our knowledge, we provide the first fully objective,
data-driven, and indeed first-order, quantitative measure of the respective con-
tributions. (5) HVE can help guide accuracy-driven model design and performs
as an evaluation metric for model bias. For more applications, we use HVE to
simulate the open-world zero-shot learning ability of humans which needs no at-
tribute labels. HVE can also simulate human imagination ability across features.

2 Related Works

In recent years, more and more researchers focus on the interpretability and
generalization of computer vision models like CNN [46,23] and vision trans-
former [12]. For CNN, many researchers try to explore what kind of information
is most important for models to recognize objects. Some paper show that CNNs
trained on the ImageNet are more sensitive to texture information [21,14,6]. But
these works fail to quantitatively explain the contribution of shape, texture, color
as different features, comprehensively in various datasets and situations. While
most recent studies focus on the bias of Neural Networks, exploring the bias of
humans or a humanoid learning manner is still under-explored and inspiring.

Besides, many researchers contribute to the generalization of computer vi-
sion models and focus on zero/few-shot learning [35,31,54,48,17,10], novel view
imagination [59,16,19], open-world recognition [3,27,26], etc. Some of them tack-
led these problems by feature learning — representing an object by different
features, and made significant progress in this area [53,37,59]. But, there still
lacks a clear definition of what these properties look like or a uniform design of a
system that can do humanoid tasks like generalized recognition and imagination.

3 Humanoid Vision Engine

The goal of the humanoid vision engine (HVE) is to summarize the contribution
of shape, texture, and color in a given task (dataset) by separately computing
the three features to support image classification, similar to humans’ recognizing
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Fig. 2: Pipeline for humanoid vision engine (HVE). (a) shows how will humans’
vision system deal with an image. After humans’ eyes perceive the object, the
different parts of the brain will be activated. The human brain will organize and
summarize that information to get a conclusion. (b) shows how we design HVE
to correspond to each part of the human’s vision system.

objects. During the pipeline and model design, we borrow the findings of neu-
roscience on the structure, mechanism and function of HVS [1,11,15,20,38,36].
We use end-to-end learning with backpropagation to simulate the learning pro-
cess of humans and to summarize the contribution of shape, texture, and color.
The advantage of end-to-end training is that we can avoid human bias, which
may influence the objective of contribution attribution (e.g., we avoid hand-
crafted elementary shapes as done in Recognition by Components [4]). We only
use data-driven learning, a straightforward way to understand the contribution
of each feature from an effectiveness perspective, and we can easily generalize
HVE to different tasks (datasets). As shown in Fig. 2, HVE consists of (1) a
humanoid image preprocessing pipeline, (2) feature representation for
shape, texture, and color, and (3) a humanoid neural network that aggregates
the representation of each feature and achieves interpretable object recognition.

3.1 Humanoid Image Preprocessing and Feature Extraction

As shown in Fig.2 (a), humans (or primates) can localize an object intuitively in
a complex scene before we recognize what it is [28]. Also, there are different types
of cells or receptors in our primary visual cortex extracting specific information
(like color, shape, texture, shading, motion, etc) information from the image [15].
In our HVE (Fig. 2 (b)), for an input raw image I ∈ RH×W×C , we first parse
the object from the scene as preprocessing and then extract our defined shape,
texture, and color features Is, It, Ic, for the following humanoid neural network.
Image Parsing and Foreground Identification. As shown in the prepro-
cessing part of Fig.2 (b), we use the entity segmentation method [39] to simulate
the process of parsing objects from a scene in our brain. Entity segmentation is
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an open-world model and can segment the object from the image without labels.
This method aligns with human behavior, which can (at least in some cases; e.g.,
autostereograms [28]) segment an object without deciding what it is. After we
get the segmentation of the image, we use a pre-trained CNN and GradCam [45]
to find the foreground object among all masks. (More details in appendix.)

We design three different feature extractors after identifying the foreground
object segment: shape, texture, and color extractor, similar to the separate neural
pathways in the human brain which focus on specific property [1,11]. The three
extractors focus only on the corresponding features, and the extracted features,
shape Is, texture It, and color Ic, are disentangled from each other.

