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Abstract. We present CartoonX (Cartoon Explanation), a novel model-
agnostic explanation method tailored towards image classifiers and based
on the rate-distortion explanation (RDE) framework. Natural images are
roughly piece-wise smooth signals—also called cartoon-like images—and
tend to be sparse in the wavelet domain. CartoonX is the first explanation
method to exploit this by requiring its explanations to be sparse in the
wavelet domain, thus extracting the relevant piece-wise smooth part of
an image instead of relevant pixel-sparse regions. We demonstrate that
CartoonX can reveal novel valuable explanatory information, particu-
larly for misclassifications. Moreover, we show that CartoonX achieves a
lower distortion with fewer coefficients than state-of-the-art methods.

1 Introduction

Powerful machine learning models such as deep neural networks are inherently
opaque, which has motivated numerous explanation methods over the last decade
(see for example the survey by [4]). A significant fraction of the research liter-
ature has focused on explaining image classifications due to both the practical
relevance of computer vision tasks and the ease at which heatmaps can com-
municate explanatory information. Despite the great variety in methods and
explanation philosophies, all current methods share the following characteristic:
they operate in pixel space. Roughly speaking, existing explanation methods for
image classifiers either allocate additive attribution scores to each (super)pixel
or optimize a deletion mask on the pixel coefficients to mark a relevant set of
pixels. The result is typically a pixel-sparse and jittery explanation. We challenge
the conventional approach to explain in pixel space by successfully applying the
rate-distortion explanation (RDE) framework [18, 10] in the wavelet domain of
images. Our novel explanation method, CartoonX, extracts the relevant piece-
wise smooth part of an image. Instead of demanding sparsity in pixel space, as
in [18, 2], CartoonX demands sparsity in the wavelet domain, which produces
piece-wise smooth explanations. Piece-wise smooth images are also known as
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cartoon-like images [14]—a class of 2D signals that has been well studied, and
for which wavelets provides an efficient representation system [25]. Our work
makes the following contributions.

Reformulation and reinterpretation of the RDE framework: We reformulate
the RDE framework in a more general manner with enhanced flexibility in the
input representation to accommodate complex interpretation queries such as
“What is the piece-wise smooth part of the input signal that leads to its model
decision?”. Thereby, we reinterpret RDE as a simplification of the input signal,
which is interpretable to humans and adheres to a meaningful interpretation
query. The simplification is achieved by demanding sparsity in a suitable rep-
resentation system, which sparsely represents the class of explanations that are
desirable for the interpretation query.

CartoonX, a novel explanation method tailored to image classifiers: CartoonX
is the first explanation method to extract the relevant piece-wise smooth part of
an image instead of relevant pixel sparse regions. This is achieved by demanding
sparsity in the wavelet domain of images, where sparsity translates into piece-
wise smooth images. We demonstrate that our piece-wise smooth explanations
can reveal relevant piece-wise smooth patterns that are not easily visible with
existing pixel-based methods. Quantitatively, we also corroborate that CartoonX
achieves a lower distortion in the model output using fewer coefficients than other
state-of-the-art methods.

2 Related Work

The Rate-Distortion Explanation (RDE) framework was first introduced in [18],
and extended in [10], as a mathematically well-founded and intuitive explana-
tion framework. RDEs are model-agnostic explanations and inspired by rate-
distortion theory, which studies lossy-data compression. An explanation in RDE
consists of a relatively sparse mask over the input features, highlighting the rel-
evant set of features. The mask is optimized to produce low distortion in the
model output after applying perturbations to the unselected features in the in-
put while remaining relatively sparse. The authors of [10] also applied RDE to
non-canonical input representations to explain model decisions in challenging
domains such as audio classification [7] and radio-map estimation [16, 15]. The
explanation principle of optimizing a mask s ∈ [0, 1]n was first proposed by [8]
who explained image classification decisions by considering one of the two “dele-
tion games”: (1) optimizing for the smallest deletion mask that causes the class
score to drop significantly or (2) optimizing for the largest deletion mask that has
no significant effect on the class score. The original RDE approach [18] is based
on the second deletion game. We decided to work within the RDE framework,
due to its flexible mathematical formulation. However, we note that other viable
mask-based explanation frameworks such as RISE [23], which does not assume
access to the model gradient, exist. Other explanation methods developed by the
research community are typically either (1) gradient-based such as Smoothgrad
[30], Integrated Gradients [32], and Grad-CAM [26], (2) surrogate models such
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as LIME [24], (3) based on propagation of activations in neurons such as LRP
[1, 28], and DeepLIFT [28], (4) based on Shapely values from game-theory [17],
(6) concept-based such as Concept Activation Vectors [12], or (7) based on gen-
erative causal explanations [22]. Also related are methods that were developed
to explain individual neurons such as in [21, 6]. To our knowledge, all existing
explainability methods operate in pixel space and all methods looking for sparse
explanations demand sparsity in pixel space [18, 8, 2].

