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A. Proof of Proposition 1

Proposition 1. Given a trained model fs = hs ◦ gs, where gs is the feature
extractor and hs is the one-layer classifier, the ℓ2-normalized weight vectors
{wreal

s ,wfake
s } of the classifier are the equivalent representation of the feature

embeddings {zreals , zfakes } of the source prototypes for calculating the supervised
contrastive loss.

Proof. Given the input data {xreal
S ,xfake

S }, we obtain the ℓ2-normalized feature

embeddings {zreals , zfakes } as zreals = gs(x
real
S ) and zfakes = gs(x

fake
S ). zreals and

zfakes are then fed into the one-layer classifier hs to produce [zreals ·wreal
s , zreals ·

wfake
s ] and [zfakes ·wreal

s , zfakes ·wfake
s ], respectively. Here, · represents the inner

product of two vectors. The BCE loss is formulated as

LBCE = − log
exp(zreals ·wreal

s )

exp(zreals ·wreal
s ) + exp(zreals ·wfake

s )

− log
exp(zfakes ·wfake

s )

exp(zfakes ·wreal
s ) + exp(zfakes ·wfake

s )
. (S-1)

When the training on the source data converges, LBCE approaches the minimum.
We assume that

− log
exp(zreals ·wreal

s )

exp(zreals ·wreal
s ) + exp(zreals ·wfake

s )
< ϵ1 (S-2a)

− log
exp(zfakes ·wfake

s )

exp(zfakes ·wreal
s ) + exp(zfakes ·wfake

s )
< ϵ2 (S-2b)

Equations (S-2a) and (S-2b) can be rewritten as{
log[1 + exp(zreals ·wfake

s − zreals ·wreal
s )] < ϵ1 (S-3a)

log[1 + exp(zfakes ·wreal
s − zfakes ·wfake

s )] < ϵ2 (S-3b)
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Note that zreals , zfakes , wreal
s , and wfake

s have unit ℓ2-norm. We obtain |zκs | = 1,
|wκ

s | = 1 and zκs · wκ
s ∈ [−1, 1]. Here | · | denotes the ℓ2-norm and κ indicates

real or fake. As the training on the source data converges, ϵ1 → log(1 + e−2)
and ϵ2 → log(1 + e−2). From Equations (S-3a) and (S-3b),{

zreals ·wfake
s − zreals ·wreal

s < log(eϵ1 − 1) (S-4a)

zfakes ·wreal
s − zfakes ·wfake

s < log(eϵ2 − 1) (S-4b)

Equivalently, we obtain that{
−1− log(eϵ1 − 1) ≤ zreals ·wreal

s ≤ 1 (S-5a)

−1− log(eϵ2 − 1) ≤ zfakes ·wfake
s ≤ 1 (S-5b)

Without loss of generality, we calculate the supervised contrastive loss for
the real face in the target domain (with the weight vector of the classifier or the
feature vector of the source data).

LSCL(zs) = − log
exp(zrealt · zreals /τ)

exp(zrealt · zreals /τ) + exp(zrealt · zfakes /τ)
, (S-6)

and

L′
SCL(ws) = − log

exp(zrealt ·wreal
s /τ)

exp(zrealt ·wreal
s /τ) + exp(zrealt ·wfake

s /τ)
, (S-7)

where LSCL(zs) is the supervised loss associated with the feature vector of source
data and L′

SCL(ws) is the supervised loss associated with the weight vector of
classifier. In the rest of this section, we prove that i) LSCL(zs) is equivalent to
L′

SCL(ws), ii) ∇zt
L′

SCL(ws) and ∇zt
LSCL(zs) have the same direction, and iii)

|∇ztL′
SCL(ws)| is equivalent to |∇ztLSCL(zs)|.

i) LSCL(zs) is equivalent to L′
SCL(ws).

