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Abstract. As deep learning models are increasingly used in safety-
critical applications, explainability and trustworthiness become major
concerns. For simple images, such as low-resolution face portraits, syn-
thesizing visual counterfactual explanations has recently been proposed
as a way to uncover the decision mechanisms of a trained classification
model. In this work, we address the problem of producing counterfac-
tual explanations for high-quality images and complex scenes. Lever-
aging recent semantic-to-image models, we propose a new generative
counterfactual explanation framework that produces plausible and sparse
modifications which preserve the overall scene structure. Furthermore,
we introduce the concept of “region-targeted counterfactual explana-
tions”, and a corresponding framework, where users can guide the gen-
eration of counterfactuals by specifying a set of semantic regions of
the query image the explanation must be about. Extensive experiments
are conducted on challenging datasets including high-quality portraits
(CelebAMask-HQ) and driving scenes (BDD100k). Code is available at:
https://github.com/valeoai/STEEX

Keywords: Explainable AI, Counterfactual Analysis, Visual explana-
tions, Region-targeted Counterfactual Explanation.

1 Introduction

Deep learning models are now used in a wide variety of application domains,
including safety-critical ones. As the underlying mechanisms of these models
remain opaque, explainability and trustworthiness have become major concerns.
In computer vision, post-hoc explainability often amounts to producing saliency
maps, which highlight regions on which the model grounded the most its decision
[59,38,2,40,43,54,13]. While these explanations show where the regions of interest
for the model are, they fail to indicate what specifically in these regions leads to
the obtained output. A desirable explanation should not only be region-based
but also content-based by expressing in some way how the content of a region
influences the outcome of the model. For example, in autonomous driving, while
it is useful to know that a stopped self-driving car attended the traffic light, it
is paramount to know that the red color of the light was decisive in the process.

https://github.com/valeoai/STEEX
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(a) Query image
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Fig. 1: Overview of counterfactual explanations generated by our framework
STEEX. Given a trained model and a query image (a), a counterfactual explanation
is an answer to the question “What other image, slightly different and in a meaningful
way, would change the model’s outcome?” In this example, the ‘Decision model’ is a
binary classifier that predicts whether or not it is possible to move forward. On top
of explaining decisions for large and complex images (b), we propose ‘region-targeted
counterfactual explanations’ (c), where produced counterfactual explanations only tar-
get specified semantic regions. Green ellipses are manually provided to highlight details

In the context of simple tabular data, counterfactual explanations have re-
cently been introduced to provide fine content-based insights on a model’s de-
cision [48,47,8]. Given an input query, a counterfactual explanation is a version
of the input with minimal but meaningful modifications that change the output
decision of the model. Minimal means that the new input must be as similar as
possible to the query input, with only sparse changes or in the sense of some
distance to be defined. Meaningful implies that changes must be semantic, i.e.,
human-interpretable. This way, a counterfactual explanation points out in an
understandable way what is important for the decision of the model by pre-
senting a close hypothetical reality that contradicts the observed decision. As
they are contrastive and as they usually focus on a small number of feature
changes, counterfactuals can increase user’s trust in the model [39,56,53]. More-
over, these explanations can also be leveraged by machine learning engineers, as
they can help to identify spurious correlations captured by a model [45,55,36].
Despite growing interest, producing visual counterfactual explanations for an
image classification model is especially challenging as naively searching for small
input changes results in adversarial perturbations [44,18,14,33,6]. To this date,
there only exists a very limited number of counterfactual explanation methods
able to deal with image classifiers [19,50,41,36]. Yet, these models present signifi-
cant limitations, as they either require a target image of the counterfactual class
[19,50] or can only deal with classification settings manipulating simple images
such as low-resolution face portraits [41,36].