3 Background: RDE

In this section, we review the rate-distortion explanation (RDE) framework,
which was introduced by [18] and later extended by [10] by applying RDE to
non-canonical input representations. Suppose Φ : Rn → Rm is a pre-trained
model, e.g., a classifier (with m class labels) or a regression model (with m-
dimensional output), where n denotes the dimension of the model input. RDE
produces an explanation for a model decision Φ(x) with x ∈ Rn as a relatively
sparse mask s ∈ {0, 1}n marking the relevant input features in x. More precisely,
RDE aims to solve the following constrained optimization problem over a mask
s ∈ {0, 1}n:

min
s∈{0,1}n: ∥s∥0≤ℓ

E
v∼V

[
d
(
Φ(x), Φ(x⊙ s+ (1− s)⊙ v)

)]
(1)

where ⊙ denotes the Hadamard product (element-wise multiplication), d(Φ(x), ·)
is a measure of distortion (e.g., d(Φ(x), ·) = ∥Φ(x) − ·∥2), V is a distribution
over input perturbations v ∈ Rn, and ℓ ∈ {1, ..., n} is a given sparsity level for
the explanation mask s. A solution s∗ to the optimization problem (1) masks
relatively few components in the model input x that suffice to approximately
retain the model output Φ(x). This approach is in the spirit of rate-distortion
theory, which deals with lossy compression of data. Therefore, [18] coined such
explanations rate-distortion explanations (RDEs).

In practice, the RDE optimization problem is relaxed to continuous masks
s ∈ [0, 1]n solving:

min
s∈[0,1]n

E
v∼V

[
d
(
Φ(x), Φ(x⊙ s+ (1− s)⊙ v)

)]
+ λ ∥s∥1 (2)

In the relaxed optimization problem, the sparsity level of the mask is determined
by λ > 0 and an approximate solution can be found with stochastic gradient
descent in s ∈ [0, 1]n if Φ is differentiable. The authors of [18] applied the RDE
method as described above to image classifiers in the pixel domain of images,
where each mask entry si ∈ [0, 1] corresponds to the i-th pixel values. We refer
to this method as Pixel RDE throughout this work.

4 RDE Reformulated and Reinterpreted

Instead of applying RDE to the standard input representation x = [x1 . . . xn]
T ,

we can apply RDE to a different representation of x to answer a particular
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interpretation query. For example, consider a 1D-signal x ∈ Rn: if we ask “What
is the smooth part in the signal x that leads to the model decision Φ(x)?”, then
we can apply RDE in the Fourier basis of x. Since frequency-sparse signals are
smooth, applying RDE in the Fourier basis of x extracts the relevant smooth
part of the signal. To accommodate such interpretation queries, we reformulate
RDE in Section 4.1. Finally, based on the reformulation, we reinterpret RDE in
Section 4.2. Later in Section 5, we use our reformulation and reinterpretation of
RDE to derive and motivate CartoonX as a special case and novel explanation
method tailored towards image classifiers.

