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Abstract. Recent advances in Vision Transformer (ViT) have demon-
strated its impressive performance in image classification, which makes it
a promising alternative to Convolutional Neural Network (CNN). Unlike
CNNs, ViT represents an input image as a sequence of image patches.
The patch-based input image representation makes the following ques-
tion interesting: How does ViT perform when individual input image
patches are perturbed with natural corruptions or adversarial perturba-
tions, compared to CNNs? In this work, we study the robustness of ViT
to patch-wise perturbations. Surprisingly, we find that ViTs are more ro-
bust to naturally corrupted patches than CNNs, whereas they are more
vulnerable to adversarial patches. Furthermore, we discover that the at-
tention mechanism greatly affects the robustness of vision transformers.
Specifically, the attention module can help improve the robustness of ViT
by effectively ignoring natural corrupted patches. However, when ViTs
are attacked by an adversary, the attention mechanism can be easily
fooled to focus more on the adversarially perturbed patches and cause
a mistake. Based on our analysis, we propose a simple temperature-
scaling based method to improve the robustness of ViT against adver-
sarial patches. Extensive qualitative and quantitative experiments are
performed to support our findings, understanding, and improvement of
ViT robustness to patch-wise perturbations across a set of transformer-
based architectures.
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1 Introduction

Recently, Vision Transformer (ViT) has demonstrated impressive performance
[10,47,49,50,14,8,15,7,25], which makes it become a potential alternative to con-
volutional neural networks (CNNs). Meanwhile, the robustness of ViT has also
received great attention [5,20,38,39,41,42,45]. On the one hand, it is important to
improve its robustness for safe deployment in the real world. On the other hand,
diagnosing the vulnerability of ViT can also give us a deeper understanding
of its underlying working mechanisms. Existing works have intensively studied
the robustness of ViT and CNNs when the whole input image is perturbed with
natural corruptions or adversarial perturbations [5,41,28,3,2]. Unlike CNNs, ViT
processes the input image as a sequence of image patches. Then, a self-attention
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(a) Clean Image (b) with Naturally Corrupted Patch (c) with Adversarial Patch

Fig. 1: Images with patch-wise perturbations (top) and their corresponding at-
tention maps (bottom). The attention mechanism in ViT can effectively ig-
nore the naturally corrupted patches to maintain a correct prediction in Fig.
b, whereas it is forced to focus on the adversarial patches to make a mistake in
Fig. c. The images with corrupted patches (Fig. b) are all correctly classified.
The images with adversary patches (Fig. c) are misclassified as dragonfly, axolotl,
and lampshade, respectively.

mechanism is applied to aggregate information from all patches. Based on the
special patch-based architecture of ViT, we mainly focus on studying the ro-
bustness of ViT to patch-wise perturbations.

In this work, two typical types of perturbations are considered to compare
the robustness between ViTs and CNN (e.g., ResNets [16]). One is natural cor-
ruptions [17], which is to test models’ robustness under distributional shift. The
other is adversarial perturbations [44,13], which are created by an adversary to
specifically fool a model to make a wrong prediction. Surprisingly, we find ViT
does not always perform more robustly than ResNet. When individual image
patches are naturally corrupted, ViT is more robust compared to ResNet. How-
ever, when input image patch(s) are adversarially attacked, ViT shows a higher
vulnerability than ResNet.

Digging down further, we revealed that ViT’s stronger robustness to natural
corrupted patches and higher vulnerability against adversarial patches are both
caused by the attention mechanism. Specifically, the self-attention mechanism
of ViT can effectively ignore the natural patch corruption, while it’s also easy
to manipulate the self-attention mechanism to focus on an adversarial patch.
This is well supported by rollout attention visualization [1] on ViT. As shown
in Fig. 1 (a), ViT successfully attends to the class-relevant features on the clean
image, i.e., the head of the dog. When one or more patches are perturbed with
natural corruptions, shown in Fig. 1 (b), ViT can effectively ignore the corrupted
patches and still focus on the main foreground to make a correct prediction. In
Fig. 1 (b), the attention weights on the positions of naturally corrupted patches
are much smaller even when the patches appear on the foreground. In contrast,
when the patches are perturbed with adversarial perturbations by an adversary,
ViT is successfully fooled to make a wrong prediction, as shown in Fig. 1 (c).
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This is because the attention of ViT is misled to focus on the adversarial patch
instead.