Shape Feature Extractor For the shape extractor, we want to keep both
2D and 3D shape information while eliminating the information of texture and
color. We first use a 3D depth prediction model [42,41] to obtain the 3D depth
information of the whole image. After element-wise multiplying the 3D depth
estimation and 2D mask of the object, we obtain our shape feature Is. We can
notice that this feature only contains 2D shape and 3D structural information
(the 3D depth) and without color or texture information (Fig. 2(b)).

Texture Feature Extractor In texture extractor, we want to keep both local
and global texture information while eliminating shape and color information.
Fig. 3 visualizes the extraction process. First, to remove the color information,
we convert the RGB object segmentation to a grayscale image. Next, we cut this
image into several square patches with an adaptive strategy (the patch size and
location are adaptive with object sizes to cover more texture information). If
the overlap ratio between the patch and the original 2D object segment is larger
than a threshold τ , we add that patch to a patch pool (we set τ to be 0.99 in
our experiments, which means the over 99% of the area of the patch belongs to
the object). Since we want to extract both local (one patch) and global (whole
image) texture information, we randomly select 4 patches from the patch pool
and concatenate them into a new texture image (It). (More details in appendix.)

Color Feature Extractor To represent the color feature for I. We use phase
scrambling, which is popular in psychophysics and in signal processing [34,51].
Phase scrambling transforms the image into the frequency domain using the fast
Fourier transform (FFT). In the frequency domain, the phase of the signal is

(a) (b) (c)

Fig. 3: Pipeline for extracting texture feature: (a) Crop images and compute the
overlap ratio between 2D mask and patches. Patches with overlap > 0.99 are
shown in a green shade. (b) add the valid patches to a patch pool. (c) randomly
choose 4 patches from pool and concatenate them to obtain a texture image It.
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then randomly scrambled, which destroys shape information while preserving
color statistics. Then we use IFFT to transfer back to image space and get Ic ∈
RH×W×C . Ic and I have the same distribution of pixel color values (Fig. 2(b)).

3.2 Humanoid Neural Network

After preprocessing, we have three features, i.e. shape Is, texture It, color Ic of
an input image I. To simulate the separate neural pathways in humans’ brains
for different feature information [1,11], we design three feature representation
encoders for shape, texture, and color, respectively. Shape feature encoder Es

takes a 3D shape feature Is as input and outputs the shape representation (Vs =
Es(Is)). Similarly, texture encoder Et and color encoder Ec take the texture
patch image It or color phase scrambled image Ic as input, after embedded by Et

(or Ec), we get the texture feature Vt and color feature Vc. We use ResNet-18 [23]
as the backbone for all feature encoders to project the three types of features
to the corresponding well-separated embedding spaces. It is hard to define the
ground-truth label of the distance between features. Given that the objects from
the same class are relatively consistent in shape, texture, and color, the encoders
can be trained in the classification problem independently instead, with the
supervision of class labels. After training our encoders as classifiers, the feature
map of the last convolutional layer will serve as the final feature representation.
To aggregate separated feature representations and conduct object recognition,
we freeze the three encoders and train a contribution interpretable aggregation
module Aggrθ, which is composed of two fully-connected layers (Fig. 2 (b) right).
We concatenate Vs, Vt, Vc and send it to Aggrθ. The output is denoted as p ∈ Rn,
where n is the number of classes. So we have p = Aggrθ (concat(Vs, Vt, Vc)).
(More details and exploration of our HNN are in appendix.)

We also propose a gradient-based contribution attribution method to inter-
pret the contributions of shape, texture, and color to the classification decision,
respectively. Take the shape feature as an example, given a prediction p and the
probability of class k, namely pk, we compute the gradient of pk with respect to
the shape feature V s. We define the gradient as shape importance weights αk

s , i.e.

αk
s = ∂pk

∂Vs
, αk

t = ∂pk

∂Vt
, αk

c = ∂pk

∂Vc
. Then we calculate element-wise product between

Vs and αk
s to get the final shape contribution Sk

s , i.e. S
k
s = ReLU

(∑
αk
sVs

)
. In

other words, Sk
s represents the “contribution” of shape feature to classifying this

image as class k. We can do the same thing to get texture contribution Sk
t and

color contribution Sk
c . After getting the feature contributions for each image, we

can calculate the average value of all images in this class to assign feature con-
tributions to each class (class-specific bias) and the average value of all classes
to assign feature contributions to the whole dataset (task-specific bias).