4.1 General Formulation

An input signal x = [x1, . . . , xn]
T is represented in a basis {b1, . . . , bn} as a linear

combination
∑n

i=1 hibi with coefficients [hi]
n
i=1. As we argued above and demon-

strate later on, some choices for a basis may be more suitable than others to
explain a model decision Φ(x). Therefore, we define the RDE mask not only on
the canonical input representation [xi]

n
i=1 but also on a different representation

[hi]
n
i=1 with respect to a choice of basis {b1, . . . , bn}. Examples of non-canonical

choices for a basis include the Fourier basis and the wavelet basis. This work
is centered around CartoonX, which applies RDE in the wavelet basis, i.e., a
linear data representation. Nevertheless, there also exist other domains and in-
terpretation queries where applying RDE to a non-linear data representation
can make sense (see the interpretation query “Is phase or magnitude more im-
portant for an audio classifier?” in [10]). Therefore, we formulate RDE in terms

of a data representation function f :
∏k

i=1 Rc → Rn, f(h1, . . . , hk) = x, which
does not need to be linear and allows to mask c channels in the input at once. In
the important linear case and c = 1, we have f(h1, . . . , hk) =

∑k
i=1 hibi, where

{bi, . . . , bk} ⊂ Rn are k fixed vectors that constitute a basis. The case c > 1
is useful when one wants to mask out several input channels at once, e.g., all
color channels of an image, to reduce the number of entries in the mask that will
operate on [hi]

k
i=1. In the following, we introduce the important definitions of

obfuscations, expected distortion, the RDE mask, and RDE’s ℓ1-relaxation, which
generalize the RDE framework of [18] to abstract input representations.

Definitions The first two key concepts in RDE are obfuscations and expected
distortions, which are defined below.

Definition 1 (Obfuscations and expected distortions). Let Φ : Rn → Rm

be a model and x ∈ Rn a data point with a data representation x = f(h1, ..., hk)
as discussed above. For every mask s ∈ [0, 1]k, let V be a probability distribution

over
∏k

i=1 Rc. Then the obfuscation of x with respect to s and V is defined as the
random vector y := f(s⊙h+(1− s)⊙ v), where v ∼ V, (s⊙h)i = sihi ∈ Rc and
((1− s)⊙ v)i = (1− si)vi ∈ Rc, for i ∈ {1, . . . , k}. A choice for the distribution
V is called obfuscation strategy. Furthermore, the expected distortion of x with
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respect to the mask s and the perturbation distribution V is defined as

D(x, s,V, Φ) := E
v∼V

[
d
(
Φ(x), Φ(y)

)]
,

where d : Rm ×Rm → R+ is a measure of distortion between two model outputs.

In the RDE framework, the explanation is given by a mask that minimizes dis-
tortion while remaining relatively sparse. The rate-distortion explanation mask
is defined as follows.

Definition 2 (The RDE mask). In the setting of Definition 1, we define the
RDE mask as a solution s∗(ℓ) to the minimization problem

min
s∈{0,1}k

D(x, s,V, Φ) s.t. ∥s∥0 ≤ ℓ, (3)

where ℓ ∈ {1, . . . , k} is the desired level of sparsity.

Geometrically, the RDE mask s is associated with a particular subspace.
The complement mask (1 − s) can be seen as selecting a large stable sub-
space of Φ, where each point represents a possible perturbation in unselected
coefficients in h. The RDE mask minimizes the expected distortion along its
associated subspace, which requires non-local information of Φ. We illustrate
this geometric view of RDE in Figure 1 with a toy example for a hypothetical
classifier Φ : R2 → Rm and two distinct input representations: (1) Euclidean
coordinates, i.e., f is the identity in x = f(h), and (2) polar coordinates, i.e.,
f(h) = (h2 cosh1, h2 sinh1) = x. In the example, we assume V to be a uniform
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Fig. 1: RDE for a hypothetical toy-example in (a) Euclidean coordinates and (b)
polar coordinates. Here, the RDE mask can find low expected distortion in polar
coordinates but not in Euclidean coordinates. Therefore, in this example, polar
coordinates are more appropriate to explain Φ(x), and RDE would determine
that the angle φ, not the magnitude r, is relevant for Φ(x).

distribution on [−1, 1]2 in the Euclidean representation and a uniform distri-
bution on [−π, π] × [0, 1] in the polar representation. The expected distortion
associated with the masks s = (1, 0) and s = (0, 1) is given by the red and green
shaded area, respectively. The RDE mask aims for low expected distortion, and
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hence, in polar coordinates, the RDE mask would be the green subspace, i.e.,
s = (0, 1). On the other hand, in Euclidean coordinates, neither s = (1, 0) nor
s = (0, 1) produces a particularly low expected distortion, making the Euclidean
explanation less meaningful than the polar explanation. The example illustrates
why certain input representations can yield more meaningful explanatory insight
for a given classifier than others—an insight that underpins our novel CartoonX
method. Moreover, the plot in polar coordinates illustrates why the RDE mask
cannot be simply chosen with local distortion information, e.g., with the lowest
eigenvalue of the Hessian of h 7→ d(Φ(x), Φ(f(h))): the lowest eigenvalue in polar
coordinates belongs to the red subspace and does not see the large distortion on
the tails.