Based on this understanding that the attention mechanism leads to the vul-
nerability of ViT against adversarial patches, we propose a simple Smoothed
Attention to discourage the attention mechanism to a single patch. Specifically,
we use a temperature to smooth the attention weights computed by a softmax
operation in the attention. In this way, a single patch can hardly dominate patch
embeddings in the next layer, which can effectively improve the robustness of
ViT against adversarial patch attacks.

Our main contributions can be summarized as follows:

– Finding: Based on a fair comparison, we discover that ViT is more robust
to natural patch corruption than ResNet, whereas it is more vulnerable to
adversarial patch perturbation.

– Understanding: We reveal that the self-attention mechanism can effec-
tively ignore natural corrupted patches to maintain a correct prediction but
be easily fooled to focus on adversarial patches to make a mistake.

– Improvement: Inspired by our understanding, we propose Smoothed Atten-
tion, which can effectively improve the robustness of ViT against adversarial
patches by discouraging the attention to a single patch.

2 Related Work

Robustness of Vision Transformer. The robustness of ViT have achieved
great attention due to its great success [5,33,41,4,28,3,34,2,39,51,18,30,29,33,38].
On the one hand, [5,36] show that vision transformers are more robust to natural
corruptions [17] compared to CNNs. On the other hand, [5,41,36] demonstrate
that ViT achieves higher adversarial robustness than CNNs under adversarial
attacks. These existing works, however, mainly focus on investigating the ro-
bustness of ViT when a whole image is naturally corrupted or adversarially per-
turbed. Instead, our work focuses on patch perturbation, given the patch-based
architecture trait of ViT. The patch-based attack [20,12] and defense [32,42]
methods have also been proposed recently. Different from their work, we aim
to understand the robustness of patch-based architectures under patch-based
natural corruption and adversarial patch perturbation.

Adversarial Patch Attack. The seminal work [35] shows that adversarial
examples can be created by perturbing only a small amount of input pixels.
Further, [6,24] successfully creates universal, robust, and targeted adversarial
patches. These adversarial patches therein are often placed on the main object
in the images. The works [11,31] shows that effective adversarial patches can
be created without access to the target model. However, both universal patch
attacks and black-box attacks are weak to be used for our study. They can only
achieve very low fooling rates when a single patch of ViT (only 0.5% of image)
is attacked. In contrast, the white-box attack [21,23,48,37,26] can fool models
by attacking only a very small patch. In this work, we apply the most popular
adversarial patch attack in [21] to both ViT and CNNs for our study.
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Table 1: Comparison of popular ResNet and ViT models. The difference in model
robustness can not be blindly attributed to the model architectures. It can be
caused by different training settings. WS, GN and WD correspond to Weight
Standardization, Group Normalization and Weight Decay, respectively.

Model Pretraining DataAug Input Size WS GN WD

ResNet [16] N N 224 N N Y
BiT [22] Y N 480 Y Y N
ViT [10] Y N 224/384 N N N
DeiT [47] N Y 224/384 N N N

3 Experimental Settings to Compare ViT and ResNet

Fair Base Models. We list the state-of-the-art ResNet and ViT models and
part of their training settings in Tab. 1. The techniques applied to boost different
models are different, e.g., pretraining. A recent work [3] points out the neces-
sity of a fair setting. Our investigation finds weight standardization and group
normalization also have a significant impact on model robustness (More in Ap-
pendix A). This indicates that the difference in model robustness can not be
blindly attributed to the model architectures if models are trained with different
settings. Hence, we build fair models to compare ViT and ResNet as follows.