In this work, we tackle the generation of counterfactual explanations for deep
classifiers operating on large images and/or visual scenes with complex struc-
tures. Dealing with such images comes with unique challenges, beyond technical
issues. Indeed, because of scene complexity, it is likely that the model’s decision
can be changed by many admissible modifications in the input. For a driving
action classifier, it could be for instance modifying the color of traffic lights,
the road markings or the visibility conditions, but also adding new elements to
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the scene such as pedestrians and traffic lights, or even replacing a car on the
road with an obstacle. Even if it was feasible to provide an exhaustive list of
counterfactual explanations, the task of selecting which ones in this large col-
lection are relevant would fall on the end-user, hindering the usability of the
method. To limit the space of possible explanations while preserving sufficient
expressivity, we propose that the overall structure of the query image remains
untouched when creating the counterfactual example. Accordingly, through se-
mantic guidance, we impose that a generated counterfactual explanation respects
the original layout of the query image.

Our model, called STEEX for STEering counterfactual EXplanations with
semantics, leverages recent breakthroughs in semantic-to-real image synthesis
[37,32,60]. A pre-trained encoder network decomposes the query image into a
spatial layout structure and latent representations encoding the content of each
semantic region. By carefully modifying the latent codes towards a different
decision, STEEX is able to generate meaningful counterfactuals with relevant
semantic changes and a preserved scene layout, as illustrated in Fig. 1b. Ad-
ditionally, we introduce a new setting where users can guide the generation of
counterfactuals by specifying which semantic region of the query image the ex-
planation must be about. We coin “region-targeted counterfactual explanations”
such generated explanations where only a subset of latent codes is allowed to
be modified. In other words, such explanations are answers to questions such as
“How should the traffic lights change to switch the model’s decision?”, as illus-
trated in Fig. 1c. To validate our claims, extensive experiments of STEEX are
conducted on a variety of image classification models trained for different tasks,
including self-driving action decision on the BDD100k dataset, and high-quality
face recognition networks trained on CelebAMask-HQ. Besides, we investigate
how explanations for different decision models can hint at their distinct and
specific behaviors.

To sum up, our contributions are as follows:

– We tackle the generation of visual counterfactual explanations for classifiers
dealing with large and/or complex images.

– By leveraging recent semantic-to-image generative models, we propose a new
framework capable of generating counterfactual explanations that preserve the
semantic layout of the image.

– We introduce the concept of “region-targeted counterfactual explanations” to
target specified semantic regions in the counterfactual generation process.

– We validate the quality, plausibility and proximity to their query, of obtained
explanations with extensive experiments, including classification models for
high-quality face portraits and complex urban scenes.

2 Related Work

The black-box nature of deep neural networks has led to the recent devel-
opment of many explanation methods [3,16,1,12]. In particular, our work is
grounded within the post-hoc explainability literature aiming at explaining a
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trained model, which contrasts with approaches building interpretable models
by design [57,9]. Post-hoc methods can be either be global if they seek to explain
the model in its entirety, or local when they explain the prediction of the model
for a specific instance. Global approaches include model translation techniques,
that distill the black-box model into a more interpretable one [15,20], or the more
recent disentanglement methods that search for latent dimensions of the input
space that are, at the level of the dataset, correlated with the output variations
of the target classifier [25,28]. Instead, in this paper, we focus on local methods
that provide explanations, tailored to a given image.

Usually, post-hoc local explanations of vision models are given in the form of
saliency maps, which attribute the output decision to image regions. Gradient-
based approaches compute this attribution using the gradient of the output with
respect to input pixels or intermediate layers [38,43,34,4]. Differently, perturbation-
based approaches [54,58,13,49] evaluate how sensitive to input variations is the
prediction. Other explainability methods include locally fitting a more inter-
pretable model such as a linear function [35] or measuring the effect of including
a feature with game theory tools [30]. However, these methods only provide in-
formation on where are the regions of interest for the model but do not tell what
in these regions is responsible for the decision.

Counterfactual explanations [48], on the other hand, aim to inform a user on
why a model M classifies a specific input x into class y instead of a counter class
y′ ̸= y. To do so, a counterfactual example x′ is constructed to be similar to x
but classified as y′ by M . Seminal methods have been developed in the context of
low-dimensional input spaces, like the ones involved in credit scoring tasks [48].
Naive attempts to scale the concept to higher-dimensional input spaces, such as
natural images, face the problem of producing adversarial examples [44,18,31,6],
that is, imperceptible changes to the query image that switch the decision. While
the two problems have similar formulations, their goals are in opposition [14,33]
since counterfactual explanations must be understandable, achievable, and in-
formative for a human. Initial attempts to counterfactual explanations of vision
models would explain a decision by comparing the image x to one or several real
instances classified as y′ [21,19,50]. However, these discriminative counterfactu-
als do not produce natural images as explanations, and their interpretability is
limited when many elements vary from one image to another.