According to Equations (S-6) and (S-7), we consider |zrealt ·zreals −zrealt ·wreal
s |

and |zrealt · zfakes − zrealt ·wfake
s | to compare LSCL(zs) and L′

SCL(ws).

|zrealt · zreals − zrealt ·wreal
s | ≤ |zrealt | · |zreals −wreal

s | = |zreals −wreal
s |, (S-8)

and

|zrealt · zfakes − zrealt ·wfake
s | ≤ |zrealt ||zfakes −wfake

s | = |zfakes −wfake
s |. (S-9)

From Equations (S-5a) and (S-5b), we obtain that

|zreals −wreal
s |2 = 2− 2 · zreals ·wreal

s ≤ 4 + 2 log(eϵ1 − 1), (S-10)

and

|zfakes −wfake
s |2 = 2− 2 · zfakes ·wfake

s ≤ 4 + 2 log(eϵ2 − 1). (S-11)
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Let us define {
γ1 ≜

√
4 + 2 log(eϵ1 − 1) ≥ |zreals −wreal

s | (S-12a)

γ2 ≜
√
4 + 2 log(eϵ2 − 1) ≥ |zfakes −wfake

s | (S-12b)

For simplicity, we denote A ≜ zrealt · zfakes , B ≜ zrealt · zreals , A′ ≜ zrealt ·wfake
s ,

and B′ ≜ zrealt ·wreal
s . Equations (S-6) and (S-7) can be rewritten as{

LSCL(zs) = log[1 + e(A−B)/τ ] (S-13a)

L′
SCL(ws) = log[1 + e(A

′−B′)/τ ] (S-13b)

From Equations (S-8)–(S-12b), we obtain that

|A−A′| ≤ γ2, |B −B′| ≤ γ1. (S-14)

Consequently, we have {
A− γ2 ≤ A′ ≤ A+ γ2 (S-15a)

B − γ1 ≤ B′ ≤ B + γ1 (S-15b)

Therefore,

A−B − γ1 − γ2 ≤ A′ −B′ ≤ A−B + γ1 + γ2 (S-16)

Considering that f(x) = log(1 + e
x
τ ) is monotonically increasing for τ > 0, we

have

log
(
1 + e

A−B
τ e

−γ1−γ2
τ

)
≤ log

(
1 + e

A′−B′
τ

)
≤ log

(
1 + e

A−B
τ e

γ1+γ2
τ

)
(S-17)

Now we calculate the ratio η of LSCL(zs) and L′
SCL(ws).

η =
LSCL(zs)

L′
SCL(ws)

=
log[1 + e(A−B)/τ ]

log[1 + e(A′−B′)/τ ]
(S-18)

According to Equation (S-17), we obtain that

log[1 + e
(A−B)

τ ]

log[1 + e
(A′−B′)

τ ]
≤ log[1 + e

(A−B)
τ ]

log[1 + e
(A−B)

τ e
(−γ1−γ2)

τ ]

≤ log[1 + e
(A−B)

τ ]

log[e
(−γ1−γ2)

τ + e
(A−B)

τ e
(−γ1−γ2)

τ ]
=

log[1 + e
(A−B)

τ ]

log[1 + e
(A−B)

τ ] + −γ1−γ2

τ

. (S-19)

Let us denote C = log[1 + e
(A−B)

τ ]. From Equation (S-19),

log[1 + e
(A−B)

τ ]

log[1 + e
(A′−B′)

τ ]
≤ C

C + −γ1−γ2

τ

= 1 +
γ1 + γ2

τC − γ1 − γ2
. (S-20)
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Similarly, we can obtain that

log[1 + e
(A−B)

τ ]

log[1 + e
(A′−B′)

τ ]
≥ 1− γ1 + γ2

τC + γ1 + γ2
. (S-21)

From Equations (S-20) and (S-21), we obtain that

1− γ1 + γ2
τC + γ1 + γ2

≤ η ≤ 1 +
γ1 + γ2

τC − γ1 − γ2
(S-22)

When γ1 → 0 and γ2 → 0, we have 1 − γ1+γ2

τC+γ1+γ2
→ 1 and 1 + γ1+γ2

τC−γ1−γ2
→ 1.