As was shown by [18], the RDE mask from Definition 2 cannot be computed
efficiently for non-trivial input sizes. Nevertheless, one can find an approximate
solution by considering continuous masks s ∈ [0, 1]k and encouraging sparsity
through the ℓ1-norm.

Definition 3 (RDE’s ℓ1-relaxation ). In the setting of Definition 1, we define
RDE’s ℓ1-relaxation as a solution s∗(λ) to the minimization problem

min
s∈[0,1]k

D(x, s,V, Φ) + λ∥s∥1, (4)

where λ > 0 is a hyperparameter for the sparsity level.

The ℓ1-relaxation above can be solved with stochastic gradient descent (SGD)
over the mask s while approximatingD(x, s,V, Φ) with i.i.d. samples from v ∼ V.

Obfuscation Strategies An obfuscation strategy is defined by the choice of the
perturbation distribution V. Common choices are Gaussian noise [18, 8], blurring
[8], constants [8], and inpainting GANs [10, 2]. Inpainting GANs train a generator
G(s, z, h) (z denotes random latent factors) such that for samples v ∼ G(s, z, h)
the obfuscation f(s ⊙ h + (1 − s) ⊙ v) remains in the data manifold. In our
work, we refrain from using an inpainting GAN due to the following reason: it is
hard to tell whether a GAN-based mask did not select coefficients because they
are unimportant or because the GAN can easily inpaint them from a biased
context (e.g., a GAN that always inpaints a car when the mask shows a traffic
light). We want to explain a black-box method transparently, which is why we
opt for a simple distribution on the price of not accurately representing the
data distribution. We choose a simple and well-understood obfuscation strategy,
which we call Gaussian adaptive noise. It works as follows: Let A1, ..., Aj be a
pre-defined choice for a partition of {1, . . . , k}. For i = 1, ..., j, we compute the
empirical mean and empirical standard deviation for each Ai:

µi :=

∑
a∈Ai,t=1,...,da

hat∑
a∈Ai

da
, σi :=

√
1∑

a∈Ai
da

∑
a∈Ai,t=1,...,da

(µi − hat)2 (5)

The adaptive Gaussian noise strategy then samples vat ∼ N (µi, σ
2
i ) for all mem-

bers a ∈ Ai and channels t = 1, ..., da. We write v ∼ N (µ, σ2) for the resulting
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Gaussian random vector v ∈ ∏k
i=1 Rc. For Pixel RDE, we only use one set

A1 = {1, ..., k} for all k pixels. In CartoonX, which represents input signals
in the discrete wavelet domain, we partition {1, ..., k} along the scales of the
discrete wavelet transform.

Measures of distortion There are various choices for the measure of dis-
tortion d(Φ(x), Φ(y)). For example, one can take the squared distance in the
post-softmax probability of the predicted label for x, i.e., d

(
Φ(x), Φ(y)

)
:=(

Φj∗(x) − Φj∗(y)
)2
, where j∗ := argmaxi=1,...,m Φi(x) and Φ(x) is assumed to

be the post-softmax probabilities of a neural net. Alternatively, one could also
choose d(Φ(x), Φ(y)) as the ℓ2-distance or the KL-Divergence in the post-softmax
layer of Φ. In our experiments for CartoonX, we found that these choices had
no significant effect on the explanation (see Figure 8d).

4.2 Interpretation

The philosophy of the generalized RDE framework is that an explanation for
a decision Φ(x) on a generic input signal x = f(h) should be some simplified
version of the signal, which is interpretable to humans. The simplification is
achieved by demanding sparsity in a suitable representation system h, which
sparsely represents the class of explanations that are desirable for the interpre-
tation query. This philosophy is the fundamental premise of CartoonX, which
aims to answer the interpretation query “What is the relevant piece-wise smooth
part of the image for a given image classifier?”. CartoonX first employs RDE on
a representation system x = f(h) that sparsely represents piece-wise smooth im-
ages and finally visualizes the relevant piece-wise smooth part as an image back
in pixel space. In the following section, we explain why wavelets provide a suit-
able representation system in CartoonX, discuss the CartoonX implementation,
and evaluate CartoonX qualitatively and quantitatively on ImageNet.