4 Experiments

In this section, we first show the effectiveness of feature encoders on represen-
tation learning (Sec. 4.1); then we show the contribution interpretation per-
formance of Humanoid NN on different feature-biased datasets in ImageNet
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Fig. 4: T-SNE results of feature encoders on their corresponding biased datasets

(Sec. 4.2); We use human experiments to confirm that both HVE and humans
predominantly use some specific features to support the classification of specific
classes (Sec. 4.3); Then we use HVE to summarize the contribution of shape,
texture, and color on different datasets (CUB[55] and iLab-20M[5]) (Sec. 4.4).

4.1 Effectiveness of Feature Encoders

To show that our three feature encoders focus on embedding their corresponding
sensitive features, we handcrafted three subsets of ImageNet [30]: shape-biased
dataset (Dshape), texture-biased dataset (Dtexture), and color-biased dataset (Dcolor).
Shape-biased dataset containing 12 classes, where the classes were chosen
which intuitively are strongly determined by shape (e.g., vehicles are defined by
shape more than color). Texture-biased dataset uses 14 classes which we be-
lieved are more strongly determined by texture. Color-biased dataset includes
17 classes. The intuition of class selection of all three datasets will be verified by
our results in Table 1 with further illustration in Sec. 4.2. All these datasets are
randomly selected as around 800 training images and 200 testing images . The
class details of biased datasets are shown in Fig. 4.

If our feature extractors actually learned their feature-constructive latent
spaces, their T-SNE results will show clear clusters in the feature-biased datasets.
“Bias” here means we can classify the objects based on the biased feature easily,
but it is more difficult to make decisions based on the other two features.

After pre-processing the original images and getting their feature images,
we input the feature images into feature encoders and get the T-SNE results
shown in Fig. 4. Each row represents one feature-biased dataset and each col-
umn is bounded with one feature encoder, each image shows the results of one
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Table 1: “Original” column means the accuracy of Resnet18 on the original
images as our upper bound. Shape, texture and color columns represent the
accuracy of feature nets. “all” means results of our HNN that combines the 3
feature nets. It approaches the upper bound, suggesting that the split into 3
feature nets preserved most information needed for image classification.

accuracy original shape texture color all

Shape biased dataset 97% 90% 84% 71% 95%
Texture biased dataset 96% 64% 81% 65% 91%
Color biased dataset 95% 70% 73% 82% 92%

combination. T-SNE results are separated perfectly on corresponding datasets
(diagonal) but not as well on others’ datasets (off-diagonal), which shows that
our feature encoders are predominantly sensitive to the corresponding features.

4.2 Effectiveness of Humanoid Neural Network

We can use feature encoders to serve as classifiers after adding fully-connected
layers. As these classifiers classify images based on corresponding feature repre-
sentation, we call them feature nets. We tested the accuracy of feature nets on
these three biased datasets. As shown in Table 1, a ResNet-18 trained on the
original segmented images (without explicit separated features, e.g. Fig. 2 (b)
tiger without background) provided an upper bound for the task. We find that
feature net consistently obtains the best performance on their own biased dataset
(e.g., on the shape-biased dataset, shape net classification performance is better
than that of the color net or texture net). If we combine these three feature nets
with the interpretable aggregation module, the classification accuracy is very
close to the upper bound, which means our vision system can classify images
based on these three features almost as well as based on the full original color
images. This demonstrates that we can obtain most information of original im-
ages by our feature nets, and our aggregation and interpretable decision module
actually learned how to combine those three features by end-to-end learning.

Table 2a shows the quantitative contribution summary results of Humanoid
NN (Sec. 3.2). For task-specific bias, shape plays a dominant role in shape-biased
tasks, and texture, color also contribute most to their related biased tasks.