To tackle these issues, generative methods leverage deep generative models
to produce counterfactual explanations. For instance, DiVE [36] is built on β-
TCVAE [11] and takes advantage of its disentangled latent space to discover such
meaningful sparse modifications. With this method, it is also possible to generate
multiple orthogonal changes that correspond to different valid counterfactual
examples. Progressive Exaggeration (PE) [41], instead, relies on a Generative
Adversarial Network (GAN) [17] conditioned on a perturbation value that is
introduced as input in the generator via conditional batch normalization. PE
modifies the query image so that the prediction of the decision model is shifted by
this perturbation value towards the counter class. By applying this modification
multiple times, and by showing the progression, PE highlights adjustments that
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would change the decision model’s output. Unfortunately, none of these previous
works is designed to handle complex scenes. The β-TCVAE used in DiVE hardly
scales beyond small centered images, requiring specifically-designed enhancement
methods [27,42], and PE performs style-based manipulations that are unsuited
images with multiple small independent objects of interest. Instead, our method
relies on segmentation-to-image GANs [32,37,60], that have demonstrated good
generative capabilities on high-quality images containing multiple objects.

3 Model STEEX

We now describe our method to obtain counterfactual explanations with seman-
tic guidance. First, we formalize the generative approach for visual counterfactual
explanations in Sec. 3.1. Within this framework, we then incorporate a semantic
guidance constraint in Sec. 3.2. Next we propose in Sec. 3.3 a new setting where
the generation targets specified semantic regions. Finally, Sec. 3.4 details the
instantiation of each component. An overview of STEEX is presented in Fig. 2.

3.1 Visual Counterfactual Explanations

Consider a trained differentiable machine learning model M , which takes an
image xI ∈ X from an input space X and outputs a prediction yI = M(xI) ∈ Y.
A counterfactual explanation for the obtained decision yI is an image x which
is as close to the image xI as possible, but such that M(x) = y where y ̸= yI is
another class. This problem can be formalized and relaxed as follows:

argminx∈X Ldecision(M(x), y) + λLdist(x
I , x), (1)

where Ldecision is a classification loss, Ldist measures the distance between im-
ages, and the hyperparameter λ balances the contribution of the two terms.

In computer vision applications where input spaces are high-dimensional,
additional precautions need to be taken to avoid ending up with adversarial ex-
amples [44,14,33,6]. To prevent those uninterpretable perturbations, which leave
the data manifold by adding imperceptible high-frequency patterns, counterfac-
tual methods impose that visual explanations lie in the original input domain
X . Incorporating this in-domain constraint can be achieved by using a deep gen-
erator network as an implicit prior [46,5]. Consider a generator G : z 7→ x that
maps vectors z in latent space Z to in-distribution images x. Searching images
only in the output space of such a generator would be sufficient to satisfy the
in-domain constraint, and the problem now reads:

argminz∈Z Ldecision(M(G(z)), y) + λLdist(x
I , G(z)). (2)

Eq. 2 formalizes practices introduced in prior works [36,41] that also aim to
synthesize counterfactual explanations for images.

Furthermore, assuming that a latent code zI exists and can be recovered for
the image xI , we can express the distance loss directly in the latent space Z:

argminz∈Z Ldecision(M(G(z)), y) + λLdist(z
I , z). (3)
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Fig. 2: Overview of STEEX. The query image xI is first decomposed into a semantic
map SI and zI = (zc)

N
c=1, a collection of N semantic embeddings which encode each the

aspect of their corresponding semantic category c. The perturbation δz is optimized
such that the generated image x = G(SI , zI + δz) is classified as y by the decision
model M , while staying small. As the generator uses the semantic layout SI of the
query image xI , the generated counterfactual explanation x retains the original image
structure. The figure specifically illustrates the region-targeted setting, where only the
subset {‘car’, ‘traffic light’} of the semantic style codes is targeted

By searching for an optimum in a low-dimensional latent space rather than in
the raw pixel space, we operate over inputs that have a higher-level meaning,
which is reflected in the resulting counterfactual examples.