According to the Sandwich Theorem, we have η → 1. Therefore, LSCL(zs) is
equivalent to L′

SCL(ws) when sufficiently trained.
ii) ∇zt

LSCL(zs) and ∇zt
LSCL(ws) have the same direction.

Since ∇zt
LSCL(zs) ∝ (zfakes − zreals ) and ∇zt

LSCL(ws) ∝ (wfake
s − wreal

s ),
the inner product of ∇zt

LSCL(zs) and ∇zt
LSCL(ws) is proportional to

(zfakes − zreals ) · (wfake
s −wreal

s ) =zfakes ·wfake
s − zfakes ·wreal

s

− zreals ·wfake
s + zreals ·wreal

s . (S-23)

According to Equations (S-4a) and (S-4b), we have

(zfakes − zreals ) · (wfake
s −wreal

s ) ≥ − log(eϵ1 − 1)− log(eϵ2 − 1). (S-24)

Since |zfakes − zreals | ≤ |zfakes | + |zreals | = 2 and |wfake
s − wreal

s | ≤ |wfake
s | +

|wreal
s | = 2, we have

cos θ =
(zfakes − zreals ) · (wfake

s −wreal
s )

|zfakes − zreals | · |wfake
s −wreal

s |
≥ − log(eϵ1 − 1)− log(eϵ2 − 1)

4

= 1− 1

8
(γ2

1 + γ2
2). (S-25)

As γ1 → 0 and γ2 → 0, cos θ → 1. This result demonstrates the gradients of the
two losses are in the same direction.
iii) |∇zt

L′
SCL(ws)| is equivalent to |∇zt

LSCL(zs)|.
The gradients |∇ztL′

SCL(ws)| and |∇ztLSCL(zs)| can be calculated as

∇ztLSCL(zs) =
e

A−B
τ

1 + e
A−B

τ

1

τ
(zfakes − zreals ), (S-26)

and

∇zt
L′

SCL(ws) =
e

A′−B′
τ

1 + e
A′−B′

τ

1

τ
(wfake

s −wreal
s ). (S-27)

We further compare |wfake
s −wreal

s |2 and |zfakes − zreals |2.

|wfake
s −wreal

s |2 − |zfakes − zreals |2 =|wfake
s |2 + |wreal

s |2 − |zfakes |2 − |zreals |2

+ 2(zfakes · zreals −wfake
s ·wreal

s ) (S-28)
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Since |wfake
s | = |wreal

s | = |zfakes | = |zreals | = 1,

|wfake
s −wreal

s |2 − |zfakes − zreals |2 = 2(zfakes · zreals −wfake
s ·wreal

s ). (S-29)

Supposing that zfakes = wfake
s + ζ1 and zreals = wreal

s + ζ2, we have |ζ1| ≤ γ1 and
|ζ2| ≤ γ2 from Equations (S-12a) and (S-12b). Then, we obtain the equivalent
form as

|wfake
s −wreal

s |2 − |zfakes − zreals |2 = 2(ζ1 ·wreal
s + ζ2 ·wfake

s + ζ1 · ζ2). (S-30)

In Equation (S-30), −|ζ1||wreal
s | ≤ ζ1 · wreal

s ≤ |ζ1||wreal
s |, −|ζ2||wfake

s | ≤ ζ2 ·
wfake

s ≤ |ζ2||wfake
s |, and −|ζ1||ζ2| ≤ ζ1 · ζ2 ≤ |ζ1||ζ2|. Thus,

−2(|ζ1||wreal
s |+ |ζ2||wfake

s |+ |ζ1||ζ2|) ≤ |wfake
s −wreal

s |2 − |zfakes − zreals |2

≤ 2(|ζ1||wreal
s |+ |ζ2||wfake

s |+ |ζ1||ζ2|)
(S-31)

According to Equations (S-12a) and (S-12b), when γ1 → 0 and γ2 → 0, |ζ1| → 0
and |ζ2| → 0. From Equation (S-31), |zfakes −zreals | → |wfake

s −wreal
s |, as γ1 → 0

and γ2 → 0. Therefore, |∇zt
L′

SCL(ws)| is equivalent to |∇zt
LSCL(zs)|.