4.3 Human Experiments

Intuitively, we expect that humans may rely on different features to classify
different objects (Fig. 1). To show this, we designed human experiments that
asked participants to classify reduced images with only shape, texture, or color
features. If an object is mainly recognizable based on shape for humans, we could
then check whether it is also the same for HVE, and also for color and texture.
Experiments Design Three datasets in Table. 1 have a clear bias towards
corresponding features (Fig. 4). We asked the participants to classify objects in
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Table 2: Contributions of features from HVE and humans’ recognition accuracy.

(a) Contributions of features for different
biased datasets summarized by HVE.

contribution ratio shape texture color
Shape biased dataset 47% 34% 19%
Texture biased dataset 5% 65% 30%
Color biased dataset 11% 19% 70%

(b) Humans’ accuracy of different feature
images on different biased datasets.

accuracy shape texture color
Shape biased dataset 90.0% 49.0% 16.8%
Texture biased dataset 33.1% 40.0% 11.1%
Color biased dataset 32.3% 19.7% 46.5%

each dataset based on one single feature image computed by one of our feature
extractors (Fig. 5). Participants were asked to choose the correct class label for
the reduced image (from 12/14/17 classes in shape/texture/color datasets).
Human Performance Results The results here are based on 3270 trials,
109 participants. The accuracy for different feature questions on different biased
datasets can be seen in Table 2b. Human performance is similar to our feature
nets’ performance (compare Table 1 with Table 2b). On shape-biased dataset,
both human and feature nets attain the highest accuracy with shape. The same
for the color and texture biased datasets. Both HVE and humans predominantly
use some specific features to support recognition of specific classes. Interestingly,
humans can perform not badly on all three biased datasets with shape features.

4.4 Contributions Attribution in Different Tasks

With our vision system, we can summarize the task-specific bias and class-
specific bias for any dataset. This enables several applications: (1) Guide accuracy-
driven model design [32,21,14,6]; Our method provides objective summarization
of dataset bias. (2) Evaluation metric for model bias. Our method can help cor-
rect an initially wrong model bias on some datasets (e.g., that most CNN trained
on ImageNet are texture biased [21,32]). (3) Substitute human intuition to ob-
tain more objective summarization with end-to-end learning. We implemented

(b)(a)

shape texture color

Jeep

Beach wagon
Convertible

…
(12 classes in total)

Fig. 5: Sample question for the human experiment. (a) A test image (left) is first
converted into shape, color, and texture images using our feature extractors. (b)
On a given trial, human participants are presented with one shape, color, or
texture image, along with 2 reference images for each class in the corresponding
dataset (not shown here, see appendix. for a screenshot of an experiment trial).
Participants are asked to guess the correct object class from the feature image.
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(a) CUB dataset (b) iLab-20M dataset

Fig. 6: Processed CUB and iLab-20M dataset examples

the biased summarization experiments on two datasets, CUB [55] and iLab-20M
[5]. Fig. 1(b) shows the task-specific biased results. Since CUB is a dataset of
birds, which means all the classes in CUB have a similar shape with feather
textures, hence color may indeed be the most discriminative feature (Fig. 6 (a)).

As for iLab (Fig. 6 (b)), we also conduct the class-specific biased experiments
on iLab and summarize the class biases in Table 3. It is interesting to find that
the dominant feature is different for different classes. For instance, boat is shape-
biased while military vehicle (mil) is color-biased. (More examples in appendix.)

5 More Humanoid Applications with HVE

To further explore more applications with HVE, we use HVE to simulate the
visual reasoning process of humans and propose a new solution for conduct-
ing open-world zero-shot learning without predefined attribute labels (Sec. 5.1).
We also use HVE to simulate human imagination ability through cross-feature
retrieval and imagination (Sec. 5.2).

5.1 Open-world Zero-shot Learning with HVE

Zero-shot learning needs to classify samples from classes never seen during train-
ing. Most current methods [35,31,13] need humans to provide detailed attribute
labels for each image, which is costly in time and energy. However, given an image
from an unseen class, humans can still describe it with their learned knowledge.
For example, we may use horse-like shape, panda-like color, and tiger-like tex-
ture to describe an unseen class zebra. In this section, we show how our HVE

Table 3: Class-specific bias for each class in iLab-20M

ratio boat bus car mil monster pickup semi tank train van

shape 40% 35% 44% 18% 36% 28% 40% 36% 31% 40%
texture 32% 31% 40% 30% 34% 20% 31% 32% 34% 27%
color 28% 34% 16% 52% 30% 53% 29% 32% 35% 33%
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Fig. 7: The zero-shot learning method with HVE. We first describe the novel
image in the perspective of shape, texture, and color. Then we use ConceptNet
as common knowledge to reason and predict the label.

can simulate this feature-wise open-world image description by feature retrieval
and ranking. And based on these image descriptions, we propose a feature-wise
open-world zero-shot learning pipeline with the help of ConceptNet [49], like the
reasoning or consulting process of humans. The whole process shows in Fig. 7.