5 CartoonX

The focus of this paper is CartoonX, a novel explanation method—tailored to
image classifications—that we obtain as a special case of our generalized RDE
framework formulated in Section 4. CartoonX first performs RDE in the discrete
wavelet position-scale domain of an image x, and finally, visualizes the wavelet
mask s as a piece-wise smooth image in pixel space. Wavelets provide optimal
representations for piece-wise smooth 1D functions [5], and represent 2D piece-
wise smooth images, also called cartoon-like images [14], efficiently as well [25].
In particular, sparse vectors in the wavelet coefficient space encode cartoon-like
images reasonably well [19]—certainly better than sparse pixel representations.
Moreover, wavelets constitute an established tool in image processing [20].

The optimization process underlying CartoonX produces sparse vectors in
the discrete wavelet coefficient space, which results in cartoon-like images as
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Input image x Representation h

Select `
entries with s
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Φ
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most relevant

entries

Fig. 2: CartoonX shares many interesting parallels to wavelet-based image com-
pression. Distortion is denoted as d, Φ is an image classifier, h denotes the discrete
wavelet coefficients, T is the discrete wavelet transform, and ℓ is the coefficient
budget.

explanations. This is the fundamental difference to Pixel RDE, which produces
rough, jittery, and pixel-sparse explanations. Cartoon-like images provide a nat-
ural model of simplified images. Since the goal of the RDE framework is to
generate an easy to interpret simplified version of the input signal, we argue
that CartoonX explanations are more appropriate for image classification than
Pixel RDEs. Previous work, such as Grad-CAM [26], produces smooth explana-
tions, which also avoid jittery explanations. CartoonX produces roughly piece-
wise smooth explanations and not smooth explanations, which we believe to be
more appropriate for images, since smooth explanations cannot preserve edges
well. Moreover, we believe that CartoonX enforces piece-wise smoothness in a
mathematically more natural manner than explicit smoothness regularization
(as in [9]) because wavelets sparsely represent piece-wise smooth signals well.
Therefore, CartoonX does not rely on additional smoothness hyperparameters.

CartoonX exhibits interesting parallels to wavelet-based image compression.
In image compression, distortion is minimized in the image domain, which is
equivalent to selecting the ℓ largest entries in the discrete wavelet transform
(DWT) coefficients. CartoonX minimizes distortion in the model output of Φ,
which translates to selecting the ℓ most relevant entries in the DWT coeffi-
cients. The objective in image compression is efficient data representation, i.e.,
producing minimal data distortion with a budget of ℓ entries in the DWT coef-
ficients. Conversely, in CartoonX, the objective is extracting the relevant piece-
wise smooth part, i.e., producing minimal model distortion with a budget of
ℓ entries in the DWT coefficients. We illustrate this connection in Figure 2—
highlighting once more the rate-distortion spirit of the RDE framework.
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Discrete

Wavelet Transform

Discrete Inverse

Wavelet Transform

Fig. 3: Visualization of the DWT coefficients for five scales. Three L-shaped
sub-images describe coefficients for details in vertical, horizontal, and diagonal
orientation at a particular scale. The largest sub-images (the outer L-shape)
belong to the lowest scale, i.e., the highest resolution. The smaller L-shaped
sub-images gradually build up to higher scales, i.e., lower resolution features.

5.1 Implementation

An image x ∈ [0, 1]n with c ∈ {1, 3} channels, k ∈ N pixels can be represented
in a wavelet basis by computing its DWT, which is defined by the number of
scales J ∈ {1, . . . , ⌊log2 k⌋}, the padding mode, and a choice of the mother
wavelet (e.g., Haar or Daubechies). For images, the DWT computes four types
of coefficients: details in (1) horizontal, (2) vertical, and (3) diagonal orientation
at scale j ∈ {1, . . . , J}, and (4) coefficients of the image at the very coarsest
resolution. We briefly illustrate the DWT for an example image in Figure 3.