3.2 Semantic-Guided Counterfactual Generation

The main objective of our model is to scale counterfactual image synthesis to
large and complex scenes involving multiple objects within varied layouts. In such
a setting, identifying and interpreting the modifications made to the query image
is a hurdle to the usability of counterfactual methods. Therefore we propose
to generate counterfactual examples that preserve the overall structure of the
query and, accordingly, design a framework that optimizes under a fixed semantic
layout. Introducing semantic masks for counterfactual explanations comes with
additional advantages. First, we can leverage semantic-synthesis GANs that are
particularly well-suited to generate diverse complex scenes [32,60,37]. Second, it
provides more control over the counterfactual explanation we wish to synthesize,
allowing us to target the changes to a specific set of semantic regions, as we detail
in Sec. 3.3. To do so, we adapt the generator G and condition it on a semantic
mask S that associates each pixel to a label indicating its semantic category (for
instance, in the case of a driving scene, such labels can be cars, road, traffic signs,
etc.). The output of the generator G : (S, z) 7→ x is now restricted to follow the
layout indicated by S. We can then find a counterfactual example for image xI

that has an associated semantic mask SI by optimizing the following objective:

argminz∈Z Ldecision(M(G(SI , z)), y) + λLdist(z
I , z). (4)

This formulation guarantees that the semantic mask SI of the original scene is
kept as is in the counterfactuals.
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3.3 Region-Targeted Counterfactual Explanations

We introduce a new setting enabling finer control in the generation of counterfac-
tuals. In this setup, a user specifies a set of semantic regions that the explanation
must be about. For example, in Fig. 2, the user selects ‘car’ and ‘traffic light’,
and the resulting counterfactual is only allowed to alter these regions. Such a se-
lection allows studying the influence of different semantic concepts in the image
for the target model’s behavior. In practice, given a semantic mask S with N
classes, we propose to decompose z into N vectors, z = (zc)

N
c=1, where each zc

is a latent vector associated with one class in S. With such a formulation, it be-
comes possible to target a subset C ⊂ {1, . . . , N} for the counterfactual explana-
tion. Region-targeted counterfactuals only optimize on the specified components
(zc)c∈C , and all other latent codes remain unmodified.

3.4 Instantiation of STEEX

We now present the modeling choices we make for each part of our framework.

Generator G. The generator G can be any of the recent segmentation-to-image
GANs [32,60,37] that transform a latent code z and a segmentation layout S into
an image x. As such generators typically allow for a different vector zc to be used
for each class in the semantic mask [60,37], the different semantic regions can be
modified independently in the output image. This property enables STEEX to
perform region-targeted counterfactual explanations as detailed in Sec. 3.3.

Obtaining the code zI . To recover the latent code zI from the image xI , we
exploit the fact that in aforementioned frameworks [60,37], the generator G can
be trained jointly, in an auto-encoding pipeline, with an encoder Ez that maps
an image xI and its associated segmentation layout SI into a latent code zI . Such
a property ensures that we can efficiently compute this image-to-latent mapping
and that there is indeed a semantic code that corresponds to each image, leading
to an accurate reconstruction in the first place.

Obtaining the mask SI . As query images generally have no associated an-
notated segmentation masks SI , these need to be inferred. To do so, we add a
segmentation network Eseg in the pipeline: we first obtain the map SI =Eseg(x

I)
and then use the encoder: zI =Ez(x

I , SI), so STEEX is applicable to any image.