First, we follow [47] to choose two pairs of fair model architectures, DeiT-
small vs. ResNet50 and DeiT-tiny vs. ResNet18. The two models of each pair
(i.e. DeiT and its counter-part ResNet) are of similar model sizes. Further, we
train ResNet50 and ResNet18 using the exactly same setting as DeiT-small
and Deit-tiny in [47]. In this way, we make sure the two compared models,
e.g., DeiT-samll and ResNet50, have similar model sizes, use the same training
techniques, and achieve similar test accuracy (See Appendix A). The two fair
base model pairs are used across this paper for a fair comparison.

Adversarial Patch Attack. We now introduce adversarial patch attack [21]
used in our study. The first step is to specify a patch position and replace the
original pixel values of the patch with random initialized noise δ. The second
step is to update the noise to minimize the probability of ground-truth class,
i.e. maximize the cross-entropy loss via multi-step gradient ascent [27]. The
adversary patches are specified to align with input patches of DeiT.

Evaluation Metric. We use the standard metric Fooling Rate (FR) to eval-
uate the model robustness. First, we collect a set of images that are correctly
classified by both models that we compare. The number of these collected images
is denoted as P . When these images are perturbed with natural patch corruption
or adversarial patch attack, we use Q to denoted the number of images that are
misclassified by the model. The Fooling Rate is then defined as FR = Q

P . The
lower the FR is, the more robust the model is.
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Table 2: Fooling Rates (in %) are reported. DeiT is more robust to naturally
corrupted patches than ResNet, while it is significantly more vulnerable than
ResNet against adversarial patches. Bold font is used to mark the lower fooling
rate, which indicates the higher robustness.

Model
# Naturally Corrupted Patches # Adversarial Patches

32 96 160 196 1 2 3 4

ResNet50 3.7 18.2 43.4 49.8 30.6 59.3 77.1 87.2
DeiT-small 1.8 7.4 22.1 38.9 61.5 95.4 99.9 100

ResNet18 6.8 31.6 56.4 61.3 39.4 73.8 90.0 96.1
DeiT-tiny 6.4 14.6 35.8 55.9 63.3 95.8 99.9 100

4 ViT Robustness to Patch-wise Perturbations

Following the setting in [47], we train the models DeiT-small, ResNet50, DeiT-
tiny, and ResNet18 on ImageNet 1k training data respectively. Note that no
distillation is applied. The input size for training is H = W = 224, and the
patch size is set to 16. Namely, there are 196 image patches totally in each image.
We report the clean accuracy in Appendix A where DeiT and its counter-part
ResNet show similar accuracy on clean images.

4.1 Patch-wise Natural Corruption

First, we investigate the robustness of DeiT and ResNet to patch-based natural
corruptions. Specifically, we randomly select 10k test images from ImageNet-1k
validation dataset [9] that are correctly classified by both DeiT and ResNet. Then
for each image, we randomly sample n input image patches xi from 196 patches
and perturb them with natural corruptions. As in [17], 15 types of natural cor-
ruptions with the highest level are applied to the selected patches, respectively.
The fooling rate of the patch-based natural corruption is computed over all the
test images and all corruption types. We test DeiT and ResNet with the same
naturally corrupted images for a fair comparison.

We find that both DeiT and ResNet hardly degrade their performance when
a small number of patches are corrupted (e.g., 4). When we increase the number
of patches, the difference between two architectures emerges: DeiT achieves a
lower FR compared to its counter-part ResNet (See Tab. 2). This indicates that
DeiT is more robust against naturally corrupted patches than ResNet. The same
conclusion holds under the extreme case when the number of patches n = 196.
That is: the whole image is perturbed with natural corruptions. This is aligned
with the observation in the existing work [5] that vision transformers are more
robust to ResNet under distributional shifts. More details on different corruption
types are in Appendix B.
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Fig. 2: DeiT with red lines shows a smaller FR to natural patch corruption and
a larger FR to adversarial patch of different sizes than counter-part ResNet.