CartoonX, as described in Algorithm 1, computes the RDE mask in the
wavelet domain of images. More precisely, for the data representation x = f(h),
we choose h as the concatenation of all the DWT coefficients along the channels,
i.e., hi ∈ Rc. The representation function f is then the discrete inverse wavelet
transform, i.e., the summation of the DWT coefficients times the DWT basis
vectors. We optimize the mask s ∈ [0, 1]k on the DWT coefficients [h1, . . . , hk]

T

to minimize RDE’s ℓ1-relaxation from Definition 3. For the obfuscation strategy
V, we use adaptive Gaussian noise with a partition by the DWT scale (see
Section 4.1), i.e., we compute the empirical mean and standard deviation per
scale. To visualize the final DWT mask s as a piece-wise smooth image in pixel
space, we multiply the mask with the DWT coefficients of the greyscale image
x̂ of x before inverting the product back to pixel space with the inverse DWT.
The pixel values of the inversion are finally clipped into [0, 1] as are obfuscations
during the RDE optimization to avoid overflow (we assume here the pixel values
in x are normalized into [0, 1]). The clipped inversion in pixel space is the final
CartoonX explanation.

5.2 Experiments

We compare CartoonX to the closely related Pixel RDE [18] and several other
state-of-the-art explanation methods, i.e., Integrated Gradients [32], Smooth-
grad [30], Guided Backprop [31], LRP [1], Guided Grad-CAM [27], Grad-CAM
[27], and LIME [24]. Our experiments use the pre-trained ImageNet classifiers
MobileNetV3-Small [11] (67.668% top-1 acc.) and VGG16 [29] (71.592% top-1
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Algorithm 1: CartoonX

Data: Image x ∈ [0, 1]n with c channels and k pixels, pre-trained classifier Φ.
Initialization: Initialize mask s := [1, ..., 1]T on
DWT coefficients h = [h1, ..., hk]

T with x = f(h), where f is the inverse DWT.
Choose sparsity level λ > 0, number of steps N , number of noise samples L,
and measure of distortion d.
for i← 1 to N do

Sample L adaptive Gaussian noise samples v(1), ..., v(L) ∼ N (µ, σ2);

Compute obfuscations y(1), ..., y(L) with y(i) := f(h⊙ s+ (1− s)⊙ v(i));
Clip obfuscations into [0, 1]n;

Approximate expected distortion D̂(x, s, Φ) :=
∑L

i=1 d(Φ(x), Φ(y
(i)))2/L;

Compute loss for the mask, i.e., ℓ(s) := D̂(x, s, Φ) + λ∥s∥1;
Update mask s with gradient descent step using ∇sℓ(s) and clip s back to
[0, 1]k;

end

Get DWT coefficients ĥ for greyscale image x̂ of x;

Set E := f(ĥ⊙ s) and finally clip E into [0, 1]k;

acc.). Images were preprocessed to have 256×256 pixel values in [0, 1]. Through-
out our experiments with CartoonX and Pixel RDE, we used the Adam optimizer
[13], a learning rate of ϵ = 0.001, L = 64 adaptive Gaussian noise samples, and
N = 2000 steps. Several different sparsity levels were used. We specify the spar-
sity level in terms of the number of mask entries k, i.e., by choosing the product
λk. Pixel RDE typically requires a smaller sparsity level than CartoonX. We
chose λk ∈ [20, 80] for CartoonX and λk ∈ [3, 20] for Pixel RDE. The obfusca-
tion strategy for Pixel RDE was chosen as Gaussian adaptive noise with mean
and standard deviation computed for all pixel values (see Section 4.1). We im-
plemented the DWT for CartoonX with the Pytorch Wavelets package, which
is compatible with PyTorch gradient computations, and chose the Daubechies
3 wavelet system with J = 5 scales and zero-padding. For the Integrated Gra-
dients method, we used 100 steps, and for the Smoothgrad method, we used 10
samples and a standard deviation of 0.1.