From i)–iii), we conclude that the weight vector of the pre-trained classifier
is the equivalent representation of the feature embeddings for the supervised con-
trastive loss.

B. Source Model Architecture

Our SDA-FAS leverages the vision transformer based architecture as the pre-
trained source model. Specifically, the vision transformer encoder is employed
for feature encoding. Based on the output visual tokens, a convolution layer and a
linear layer are cascaded for feature embedding, and subsequently, a single-layer
linear classifier is used for classification. Vision transformer (ViT) [3] flattens and
tokenizes 2D images into a sequence of embeddings. A trainable linear projection
E projects the flattened patches into patch embeddings, which then concatenate
with learnable 1-D position embeddings Epos. For an input image I ∈ RH×W×C ,
the tokenized sequence of embeddings is

z0 =
[
Iclass ; I

1E; I2E; · · · ; INE
]
+Epos. (S-32)

Iclass is a learnable class embedding and Ii represents the i-th patch of I. Given
the patch size P × P , the number of patches is N = HW/P 2. The transformer
encoder consists of L blocks of one multi-head self-attention (MSA) and one
multi-layer perceptron (MLP) following one layer normalization (LN) respec-
tively. For ℓ = 1 . . . L, a Transformer encoder block processes as:

z′ℓ = MSA(LN (zℓ−1)) + zℓ−1,

zℓ = MLP (LN (z′ℓ)) + z′ℓ,
(S-33)
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Table S-1. HTER(%) and AUC(%) for multi-source domains cross-dataset test with
four testing scenarios for different pre-trained source models, i.e., our SDA-FAS, vanilla
vision transformer architecture and CNNs based ResNet-50 architecture. ↓ indicates
the performance gain, i.e., HTER reduction, after adaptation.

Pre-trained
Models Methods

O&C&I→M O&M&I→C O&C&M→I I&C&M→O
HTER(%)AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

Lv et al. [7]
SourceOnly 19.28 - 27.77 - 23.58 - 18.22 -
After adaptation18.17↓1.11 - 25.51↓2.26 - 20.04↓3.54 - 17.50↓0.72 -

Vanilla ViT [3]
SourceOnly 14.58 94.44 21.11 87.88 21.25 81.81 21.67 86.59
After adaptation 7.92↓6.66 96.28 7.22↓13.89 96.54 7.75↓13.50 95.48 9.17↓12.50 97.12

ResNet-50 [4]
SourceOnly 20.42 86.13 16.67 92.05 23.75 84.39 21.60 86.55
After adaptation16.25↓4.17 88.77 3.52↓13.15 99.08 10.12↓13.63 96.24 12.74↓8.86 93.81

SDA-FAS
SourceOnly 12.50 93.71 20.00 90.53 16.25 90.99 17.26 91.80
After adaptation 5.00↓7.50 97.96 2.40↓17.60 99.72 2.62↓13.63 99.48 5.07↓12.19 99.01

Table S-2. A summary of the FAS datasets used in our experiments.