Loss functions. The decision loss Ldist ensures that the output image x is clas-
sified as y by the decision model M . It is thus set as the negative log-likelihood
of the targeted counter class y for M(G(z)):

Ldecision(M(G(z)), y) = −L(M(G(z))|y). (5)

The distance loss Ldist is the sum of squared L2 distance between each semantic
component of zI and z:

Ldist(z
I , z) =

N∑
c=1

∥zIc − zc∥22. (6)

We stress that Eq. 4 is optimized on the code z only. All of the network param-
eters (G, Ez and Eseg) remain frozen.
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4 Experiments

We detail in Sec. 4.1 our experimental protocol to evaluate different aspects of
generated counterfactuals: the plausibility and perceptual quality (Sec. 4.2) as
well as the proximity to query images (Sec. 4.3). We then present in Sec. 4.4
region-targeted counterfactual explanations. In Sec. 4.5, we use STEEX to ex-
plain different decision models for the same task, and show that produced ex-
planations hint at the specificities of each model. Finally, we present an ablation
study in Sec. 4.6. Our code and pretrained models will be made available.

4.1 Experimental Protocol

We evaluate our method on five decision models across three different datasets.
We compare against two recently proposed visual counterfactual generation
frameworks, Progressive Exaggeration (PE) [41] and DiVE [36], previously in-
troduced in Sec. 2. We report scores directly from their paper when available
(CelebA) and used the public and official implementation to evaluate them oth-
erwise (CelebAMask-HQ and BDD100k). We now present each dataset and the
associated experimental setup.

BDD100k [52]. The ability of STEEX to explain models handling complex
visual scenes is evaluated on the driving scenes of BDD100k. Most images of this
dataset contain diversely-positioned objects that can have fine relationships with
each other, and small details in size can be crucial for the global understanding of
the scene (e.g., traffic light colors). The decision model to be explained is a Move
Forward vs. Stop/Slow down action classifier trained on BDD-OIA [51], a 20,000-
scene extension of BDD100k annotated with binary attributes representing the
high-level actions that are allowed in a given situation. The image resolution is
512×256. The segmentation model Eseg is a DeepLabV3 [10] trained on a subset
of 10,000 images annotated with semantic masks that cover 20 classes (e.g.,
road, truck, car, tree, etc.). On the same set, the semantic encoder Ez and the
generator G are jointly trained within a SEAN framework [60]. Counterfactual
scores are computed on the validation set of BDD100k.

CelebAMask-HQ [26]. CelebAMask-HQ contains 30,000 high-quality face por-
traits with semantic segmentation annotation maps including 19 semantic classes
(e.g., skin, mouth nose, etc.). The portraits are also annotated with identity
and 40 binary attributes, allowing us to perform a quantitative evaluation for
high-quality images. Decision models to be explained are two DenseNet121 [23]
binary classifiers trained to respectively recognize Smile and Young attributes.
To obtain semantic segmentation masks for the query images, we instantiate
Eseg with a DeepLabV3 [10] pre-trained on the 28,000-image training split. On
the same split, the semantic encoder Ez and generator G are jointly learned
within a SEAN framework [60]. Counterfactual explanations are computed on
the 2000-image validation set, with images rescaled to the resolution 256× 256.

CelebA [29]. CelebA contains 200,000 face portraits, annotated with identity
and 40 binary attributes, but of smaller resolution (128× 128 after processing)
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and of lower quality compared to CelebAMask-HQ. STEEX is designed to handle
more complex and larger images, but we include this dataset for the sake of
completeness as previous works [41,36] use it as their main benchmark. We
report their score directly from their respective papers and align our experiment
protocol with the one described in [36]. As in previous works, we explain two
decision models: a Smile classifier and a Young classifier, both with DenseNet121
architecture [23]. We obtain Eseg with a DeepLabV3 [10] trained on CelebAMask-
HQ images. Then, we jointly train the semantic encoder Ez and generator G
with a SEAN architecture [60] on the training set of CelebA. Explanations are
computed on the 19,868-image validation split of CelebA.

Optimization scheme. As M and G are differentiable, we optimize z using
ADAM [24] with a learning rate 1 · 10−2 for 100 steps with λ = 0.3. Hyperpa-
rameters have been found on the training splits of the datasets.

4.2 Quality of the Counterfactual Explanations

We first ensure that the success rate of STEEX, i.e., the fraction of explanations
that are well classified into the counter class, is higher than 99.5% for all of the
five tested classifiers. Then, as STEEX’s counterfactuals must be realistic and
informative, we evaluate their perceptual quality.