Step 1: Description We use HVE to provide feature-wise descriptions for any
unseen class images without predefined attribute labels. First, to represent learnt
knowledge, we use trained three feature extractors (described in Sec. 3.2) to get
the shape, texture, and color representation image of seen class k. Then, given
an unseen class image Iun, we use the same feature extractors to get its feature-
wise representation. To retrieve learnt classes as descriptions, we calculate the
average distance between Iun and images of other class k in the latent space on
shape, texture, and color features. In this way, we can find the top K closest
classes of Iun from the perspective of each feature, and we call these K classes
“roots” of each feature. Now, we can describe Iun using our three sets of roots.
For example, as shown in Fig. 7(a), for the unseen class zebra, we can describe its
shape by {horse,donkey}, texture by {tiger,piano keys}, and color by {panda}.
Step 2: Open-world classification To further predict the actual class of Iun
based on the feature-wise description, we use ConceptNet as common knowledge
to conduct reasoning. As shown in Fig. 7(b), for every feature roots, we retrieve
their common attribute in ConceptNet, (e.g., stripe the is common attribute root
of {tiger,piano keys}). We form a reasoning root pool R∗ consisting of classes
from feature roots obtained during image description and shared attribute roots.
The reasoning roots will be our evidence for reasoning. For every root in R∗, we
can search its neighbors in ConceptNet, which are treated as possible candidate
classes for Iun. All candidates form a possible candidate pool P , which contains
all hypothesis classes. Now we have two pools, root pool R∗ and candidate pool
P . For every candidate pi ∈ P and ri ∈ R∗, we calculate the ranking score of
pi as: S̄(pi) =

∑
rj∈R∗ cos(E(pi), E(rj)). where E(·) is the word embedding in

ConceptNet and cos(A,B) means cosine similarity between A and B.
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Table 4: Open-world zero-shot accuracy and FID of cross-features imagination.

(a) Accuracy of unseen class for zero-shot
learning. One-shot on Prototype and zero-
shot on ours

Method fowl zebra wolf sheep apple
Prototype 19% 16% 17% 21% 74%

Ours 78% 87% 63% 72% 98%

(b) Cross-features imagination quality
comparison. We compare HVE methods
with three pix2pix GANs as baselines

FID (↓) shape input texture input color input
Baselines 123.915 188.854 203.527

Ours 96.871 105.921 52.846

We choose the candidate with the highest score as our predicted label. In our
prototype zero-shot learning dataset, we select 34 seen classes as the training set
and 5 unseen classes as the test set, with 200 images per class. We calculate the
accuracy of the test set (Table 4a). As a comparison, we conduct prototypical
networks [47] using its one-shot setting. More details are in the appendix.

5.2 Cross Feature Imagination with HVE

We show HVE has the potential to simulate human imagination ability. Hu-
mans can intuitively imagine an object when seeing one aspect of a feature,
especially when this feature is prototypical (contribute most to classification).
For instance, we can imagine a zebra when seeing its stripe (texture). This pro-
cess is similar but harder than the classical image generation task since the input
features modality here is dynamic which can be any feature among shape, tex-
ture, or color. To solve this problem, using HVE, we separate this procedure into
two steps: (1) cross feature retrieval and (2) cross feature imagination.
Given any feature (shape, texture, or color) as input, cross-feature retrieval finds
the most possible two other features. Cross-feature imagination then generate a
whole object based on a group of shapes, textures, and color features.
Cross Feature Retrieval. We learn a feature agnostic encoder that projects
the three features into one same feature space and makes sure that the features
belonging to the same class are in the nearby regions.