Datasets Subjects Data Sensors Spoof Types

Idiap Replay-Attack (I) [2] 50 1,200 videos 2 1 Print, 2 Video-replay
OULU-NPU (O) [1] 55 4,950 videos 6 2 Print, 2 Video-replay
CASIA-MFSD (C) [12] 50 600 videos 3 2 Print, 1 Video-replay
MSU-MFSD (M) [10] 35 280 videos 2 1 Print, 2 Video-replay
CelebA-Spoof (CA) [11] 10177 625,537 images >10 3 Print, 3 Replay, 3 Paper Cut, 1 3D Mask

The output tokens of transformer encoder are zL = [zcL; z
1
L; z

2
L; · · · ; zNL ],

where zcL is the class token and z1L, z
2
L, · · · , zNL represent the visual tokens. Here,

we leverage visual tokens that contain meaningful representations of live/spoof
features extracted from local image patches, rather than the class token. We
reshape the matrix of visual tokens into a spatial feature map Z ∈ RH′×W ′×D

with H ′W ′ = N . Z is then fed into a feature embedding head consisting of
one convolution layer with batch normalization and ReLU activation (denoted
by Conv-BN-ReLU(·)) and one linear layer (denoted by Linear(·)) to obtain the
feature embeddings as

z = ℓ2-norm(Linear(Conv-BN-ReLU(Z))). (S-34)

Then a one-layer linear classifier with weight normalization is leveraged for pre-
dicting real/fake as ỹ = Linear(z). By contrast, the vanilla ViT only employs a
linear classifier based on the class token as ỹ = Linear(zcL).

C. Extensive Experiments

Different Pre-trained Source Models. To further demonstrate the proposed
adaptation framework is effective for various source models, we conduct exper-
iments with two additional pre-trained source models, i.e., vanilla vision trans-
former architecture [3] (abbreviated as vanilla ViT) and CNN architecture of
ResNet-50 [4] (abbreviated as ResNet-50). As shown in Table S-1, the proposed
framework can significantly improve the performance of pre-trained models after



Source-Free Domain Adaptation for Face Anti-Spoofing 7

Table S-3. Ablation study for patch shuffle (PS) data augmentation.

Protocols
O&C&I→M O&M&I→C O&C&M→I I&C&M→O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
Ours SDA-FAS 5.00 97.96 2.40 99.72 2.62 99.48 5.07 99.01

Ours SDA-FAS w/o PS 5.42 97.96 3.33 99.26 3.75 99.36 5.56 98.40

(a) O&M&I→C (b) O&C&M→I

Fig. S-1. HTER (%) with different confidence threshold γ.

adaptation, including the vision transformer and CNN based architectures. This
result demonstrates that our SDA-FAS is universally effective for different pre-
trained models. Remarkably, adaptation with SDA-FAS achieves a significant
HTER reduction of 12.72% on average. Implemented with the proposed frame-
work, vanilla ViT and ResNet-50 also achieve considerable performance gains,
i.e., 11.64% and 9.95% HTER reduction on average, respectively. Considering
the benefits on both vanilla ViT and ResNet-50, we believe that SDA-FAS can be
further boosted with a more robust source model and well-designed pre-training
strategy. By contrast, Lv et.al [7] suffer from poor adaptation performance, i.e.,
a trivial 1.90% HTER reduction, as the adaptation is achieved with direct self-
training on noisy pseudo labels without a specific design for sufficiently exploring
FAS tasks.

Patch-shuffle data augmentation. We further conduct experiments on
our SDA-FAS without patch shuffle data augmentation. Without the FAS spe-
cific patch shuffle data augmentation, our method suffers from the performance
degradation.

The confidence threshold. We evaluate different values of γ from 0.90 to
0.99. Fig. S-1 shows the value of 0.95 achieves the lowest HTER. γ controls the
trade-off between the quality and quantity of pseudo labels. A larger γ leads to
higher accuracy of pseudo labels for unlabeled target data but a smaller amount
of unlabeled data contributing to training. We find the best trade-off is achieved
when γ is 0.95. The quality of pseudo labels is low when γ is 0.90 and the
quantity is small for γ=0.99.
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SDA-FAS w/o TSE

SDA-FAS

Real Real Real Real Real

Fake Fake Fake Fake Fake

3D Mask 
Spoofing

Fig. S-2. Qualitative analysis of 3D mask attack types on CelebA-Spoof [11]. ’Real’

and ’Fake’ denote the predicted results from the models.$ indicates a wrong prediction
and " indicates a correct prediction.