Similarly with previous works [41,36], we use the Fréchet Inception Distance
(FID) [22] between all explanations and the set of query images, and report this
metric in Tab. 1. For each classifier, STEEX outperforms the baselines by a large
margin, meaning that our explanations are more realistic-looking, which verifies
that they belong to the input domain of the decision model.

Generating realistic counterfactuals for classifiers that deal with large and
complex images is difficult, as reflected by large FID discrepancies between
CelebA, CelebAMask-HQ and BDD100k. Scaling the generation of counterfac-
tual explanations from 128 × 128 (CelebA) to 256 × 256 (CelebAMask-HQ) face
portraits is not trivial as a significant drop in performance can be observed for all
models, especially for DiVE. Despite our best efforts to train DiVE on BDD100k,
we were unable to obtain satisfying 512×256 explanations, as all reconstructions
were nearly uniformly gray. As detailed in Sec. 2, VAE-based models are indeed

Table 1: Perceptual quality, measured with FID↓. Five attribute classifiers are
explained, across three datasets. Results of PE and DiVE are reported from original
papers on CelebA. For CelebAMask-HQ and BDD100k, their models are retrained using
their code. DiVE does not converge on BDD100k

FID ↓ CelebA CelebAM-HQ BDD100k

Smile Young Smile Young Move For.

PE [41] 35.8 53.4 52.4 60.7 141.6
DiVE [36] 29.4 33.8 107.0 107.5 —
STEEX 10.2 11.8 21.9 26.8 58.8
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Query image

Counterfactual explanation for Smile

STEEX (ours) DiVEPE

Counterfactual explanation for Young

STEEX (ours) DiVEPE

Smile: Yes Young: Yes Smile: No Smile: No Smile: No

Smile: No Smile: Yes Smile: Yes Smile: YesYoung: No

Young: No Young: No Young: No

Young: Yes Young: Yes Young: Yes

Fig. 3: Counterfactual explanations on CelebAMask-HQ, generated by STEEX
(ours), PE, and DiVE. Explanations are generated for two binary classifiers, on Smile
and Young attributes, at resolution 256× 256. Other examples in the Supplementary

usually limited to images with a fairly regular structure, and they struggle to
deal with the diversity of driving scenes.

We display examples of STEEX’s counterfactual explanations on CelebAMask-
HQ in Fig. 3, compared with PE [41] and DiVE [36]. For the Smile classifier,
STEEX explains positive (top-row) and negative (bottom-row) smile predictions
through sparse and photo-realistic modifications of the lips and the skin around
the mouth and the eyes. Similarly, for the Young classifier, STEEX explain de-
cisions by adding or removing facial wrinkles. In comparison, PE introduces
high-frequency artifacts that harm the realism of generated examples. DiVE
generates blurred images and applies large modifications so that it becomes dif-
ficult to identify the most crucial changes for the target model. Fig. 4 shows
other samples for the action classifier on the BDD100k dataset, where we over-
lay green ellipses to point the reader’s attention to significant region changes.
STEEX finds sparse but highly semantic modifications to regions that strongly
influence the output decision, such as the traffic light colors or the brake lights
of a leading vehicle. Finally, the semantic guidance leads to a fine preservation of

Query image    Decision=Stop STEEX (ours) Decision=Move Forw. Query image Decision=Move Forw. STEEX (ours)    Decision=Stop 

Fig. 4: Counterfactual explanations on BDD100k. Explanations are generated for
a binary classifier for the action Move Forward, with images at resolution 512 × 256.
Our method finds interpretable, sparse and meaningful semantic modifications to the
query image. Other examples are available in the Supplementary
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the scene structure in STEEX’s counterfactuals, achieving both global coherence
and high visual quality.

4.3 Proximity to the Query Image

We now verify the proximity of counterfactuals to query images, as well as the
sparsity of changes.