As shown in Fig. 8(a), during training, the shape Is, texture It and color Ic
are first sent into the corresponding frozen encoders Es, Et, Ec, which are the
same encoders in Sec. 3.2. Then all of the outputs are projected into a cross-
feature embedding space by a feature agnostic net M, which contains three
convolution layers. We also add a fully connected layer to predict the class labels
of the features. We use cross-entropy loss Lcls to regularize the prediction label
and a triplet loss Ltriplet [44] to regularize the projection of M. For any input
feature x (e.g., a bird A shape), positive sample xpos are either same class same
modality (another bird A shape) or same class different feature modality (a bird
A texture or color); negative sample xneg are any features from different class.
Ltriplet pulls the embedding of x closer to that of the positive sample xpos, and
pushes it apart from the embedding of the negative sample xneg. The triplet
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(a) (b)

Fig. 8: (a) The structure and training process of the cross-feature retrieval model.
Es, Et, Ec are the same encoders in Sec. 3.2. The feature agnostic net then
projects them to shared feature space for retrieval. (b) The process of cross-
feature imagination. After retrieval, we design a cross-feature pixel2pixel GAN
model to generate the final image.

loss is defined as Ltriplet = max(∥F(x)−F(xpos)∥2 −∥F(x)−F(xneg)∥2 +α, 0),
where F(·) := M(E(·)), E is one of the feature encoders. α is the margin size
in the feature space between classes, ∥ · ∥2 represents ℓ2 norm.

We test the retrieval model in all three biased datasets (Fig. 4) separately.
During retrieval, given any feature of any object, we can map it into the cross
feature embedding space by the corresponding encoder net and the feature ag-
nostic net. Then we apply the ℓ2 norm to find the other two features closest to
the input one as output. The output is correct if they belong to the same class
as the input. For each dataset, we retrieve the three features pair by pair (accu-
racy in appendix). The retrieval performs better when the input feature is the
dominant of the dataset, which again verifies the feature bias in each dataset.

Cross Feature Imagination. To stimulate imagination, we propose a cross-
feature imagination model to generate plausible final images with the input and
retrieved features. The procedure of imagination is shown in Fig. 8(b). Inspired
by the pixel2pixel GAN[25] and AdaIN[24], we design a cross-feature pixel2pixel
GAN model to generate the final image. The GAN model is trained and tested
on the three biased datasets. In Fig. 9, we show more results of the generation,
which show that our model satisfyingly generates the object from a single feature.
From the comparison between (c) and (e), we can clearly find that they are alike
from the view of the corresponding input feature, but the imagination results
preserve the retrieval features. The imagination variance also shows the feature
contributions from a generative view: if the given feature is the dominant feature
of a class (contribute most in classification. e.g., the stripe of zebra), then the
retrieved features and imagined images have smaller variance (most are zebras);
While non-dominant given feature (shape of zebra) lead to large imagination
variance (can be any horse-like animals). We create a baseline generator by
using three pix2pix GANs where each pix2pix GAN is responsible for one specific
feature (take one modality of feature as input and imagine the raw image). The
FID comparison is in Table. 4b. More details are in the appendix.
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(I) Input shape (II) Input texture (III) Input color

Fig. 9: Imagination with shape, texture, and color feature input (columns I, II,
III). Line (a): input feature. Line (b): retrieved features given (a). Line (c):
imagination results with HVE and our GAN model. Line (d): results of baseline
3 pix2pix GANs. Line (e): original images to which the input features belong.
Our model can reasonably “imagine” the object given a single feature.

6 Conclusion

To explore the task-specific contribution of shape, texture, and color features in
human visual recognition, we propose a humanoid vision engine (HVE) that ex-
plicitly and separately computes these features from images and then aggregates
them to support image classification. With the proposed contribution attribution
method, given any task (dataset), HVE can summarize and rank-order the task-
specific contributions of the three features to object recognition. We use human
experiments to show that HVE has a similar feature contribution to humans on
specific tasks. We show that HVE can help simulate more complex and humanoid
abilities (e.g., open-world zero-shot learning and cross-feature imagination) with
promising performance. These results are the first step towards better under-
standing the contributions of object features to classification, zero-shot learning,
imagination, and beyond.
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