In addition, we also increase the patch size of the perturbed patches, e.g.,
if the patch size of the corrupted patch is 32 × 32, it means that it covers 4
continuous and independent input patches as the input patch size is 16× 16. As
shown in Fig. 2 (Left), even when the patch size of the perturbed patches becomes
larger, DeiT (marked with red lines) is still more robust than its counter-part
ResNet (marked with blue lines) to natural patch corruption.

4.2 Patch-wise Adversarial Attack

In this section, we follow [21] to generate adversarial patch attack and then
compare the robustness of DeiT and ResNet against adversarial patch attack.
We first randomly select the images that are correctly classified by both models
from imagenet-1k validation daset. Following [21], the ℓ∞-norm bound, the step
size, and the attack iterations are set to 255/255, 2/255, and 10K respectively.
Each reported FR score is averaged over 19.6k images.

As shown in Tab. 2, DeiT achieves much higher fooling rate than ResNet
when one of the input image patches is perturbed with adversarial perturbation.
This consistently holds even when we increase the number of adversarial patches,
sufficiently supports that DeiT is more vunerable than ResNet against patch-
wise adversarial perturbation. When more than 4 patches (∼2% area of the
input image) are attacked, both DeiT and ResNet can be successfully fooled
with almost 100% FR.

When we attack a large continuous area of the input image by increasing
the patch size of adversarial patches, the FR on DeiT is still much larger than
counter-part ResNet until both models are fully fooled with 100% fooling rate.
As shown in Fig. 2 (Right), DeiT (marked with red lines) consistently has higher
FR than ResNet under different adversarial patch sizes.

Taking above results together, we discover that DeiT is more robust to nat-
ural patch corruption than ResNet, whereas it is significantly more vulnerable
to adversarial patch perturbation.

5 Understanding ViT Robustness to Patch Perturbation

In this section, we design and conduct experiments to analyze the robustness of
ViT. Especially, we aim to obtain deep understanding of how ViT performs when
its input patches are perturbed with natural corruption or adversary patches.
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(a) on ResNet50 under Adversary Patch Attack

(b) on DeiT-small under Adversary Patch Attack

Fig. 3: Gradient Visualization. the clean image, the images with adversarial
patches, and their corresponding gradient maps are visualized. We use a blue
box on the gradient map to mark the location of the adversarial patch. The
adversary patch on DeiT attracts attention, while the one on ResNet hardly do.

5.1 How ViT Attention Changes under Patch Perturbation?

We visualize and analyze models’ attention to understand the different robust-
ness performance of DeiT and ResNet against patch-wise perturbations. Al-
though there are many existing methods, e.g., [40,43,53], designed for CNNs
to generate saliency maps, it is not clear yet how suitable to generalize them
to vision transformers. Therefore, we follow [21] to choose the model-agnostic
vanilla gradient visualization method to compare the gradient (saliency) map [52]
of DeiT and ResNet. Specifically, we consider the case where DeiT and ResNet
are attacked by adversarial patches. The gradient map is created as follow: we
obtain the gradients of input examples towards the predicted classes, sum the
absolute values of the gradients over three input channels, and visualize them
by mapping the values into gray-scale saliency maps.

Qualitative Evaluation. As shown in Fig. 3 (a), when we use adversarial
patch to attack a ResNet model, the gradient maps of the original images and
the images with adversarial patch are similar. The observation is consistent with
the one made in the previous work [21]. In contrast to the observation on ResNet,
the adversarial patch can change the gradient map of DeiT by attracting more
attention. As shown in Figure 3 (b), even though the main attention of DeiT is
still on the object, part of the attention is misled to the adversarial patch. More
visualizations are in Appendix C.