We first compare STEEX to previous work with respect to the Face Verifi-
cation Accuracy (FVA). The FVA is the percentage of explanations that pre-
serve the person’s identity, as revealed by a cosine similarity above 0.5 between
features of the counterfactual and the query. Following previous works [41,36],
features are computed by a pre-trained re-identification network on VGGFace2
[7]. As shown in Tab. 2, even if STEEX is designed for high-quality or complex
scenes image classifiers, it reaches high FVA on the low-quality CelebA dataset.
Moreover, STEEX significantly outperforms PE and DiVE on CelebAMask-HQ,
showing its ability to scale up to higher image sizes. Again, DiVE suffers from
the poor capacities of β−TCVAE to reconstruct high-quality images Sec. 2. To
support this claim, we compute the FVA between query images and reconstruc-
tions with the β−TCVAE of DiVE and obtain 45.9%, which indicates a low
reconstruction capacity.

We then measure the sparsity of explanations using the Mean Number of
Attributes Changed (MNAC). This metric averages the number of facial
attributes that differ between the query image and its associated counterfactual
explanation. As STEEX successfully switches the model’s decision almost every
time, explanations that obtain a low MNAC are likely to have altered only the
necessary elements to build a counterfactual. Following previous work [36], we
use an oracle ResNet pretrained on VGGFace2 [7], and fine-tuned on 40 attributes
provided in CelebA/CelebAMask-HQ. As reported in Tab. 2, STEEX has a lower
MNAC than PE and DiVE on both CelebA and CelebAMask-HQ. Conditioning
the counterfactual generation on semantic masks helps obtaining small variations
that are meaningful enough for the model to switch its decision. This property
makes STEEX useful in practice and well-suited to explain image classifiers.

Table 2: Face Verification Accuracy (FVA↑) (%) and Mean Number of At-
tributes Changed (MNAC↓), on CelebA and CelebAMask-HQ. For PE and DiVE,
CelebA scores come from the original papers, and we re-train their models using official
implementations for CelebAMask-HQ

FVA ↑ CelebA CelebAM-HQ

Smile Young Smile Young

PE [41] 85.3 72.2 79.8 76.2
DiVE [36] 97.3 98.2 35.7 32.3
STEEX 96.9 97.5 97.6 96.0

MNAC ↓ CelebA CelebAM-HQ

Smile Young Smile Young

PE [41] — 3.74 7.71 8.51
DiVE [36] — 4.58 7.41 6.76
STEEX 4.11 3.44 5.27 5.63
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Query image    Decision=Stop STEEX (ours) Decision=Move Forw. Query image Decision=Move Forw. STEEX (ours)    Decision=Stop 

Fig. 5: Semantic region-targeted counterfactual explanations on BDD100k.
Explanations are generated for a binary classifier trained on the attribute Move For-
ward, at resolution 512 × 256. Each row shows explanations where we restrict the
optimization process to one specific semantic region, on two examples: one where the
model initially goes forward, and one where it initially stops. Significant modifications
are highlighted within the green ellipses. Note that even when targeting specific re-
gions, others may still slightly differ from the original image: this is mostly due to
small errors in the reconstruction G(SI , zI) ≈ xI (more details in the Supplementary)

4.4 Region-Targeted Counterfactual Explanations

As can be seen in Figs. 1b and 4, when the query image is complex, the coun-
terfactual explanations can encompass multiple semantic concepts at the same
time. In Fig. 1b for instance, in order to switch the decision of the model to Move
Forward, the traffic light turns green and the car’s brake lights turn off. It raises
ambiguity about how these elements compound to produce the decision. In other
words, “Are both changes necessary, or changing only one region is sufficient to
switch the model’s decision?”.

To answer this question, we generate region-targeted counterfactual explana-
tions, as explained in Sec. 3.3. In Fig. 1c, we observe that targeting the traffic
light region can switch the decision of the model, despite the presence of a
stopped car blocking the way. Thereby, region-targeted counterfactuals can help
to identify potentially safety-critical issues with the decision model.

More generally, region-targeted counterfactual explanations empower the user
to separately assess how different concepts impact the decision. We show in Fig. 5
qualitative examples of such region-targeted counterfactual explanations on the
Move Forward classifier. On the one hand, we can verify that the decision model
relies on cues such as the color of the traffic lights and brake lights of cars, as
changing them often successfully switch the decision. On the other hand, we dis-
cover that changes in the appearance of buildings can flip the model’s decision.
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Query image STEEX for STEEX for STEEX for 

Young: Yes

Young: No

Young: No Young: No Young: No

Young: Yes Young: Yes Young: Yes

Fig. 6: Counterfactual ex-
planations on CelebAMask-
HQ for three different
Young classifiers, namely
Mtop, Mmid, and Mbot that
respectively only attend to the
top, mid, and bottom parts of
the image. Other examples are
available in the Supplementary

Indeed, we see that green or red gleams on facades can fool the decision model
into predicting Move Forward or Stop respectively, suggesting that the model
could need further investigation before being safely deployed.