Interpreting CartoonX In order to correctly interpret CartoonX, we briefly
review important properties of the DWT. To cover a large area in an image
with a constant value or slowly and smoothly changing gray levels, it suffices
to select very few high-scale wavelet coefficients. Hence, for the wavelet mask
in CartoonX, it is cheap to cover large image regions with constant or blurry
values. Conversely, one needs many high-scale wavelet coefficients to produce fine
details such as edges in an image, so fine details are expensive for CartoonX.
Hence, the fine details present in the CartoonX are important features for the
outcome of the classifier, and fine image features that are replaced by smooth
areas in CartoonX are not important for the classifier. It is important to keep in
mind that the final CartoonX explanation is a visualization of the wavelet mask
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Input CartoonX

Sports car is visible in detail, thus relevant.
Dogs and SUV are blurred and not visible, thus not relevant.

Classifed as “sports car” by neural net.

Input CartoonX

Crowd is blurred and not visible, thus not relevant.
Player and basket are visible in detail, thus relevant.

Classifed as “basketball” by neural net.

Fig. 4: The CartoonX explanation is an image that suffices to retain the classifi-
cation decision. For the sports car, CartoonX blurs out the SUV and the dogs.
This means the dog and the SUV are irrelevant. For the basketball, the crowd
is blurred out. This means the crowd is not relevant since the player and the
basket with the crowd blurred out retains the classification as “basketball”. The
left example also shows that CartoonX is class-discriminative since it blurs out
the dogs and the SUV, which belong to other classes.

in pixel space, and should not be interpreted as a pixel-mask or ordinal pixel-
attribution. CartoonX is not a saliency-map or heatmap but an explanation that
is to be interpreted as an image that suffices to retain the classification decision.
We illustrate this point in Figure 4 with two examples.
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Fig. 5: (a) Each row compares CartoonX explanations of misclassifications by
MobileNetV3-Small. The predicted label is depicted next to each misclassified
image. (b) Comparing CartoonX explanations for VGG16 for three different
images of correctly classified snails.

Qualitative Evaluation In practice, explaining misclassifications is particu-
larly relevant since good explanations can pinpoint model biases and causes
for model failures. In Figure 5a, we illustrate how CartoonX can help explain
misclassified examples by revealing classifier-relevant piece-wise smooth patterns
that are not easily visible in other pixel-based methods. In the first row in Figure
5a, the input image shows a man holding a dog that was classified as a “diaper”.
CartoonX shows the man not holding a dog but a baby, possibly revealing that
the neural net associated diapers with babies and babies with the pose with
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which the man is holding the dog. In the second row, the input image shows
a dog sitting on a chair with leopard patterns. The image was classified as an
“Egyptian Cat”, which can exhibit leopard-like patterns. CartoonX exposes the
Egyptian cat by connecting the dog’s head to parts of the armchair forming a
cat’s torso and legs. In the last row, the input image displays the backside of a
man wearing a striped sweater that was classified as a “screw”. CartoonX reveals
how the stripe patterns look like a screw to the neural net.

Figure 5b further compares CartoonX explanations of correct classifications
by VGG16. We also compare CartoonX on random ImageNet samples in Figure
6a to provide maximal transparency and fair qualitative comparison. In Figure
6b, we also show failures of CartoonX. These are examples of explanations that
are not interpretable and seem to fail at explaining the model prediction. No-
tably, most failure examples are also not particularly well explained by other
state-of-the-art methods. It is challenging to state with certainty the underlying
reason for the CartoonX failures since there it is always possible that the neural
net bases its decision on non-interpretable grounds.
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(a) CartoonX on random samples.
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(b) Examples of CartoonX failures.

Fig. 6: On random Imagenet samples, CartoonX consistently produces inter-
pretable explanations. Established explanation methods tend to also be difficult
to interpret on CartoonX’s failure examples.

Quantitative Evaluation To compare CartoonX quantitatively against other
explanation methods, we computed explanations for 100 random ImageNet sam-
ples and ordered the image coefficients (for CartoonX the wavelet coefficients) by
their respective relevance score. Figure 7a plots the rate-distortion curve, i.e.,
the distortion achieved in the model output (measured as the ℓ2-norm in the
post-softmax layer) when keeping the most relevant coefficients and randomiz-
ing the others. We expect a good explanation to have the most rapid decaying
rate-distortion curve for low rates (non-randomized components), which is the
case for CartoonX. Note that the random baseline in the wavelet representation
is not inherently more efficient than the random baseline in the pixel represen-
tation. Moreover, Figure 7b plots the achieved distortion versus the fraction of
randomized relevant components. Here, we expect a good explanation to have
the sharpest early increase, which CartoonX again realizes. Lastly, Figure 7c
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Fig. 7: In (a) the best explanation exhibits steepest early decay. In (b) best
explanation exhibits sharpest early increase. In (c) best explanation exhibits
lowest distortion and lowest normalized ℓ1-norm of mask (i.e., highest sparsity).