Quantitative Evaluation. We also measure our observation on the atten-
tion changes with the metrics in [21]. In each gradient map, we score each patch
according to (1) the maximum absolute value within the patch (MAX); and (2)
the sum of the absolute values within the patch (SUM). We first report the per-
centage of patches where the MAX is also the maximum of the whole gradient
map. Then, we divide the SUM of the patch by the SUM of the all gradient
values and report the percentage.
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Table 3: Quantitative Evaluation. Each cell lists the percent of patches in which
the maximum gradient value inside the patches is also the maximum of whole
gradient map. SUM corresponds to the sum of element values inside patch di-
vided by the sum of values in the whole gradient map. The average over all
patches is reported.

Towards ground-truth Class Towards misclassified Class

SUM MAX SUM MAX

Patch Size 16 32 16 32 16 32 16 32

ResNet50 0.42 1.40 0.17 0.26 0.55 2.08 0.25 0.61
DeiT-small 1.98 5.33 8.3 8.39 2.21 6.31 9.63 12.53

ResNet18 0.24 0.74 0.01 0.02 0.38 1.31 0.05 0.13
DeiT-tiny 1.04 3.97 3.67 5.90 1.33 4.97 6.49 10.16

(a) Attention on ResNet18 under Adversary Patch Attack

(b) Attention on DeiT-tiny under Adversary Patch Attack

Fig. 4: Attention Comparison between ResNet and DeiT under Patch Attack.
The clean image, the adversarial images, and their corresponding attention are
visualized. The adversary patch on DeiT attract attention, while the ones on
ResNet hardly do.

As reported in Tab. 3, the pixel with the maximum gradient value is more
likely to fall inside the adversarial patch on DeiT, compared to that on ResNet.
Similar behaviors can be observed in the metric of SUM. The quantitative ex-
periment also supports our claims above that adversarial patches mislead DeiT
by attracting more attention.

Besides the gradient analysis, another popular tool used to visualize ViT is
Attention Rollout [1]. To further confirm our claims above, we also visualize
DeiT with Attention Rollout in Fig. 4. The rollout attention also shows that the
attention of DeiT is attracted by adversarial patches. The attention rollout is not
applicable to ResNet. As an extra check, we visualize and compare the feature
maps of classifications on ResNet. The average of feature maps along the channel
dimension is visualized as a mask on the original image. The visualization also
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(a) Attention on ResNet18 under Natural Patch Corruption

(b) Attention on DeiT-tiny under Natural Patch Corruption

Fig. 5: Attention Comparison between ResNet and DeiT under Natural Patch
Corruption. The clean image, the naturally corrupted images, and their corre-
sponding attention are visualized. The patch corruptions on DeiT are ignored
by attending less to the corrupted patches, while the ones on ResNet are treated
as normal patches.

supports the claims above. More visualizations are in Appendix D. Both qual-
itative and quantitative analysis verifies our claims that the adversarial patch
can mislead the attention of DeiT by attactting it.

However, the gradient analysis is not available to compare ViT and ResNet
on images with natural corrupted patches. When a small number of patch of
input images are corrupted, both Deit and ResNet are still able to classify them
correctly. The slight changes are not reflected in vanilla gradients since they are
noisy. When a large area of the input image is corrupted, the gradient is very
noisy and semantically not meaningful. Due to the lack of a fair visualization
tool to compare DeiT and ResNet on naturally corrupted images, we apply
Attention Rollout to DeiT and Feature Map Attention visualization to ResNet
for comparing the their attention.

The attention visualization of these images is shown in Fig. 5. We can observe
that ResNet treats the naturally corrupted patches as normal ones. The attention
of ResNet on natually patch-corrupted images is almost the same as that on the
clean ones. Unlike CNNs, DeiT attends less to the corrupted patches when they
cover the main object. When the corrupted patches are placed in the background,
the main attention of DeiT is still kept on the main object. More figures are in
Appendix E.