D. Visualization

Qualitative analysis for validating the effectiveness of the target self-supervised
exploration (TSE) module is conducted by visualizing examples of hard 3D mask
spoofing faces, which are misclassified by SDA-FAS w/o TSE but correctly clas-
sified by SDA-FAS. As shown in Table S-2, SDA-FAS can correctly identify the
fake 3D mask faces, while SDA-FAS w/o TSE fails. This fact demonstrates the
effectiveness of TSE for exploring novel attack types in the target data by itself.

E. Datasets

Experiments are conducted on five publicly available datasets: Idiap Replay-
Attack [2] (denoted as I), OULU-NPU [1] (denoted as O), CASIA-MFSD [12]
(denoted as C), MSU-MFSD [10] (denoted as M) and CelebA-Spoof [11] (denoted
as CA). Basic information of these datasets is summarized in Table S-2.

– Idiap Replay-Attack (abbr. I) captures all live and spoof faces from 50
clients under two different lighting conditions in 1,200 videos. Five attack
types consist of four kinds of replayed faces and one kind of printed face.

– OULU-NPU (abbr. O) is a high-resolution dataset with 3,960 spoof face
videos and 990 live face videos, containing two kinds of printed spoof faces
and two kinds of replayed spoof faces captured under six cameras and three
sessions.

– CASIA-MFSD (abbr. C) consists of 50 subjects and each subject has 12
videos. Three attack types (printed photo attack, cut photo attack, and video
attack) are used to create spoof faces, and each face image is recorded with
three kinds of imaging qualities.

– MSU-MFSD (abbr. M) consists of totally 280 videos for 35 subjects under
two different cameras. Three spoof types include two kinds of replayed faces
and one kind of printed face.

– CelebA-Spoof (abbr. CA) is the current largest scale FAS dataset with rich
and diverse annotations, which comprises 625,537 pictures of 10,177 subjects
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Table S-4. Configuration of training hyper-parameters.

Phases Source Pretraining Target Adaptation

Epochs 30 60

Feature Embedding Head & Classifier

Optimizer SGD SGD
Learning rate 1e-3 1e-4
Weight decay 5e-4 5e-4
Momentum 0.9 0.9

Vision Transformer Encoder

Optimizer AdamW AdamW
Learning rate 1e-4 5e-5

covering four spoofing types (i.e., print, paper-cut, replay, and 3D mask) cap-
tured under eight scenes.

F. Implementation Details

For pre-training on the source domain, we employ DeiT-S [9] pre-trained on
ImageNet as the transformer encoder. Since the original input size for the trans-
former encoder is 224×224, we conduct the bilinear interpolation of the posi-
tional embedding. We randomly specify a 0.9/0.1 train-validation split in the
source dataset and generate the optimal pre-trained model based on the HTER
of the validation set after 30 epochs of training.

For adapting on the target domain, the trainable vision transformer encoder
is fine-tuned by the AdamW [6] optimizer. The feature embedding head and the
classifier are fine-tuned by the SGD optimizer. The temperature τ for supervised
contrastive loss is set to 0.1, and the temperature η for self-supervised learning
is set to 0.1. The confidence threshold γ is 0.95. Network and center momentum
rates are set to l = 0.999 and m = 0.9, respectively. The maximum number of
the training epoch is 60. Other training hyper-parameters of the pre-training
phase and target adaptation phase are listed in Table S-4.

Following [5,8], we use the training/test split provided by the original dataset,
i.e., 120/160 videos for M, 360/480 videos for I, 240/360 videos for C, 1800/1800
videos for O and 500,429/62,553 images for CA. For M, I, C and O, We perform
adaptation using unlabeled target training set and evaluate on the test set.