plots the distortion and non-sparsity (measured as the normalized ℓ1-norm) of
the RDE mask for Pixel RDE and CartoonX at different λ values. The plot
underscores the efficiency advantage of CartoonX over Pixel RDE since Car-
toonX achieves lower distortion and higher sparsity throughout all λ values. For
all three plots, random perturbations were drawn from the adaptive Gaussian
distribution described in Section 4.1.

Sensitivity to Hyperparameters We compare qualitatively CartoonX’s sen-
sitivity to its primary hyperparameters. Figure 8a plots CartoonX explanations
and Pixel RDEs for increasing λ. We conistently find that CartoonX is less sensi-
tive than Pixel RDE to λ. In practice, this means one can find a suitable λ faster
for CartoonX than for Pixel RDE. Note that for λ = 0, Pixel RDE is entirely
yellow because the mask is initialized as s = [1 . . . 1]T and λ = 0 provides no in-
centive to make s sparser. For the same reason, CartoonX is simply the greyscale
image when λ = 0. Figure 8b plots CartoonX explanations for two choices of V:
(1) Gaussian adaptive noise (see Section 4.1) and (2) constant zero perturba-
tions. We observe that the Gaussian adaptive noise gives much more meaningful
explanations than the simple zero baseline perturbations. Figure 8d plots Car-
toonX explanations for four choices of d(Φ(x), Φ(y)), where x is the original
input, y is the RDE obfuscation, and Φ outputs post-softmax probabilities: (1)
squared ℓ2 in probability of predicted label j∗, (2) d(Φ(x), ·) = ∥Φj∗(x)−1∥, i.e.,
distance that maximizes probability of predicted label, (3) ℓ2 in post-softmax,
(4) KL-Divergence in post-softmax. We do not observe a significant effect by the
distortion measure on the explanation. Finally, in Figure 8c we compare the ef-
fect of the mother wavelet in the DWT on the CartoonX explanation. All choices
of mother wavelets (labeled as in the Pytorch Wavelets package) provide consis-
tent explanations except for the Haar wavelet, which produces images built of
large square pixels.

Limitations For MobileNetV3-Small, an image of 256 × 256 pixels, 16 noise
samples, and 2000 optimization steps, we reported a runtime of 45.10s for Car-
toonX and 34.09s for Pixel RDE on the NVIDIA Titan RTX GPU. CartoonX
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Fig. 8: (a) Top row depicts CartoonX, and the bottom row depicts Pixel RDE,
for increasing values of λ. CartoonX for different (b) perturbation distributions,
(c) mother wavelets, (d) distortion measures.

is only slightly slower than Pixel RDE. However, like other perturbation-based
methods, CartoonX is significantly slower than gradient or propagation-based
methods, which only compute a single or few forward and backward passes and
are very fast (Integrated Gradients computes an explanation in 0.48s for the same
image, model, and hardware). We acknowledge that the runtime for CartoonX
in its current form constitutes a considerable limitation for many critical appli-
cations. However, we are confident that we can significantly reduce the runtime
in future work by either learning a strong initial wavelet mask with a neural net
or even learning the final wavelet mask with a neural net, similar to the real time
image saliency work in [3]. Finally, solving RDE’s ℓ1-relaxation requires access
to the model’s gradients. Hence, CartoonX is limited to differentiable models.

6 Conclusion

CartoonX is the first explanation method for differentiable image classifiers based
on wavelets. We corroborated experimentally that CartoonX can reveal novel
explanatory insight and achieves a better rate-distortion than state-of-the-art
methods. Nonetheless, CartoonX is still computationally quite expensive, like
other perturbation-based explanation methods. In the future, we hope to devise
new techniques to speed up the runtime for CartoonX and study the effect of
using inpainting GANs for perturbations. We believe CartoonX is a valuable new
explanation method for practitioners and potentially a great source of inspiration
for future explanation methods tailored to specific data domains.
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