5.2 How Sensitive Is ViT Vulnerability to Attack Patch Positions?

To investigate the sensitivity against the location of adversarial patch, we visu-
alize the FR on each patch position in Fig. 6. We can clearly see that adversarial
patch achieves higher FR when attacking DeiT-tiny than ResNet18 in different
patch positions. Interestingly, we find that the FRs in different patch positions of
DeiT-tiny are similar, while the ones in ResNet18 are center-clustered. A similar
pattern is also found on DeiT-small and ResNet50 in Appendix F.
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(b) Patch Attack FRs on DeiT-tiny

Fig. 6: Patch Attack FR (in %) in each patch position is visualized. FRs in
different patch positions of DeiT-tiny are similar, while the ones in ResNet18
are center-clustered.

(a) Corner-biased Images

(b) Center-biased Images

Fig. 7: Collection of two sets of biased data. The fist set contains only images
with corner-biased object(s), and the other set contains center-biased images.

Considering that ImageNet are center-biased where the main objects are
often in the center of the images, we cannot attribute the different patterns to
the model architecture difference without further investigation.

Hence, we design the following experiments to disentangle the two factors,
i.e., model architecture and data bias. Specifically, we select two sets of correctly
classified images from ImageNet 1K validation dataset. As shown in Fig. 7a, the
first set contains images with corner bias where the main object(s) is in the
image corners. In contrast, the second set is more center-biased where the main
object(s) is exactly in the central areas, as shown in Fig. 7b.

We apply patch attack to corner-biased images (i.e., the first set) on ResNet.
The FRs of patches in the center area are still significantly higher than the ones
in the corner (See Appendix G). Based on this, we can conclude that such a
relation of FRs to patch position on ResNet is caused by ResNet architectures
instead of data bias. The reason behind this might be that pixels in the center
can affect more neurons of ResNet than the ones in corners.
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Table 4: Transferability of adversarial patch across different patch positions of
the the image. Translation X/Y stands for the number of pixels shifted in rows
or columns. When they are shifted to cover other patches exactly, adversarial
patches transfer well, otherwise not.

Trans-(X,Y) (0, 1) (0, 16) (0, 32) (1, 0) (16, 0) (32, 0) (1, 1) (16, 16)

ResNet50 0.06 0.31 0.48 0.06 0.18 0.40 0.08 0.35
DeiT-small 0.27 8.43 4.26 0.28 8.13 3.88 0.21 4.97

ResNet18 0.22 0.46 0.56 0.19 0.49 0.68 0.15 0.49
DeiT-tiny 2.54 29.15 18.19 2.30 28.37 17.32 2.11 21.23

Similarly, we also apply patch attack to center-biased images (the second
set) on DeiT. We observe that the FRs of all patch positions are still similar
even the input data are highly center-biased (See Appendix H). Hence, we draw
the conclusion that DeiT shows similar sensitivity to different input patches
regardless of the content of the image. We conjecture it can be explained by
the architecture trait of ViT, in which each patch equally interact with other
patches regardless of its position.

5.3 Are Adversarial Patches on ViT Still Effective When Shifted?

The work [21] shows that the adversarial patch created on an image on ResNet is
not effective anymore even if a single pixel is shifted away. Similarly, we also find
that the adversarial patch perturbation on DeiT does not transfer as well when
shifting a single pixel away. However, when an adversarial patch is shifted to ex-
actly match another input patch, it remains highly effective, as shown in Tab. 4.
This mainly because the attention can still be misled to focus on the adversarial
patch as long as it is perfectly aligned with the input patch. In contrast, if a single
pixel is shifted away, the structure of the adversarial perturbation is destroyed
due to the misalignment between the input patch of DeiT and the constructed
adversarial patch. Additionally, We find that the adversarial patch perturbation
can hardly transfer across images or models regardless of the alignment. Details
can be found in Appendix I.