4.5 Analyzing Decision Models

An attractive promise of explainable AI is the possibility to detect and charac-
terize biases or malfunctions of explained decision models. In this section, we
investigate how specific are explanations to different decision models and if the
explanations can point at the particularity of each model. In practice, we con-
sider three decision models, namely Mtop, Mmid, and Mbot, that were trained on
images with masked out pixels except the for the top, middle, and bottom parts
of the input respectively. Fig. 6 reports qualitative results, and we can identify
that Mtop has based its decisions mainly on the color of the hair, while Mmid

uses the wrinkles on the face, and Mbot focuses on facial hair and the neck.
We also measure how much each semantic region has been modified to pro-

duce the counterfactual. Accordingly, we assess the impact of a semantic class c
in the decision with the average value of ∥δzc∥2 = ∥zIc −zc∥2 aggregated over the
validation set. Note that while the absolute values of δzc can be compared across
the studied decision models, they cannot be directly compared across different
semantic classes, as the zc can be at different scales for different values of c in the
generative model. To make this comparison in Tab. 3, we instead compute the
value of δzc for the target model relatively to the average value for all models.

Table 3: Most and least impactful semantic classes for a decision model
relatively to others. The impact of a class for a given model has been determined
as the average value of ∥δzc∥2 = ∥zIc − zc∥2 for each semantic class c, relatively to the
same value averaged for other models

Model Most impactful Least impactful

Mtop hat, hair, background necklace, eyes, lips
Mmid nose, glasses, eyes necklace, neck, hat
Mbot neck, necklace, cloth eyes, brows, glasses
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Table 4: Ablation study measuring the role of the distance loss Ldist in Eq. 4 and
upper bound results that would be achieved with ground-truth segmentation masks

Smile Young
FID ↓ FVA ↑ FID ↓ FVA ↑

STEEX 21.9 97.6 26.8 96.0
without Ldist 29.7 65.2 45.7 37.0
with ground-truth segmentation 21.2 98.9 25.7 98.2

The semantic classes of most impact in Tab. 3 indicate how each decision model
is biased towards a specific part of the face and ignores cues that are important
for the other models.

4.6 Ablation Study

We propose an ablation study on CelebAMask-HQ, reported in Tab. 4, to assess
the role of the distance loss Ldist and the use of predicted segmentation masks.

First, we evaluate turning off the distance loss by setting λ = 0, such that
the latent codes zc are no longer constrained to be close to zIc . Doing so, for both
Young and Smile classifiers, the FVA and FID of STEEX degrade significantly,
which respectively indicate that the explanation proximity to the real images is
deteriorated and that the counterfactuals are less plausible. The distance loss is
thus an essential component for STEEX.

Second, we investigate if the segmentation network Eseg is a bottleneck in
STEEX. To do so, we replace the segmenter’s outputs with ground-truth masks
and generate counterfactual explanations with these. The fairly similar scores of
both settings indicate that STEEX works well with inferred layouts.

5 Conclusion

In this work, we present STEEX, a method to generate counterfactual expla-
nations for complex scenes, by steering the generative process using predicted
semantics. To our knowledge, we provide the first framework for complex scenes
where numerous elements can affect the decision of the target network. Ex-
periments on driving scenes and high-quality portraits show the capacity of our
method to finely explain deep classification models. For now, STEEX is designed
to generate explanations that preserve the semantic structure. While we show
the merits of this property, future work can consider how, within our frame-
work, to handle operations such as shifting, removing, or adding objects, while
keeping the explanation simple to interpret. Finally, we hope that the setup we
propose in Sec. 4.5, when comparing explanations for multiple decision models
with known behaviors, can serve as a basis to measure the interpretability of an
explanation method.
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