G. Main Algorithms

Our SDA-FAS contains two phases: source pre-training phase on the company
side and target adaptation phase on the deployment side, as elaborated in Al-
gorithms 1 and 2 , respectively. After source pre-training, the pre-trained source
model is provided for deployment and adapted with few unlabeled target data.
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Algorithm 1 Source Model Pre-Training

Require: Source domain dataset DS = {xS ,yS}, maximum number of training epochs
NS , feature extractor gs composed of a pre-trained transformer encoder and a
randomly initialized feature embedding head with a convolutional layer and a linear
layer, and a randomly initialized one-layer linear classifier hs with ℓ2-normalized
weights.

Ensure: Pre-trained source model fs = hs ◦ gs.
1: Randomly split the dataset DS into training set Dtrain

S and validation set Dval
S by

the ratio of 0.9 to 0.1.
2: Initialize the best HTER with HTERbest = 1.
3: for epoch = 1 to NS do
4: Obtain the model output ỹtrain

S = fs(x
train
S ).

5: Calculate the loss Lce = BCE(ỹtrain
S ,ytrain

S ).
6: Update the parameters of fs(·) via Lce.
7: Evaluate fs(·) on Dval

S to obtain HTERcurrent

8: if HTERcurrent ≤ HTERbest then
9: Save fs(·) as the best model.
10: Update HTERbest = HTERcurrent.
11: end if
12: end for
13: return Pre-trained source model fs = hs ◦ gs.
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Algorithm 2 Target Adaptation for Face Anti-Spoofing

Require: Fixed pre-trained source model fs = hs ◦ gs, unlabeled target domain train-
ing dataset DT = {xT }, maximum number of training epochs NT , update period
of pseudo labels nT , trainable target networks {gt, gteat , ht2s}, temperature τ and
γ, confidence threshold γ, center C, network momentum rate l, center momentum
rate m, loss balanced parameters α, λ1 and λ2.

Ensure: Target model ft = ht ◦ gt.
1: Initialization: Freeze the classifier ht = hs and htea

t = hs, and copy the param-
eters from hs to ht2s as initialization. Initialize the feature extractor gt and gteat

with the parameters of gs.
2: for epoch = 1 to NT do
3: Given an original image xT , a patch-permuted image x′

T = augment(xT ) is
generated by randomly patch shuffle.

4: Calculate the source-oriented pseudo labels ys
T = argmax(hs(gs(xT ))) and the

prediction confidence csT = max(hs(gs(xT ))).
5: if epoch % nT == 0 then
6: Calculate the target-oriented pseudo labels yt

T = argmax(ht(gt(xT ))) and the
prediction confidence ctT = max(ht(gt(xT ))).

7: end if
8: Calculate the feature embeddings zt = gt(xT ).
9: Calculate the contrastive domain alignment loss LCDA via Equation (4).
10: Calculate the model output ỹt2s = ht2s(gt(xT )) and ỹt = ht(gt(xT )).
11: Calculate the loss of self-training with source regularization LSSR via Equa-

tion (3).
12: Calculate the output probability distributions of the student and teacher network

Pstu, P
′
tea, P

′
stu, Ptea via Equation (5).

13: Calculate the output of the teacher network as ỹtea = f tea
t (xT ) and ỹ′tea =

f tea
t (x′

T )
14: Calculate the target self-supervised exploration loss LTSE via Equation (6).
15: Obtain the overall loss L via Equation (7).
16: Update the parameters of the module gt, ht2s via L by gradient descent.
17: Update the parameters of the teacher network via EMA: gteat .params = l ∗

gteat .params + (1− l) ∗ gt.params
18: Update C = mC+ (1−m)(ỹtea + ỹ′tea)/2.
19: end for
20: return Target model ft = gt ◦ ht.
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