6 Improving ViT Robustness to Adversarial Patch

Given an input image x ∈ RH×W×C , ViT [10] first reshapes the input x into

a sequence of image patches {xi ∈ R(H
P ·WP )×(P 2·C)}Ni=1 where P is the patch

size and N is the number of patches. A class-token patch x0 is concatenated
to the patch sequence. A set of self-attention blocks is applied to obtain patch
embeddings of the l-th block {xl

i}Ni=0. The class-token patch embedding of the
last block is mapped to the output.
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The patch embedding of the i-th patch in the l-th layer is the weighted
sum of all patch embedding {xl−1

j }Ni=0 of the previous layer. The weights are
the attention weights obtained from the attention module. Formally, the patch
embedding xl

i is computed with following equation

xl
i =

N∑
j=0

αij · xl−1
j , αij =

exp(Zij)∑N
j=0 exp(Zij)

(1)

where αij is the attention weight that stands for the attention of the i-th patch
of the l-th layer to the j-th patch of the (l-1)-th layer. Zij is the scaled dot-
product between the key of the j-th patch and the query of of the i-th patch in
the (l-1)-th layer, i.e., the logits before softmax attention.

Given a classification task, we denote the patch embedding of the clean image
as x∗l

i . When the k-th patch is attacked, the patch embedding of the i-th patch
in the l-th layer deviates from x∗l

i . The deviation distance is described as

d(xl
i,x

∗l
i ) =

N∑
j=0

αij · xl−1
j −

N∑
j=0

α∗
ij · xl−1

j , (2)

where α∗
ij is the attention weight corresponding to the clean image. Our analysis

shows that the attention is misled to focus on the attacked patch. In other words,
αik is close to 1, and other attention weights are close to zero.

To address this, we replace the original attention with smoothed attention
using temperature scaling in the softmax operation. Formally, the smoothed
attention is defined as

α♢
ij =

exp(Zij/T )∑N
j=0 exp(Zij/T )

, (3)

where T (> 1) is the hyper-parameter that determines the smoothness of the
proposed attention. With the smoothed attention, the deviation of the patch
embedding from the clean patch embedding is smaller.

d(x♢l
i ,x∗l

i ) =

N∑
j=0

α♢l
ij · xl−1

j −
N∑

j=0

α∗
ij · xl−1

j < d(xl
i,x

∗l
i ) (4)
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Fig. 8: The robustness of ViT can be
improved with Smoothed Attention.

We can see that the smoothed atten-
tion naturally encourages self-attention
not to focus on a single patch. To validate
if ViT becomes more robust to adversarial
patches, we apply the method to ViT and
report the results in Fig. 8. Under differ-
ent temperatures, the smoothed attention
can improve the adversarial robustness of
ViT to adversarial patches and rarely re-
duce the clean accuracy. In addition, the
effectiveness of smoothed attention also
verifies our understanding of the robust-
ness of ViT in Sec. 5: it is the attention
mechanism that causes the vulnerability
of ViT against adversarial patch attacks.
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Fig. 9: We report Fooling Rates on different versions of ViT, CNN as well as
Hybrid architectures under adversarial patch attacks.

7 Discussion

In previous sections, we mainly focus on studying the state-of-the-art patch at-
tack methods on the most primary ViT architecture and ResNet. In this section,
we further investigate different variants of model architectures as well as adver-
sarial patch attacks.

Different Model Architectures In addition to DeiT and ResNet, we also
investigate the robustness of different versions of ViT [10,47,25], CNN [16,19] as
well as Hybrid architectures [14] under adversarial patch attacks. Following the
experimental setting in section 3, we train all the models and report fooling rate
on each model in Fig. 9. Four main conclusions can be drawn from the figure.

1. CNN variants are consistently more robust than ViT models.
2. The robustness of LeViT model [14] with hybrid architecture (i.e., Conv

Layers + Self-Attention Blocks) lives somewhere between ViT and CNNs.
3. Swin Transformers [25] are as robust as CNNs. We conjecture this is be-

cause attention cannot be manipulated by a single patch due to hierarchical
attention and the shifted windows therein. Specifically, the self-attention in
Swin Transformers is conducted on patches within a local region rather than
the whole image. In addition, a single patch will interact with patches from
different groups in different layers with shifted windows. This makes effective
adversarial patches challenging.

4. Mixer-MLP [46] uses the same patch-based architecture as ViTs and has no
attention module. Mixer-base with FR (31.36) is comparable to ResNet and
more robust than ViTs. The results further confirm that the vulnerability of
ViT can be attributed to self-attention mechanism.

Our proposed attention smoothing by temperature scaling can effectively
improve the robustness of DeiT and Levit. However, the improvement on Swin
Transformers is tiny due to its architecture design.

Different Patch Attacks Other than adversarial patch attacks studied previ-
ously, we also investigate the robustness of ViT and ResNet against the following
variants of adversarial patch attacks.
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Imperceptible patch attack In previous sections, we use unbounded local patch
attacks where the pixel intensity can be set to any value in the image range [0, 1].
The adversarial patches are often visible, as shown in Fig. 1. In this section,
we compare DeiT and ResNet under a popular setting where the adversarial
perturbation is imperceptible to humans, bounded by 8/225. In the case of a
single patch attack, the attacker achieves FR of 2.9% on ResNet18 and 11.2%
on DeiT-tiny (see Appendix J for more results). That is: DeiT is still more
vulnerable than ResNet when attacked with imperceptible patch perturbation.

Targeted patch attack We also compare DeiT and ResNet under targeted patch
attacks, which can be achieved by maximizing the probability of the target
class. Specifically, we randomly select a target class other than the ground-truth
class for each image. Under a single targeted patch attack, the FR is 15.4% for
ResNet18 vs. 32.3% for DeiT-tiny, 7.4% for ResNet50 vs. 24.9% for DeiT-small.
The same conclusion holds: DeiT is more vulnerable than ResNet. Visualization
of adversarial patches is in Appendix K.

Patch attack generated with different iterations Following [21], we generate
adversarial patch attacks with 10k iterations. In this section, we further study
the minimum iterations required to successfully attack the classifier, which is
averaged over all patch positions of the misclassified images. We find that the
minimum attack iterations on DeiT-tiny is much smaller than that on ResNet18
(65 vs. 342). Similar results on DeiT-small and ResNet50 (294 vs. 455). This
further validates DeiT is more vulnerable than ResNet.

ViT-agnostic patch attack In this section, we study ViT-agnostic patch attack
where the adversarial patch of the same size as an input patch is placed to a
random area of the image. The covered area can involve pixels from multiple
input patches. We find that DeiT becomes less vulnerable to adversarial patch
attack, e.g., the FR on DeiT-small decreases from 61.5% to 47.9%. When the
adversarial patch is not aligned with the input patch, i.e., only part of patch
pixels can be manipulated, the attention of DeiT is less likely to be misled. Under
such ViT-agnostic patch attack, ViT is still more vulnerable than ResNet.

8 Conclusion

This work starts with an interesting observation on the robustness of ViT to
patch perturbations. Namely, vision transformer (e.g., DeiT) is more robust to
natural patch corruption than ResNet, whereas it is significantly more vulnerable
against adversarial patches. Further, we discover the self-attention mechanism
of ViT can effectively ignore natural corrupted patches but be easily misled to
adversarial patches to make mistakes. Based on our analysis, we propose atten-
tion smoothing to improve the robustness of ViT to adversarial patches, which
further validates our developed understanding. We believe this study can help
the community better understand the robustness of ViT to patch perturbations.
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