
AgeTransGAN for Facial Age Transformation
with Rectified Performance Metrics

Gee-Sern Hsu, Rui-Cang Xie, Zhi-Ting Chen, and Yu-Hong Lin

National Taiwan University of Science and Technology, Taipei, Taiwan
{jison,m10703430,m10803432,m10903430}@mail.ntust.edu.tw

Abstract. We propose the AgeTransGAN for facial age transformation
and the improvements to the metrics for performance evaluation. The
AgeTransGAN is composed of an encoder-decoder generator and a con-
ditional multitask discriminator with an age classifier embedded. The
generator considers cycle-generation consistency, age classification and
cross-age identity consistency to disentangle the identity and age char-
acteristics during training. The discriminator fuses age features with the
target age group label and collaborates with the embedded age classifier
to warrant the desired target age generation. As many previous work use
the Face++ APIs as the metrics for performance evaluation, we reveal
via experiments the inappropriateness of using the Face++ as the met-
rics for the face verification and age estimation of juniors. To rectify the
Face++ metrics, we made the Cross-Age Face (CAF) dataset which con-
tains 4000 face images of 520 individuals taken from their childhood to
seniorhood. The CAF is one of the very few datasets that offer far more
images of the same individuals across large age gaps than the popular
FG-Net. We use the CAF to rectify the face verification thresholds of
the Face++ APIs across different age gaps. We also use the CAF and
FFHQ-Aging datasets to compare the age estimation performance of the
Face++ APIs and an age estimator that we made, and propose rectified
metrics for performance evaluation. We compare the AgeTransGAN with
state-of-the-art approaches by using the existing and rectified metrics.

1 Introduction

Facial age transformation refers to the generation of a new face image for an
input face such that the generated face is the same identity as the input but at
the age specified by the user. Facial age transformation is an active research topic
in the fields of computer vision [1,5,23,13,17]. It is a challenging task due to the
intrinsic complexity of the facial appearance variation caused by the physical
aging process, which can be affected by physical condition, gender, race and
other factors [4]. It has received increasing attention in recent years because of
the effectiveness of the GANs [11,13,17,5,1], the availability of large facial age
datasets and application potentials. It can be applied in the entertainment and
cinema industry, where an actor’s face often needs to appear in a younger or
older age. It can also be applied to find missing juniors/seniors as the pictures
for reference can be years apart.
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Many approaches have been proposed in recent years [1,5,11,23,13,17]. How-
ever, many issues are yet to be addressed. The performance of the approaches
is usually evaluated by target age generation and identity (ID) preservation.
The former measures if the generated facial age reaches the target age, and the
latter measures if the identity is kept well after the transformation. The best
compromise between target age generation and ID preservation is hard to define
because facial appearance does not change much across a small age gap, but
it can change dramatically across a large age gap. For ID preservation, many
approaches use a pretrained face model to make the generated face look similar
to the input source [1,24,23], which constrains the age trait generation on the
target face. Another big issue is the metrics for a fair performance evaluation.
Many handle this issue by using a commercial software, e.g., the Face++ APIs
[8], which is a popular choice [13,24,12]. Some turn to manual evaluation via a
crowd-sourcing platform [17]. Some use proprietary age estimation models [6].
We address most of the above issues in this paper.

We propose the AgeTransGAN to handle bidirectional facial age transfor-
mation, i.e., progression and regression. The AgeTransGAN is composed of an
encoder-decoder generator and a conditional multitask discriminator with an
age classifier embedded. The generator explores cycle-generation consistency,
age classification and cross-age identity consistency to disentangle the identity
and age characteristics during training. The discriminator fuses age features with
the target age group label and collaborates with the embedded age classifier to
warrant the desired age traits made on the generated images.

To address the flaw of using Face++ APIs for performance evaluation and
the constraint of using a pretrained face model for ID preservation, we made
the Cross-Age Face (CAF) dataset which contains 4000 face images of 520 in-
dividuals taken from their childhood to seniorhood. Each face in the CAF has
a ground-truth age label, and each individual has images across large age gaps.
To the best of our knowledge, the CAF is one of the very few datasets that offer
face images of the same individuals across large age gaps, and it contains more
individuals and images than the popular FG-Net. We use the CAF to rectify the
face verification thresholds of Face++ APIs which perform poorly when verifying
junior and children faces. The cross-age face verification rate is an indicator for
ID preservation. We also use the CAF and the FFHQ-Aging datasets to compare
the age estimation performance of Face++ APIs and a tailor-made age estima-
tor which will be released with this paper. We summarize the contributions of
this paper as follows:

1. A novel framework, the AgeTransGAN, is proposed and verified effective
for identity-preserving facial age transformation. The novelties include the
network architecture and loss functions designed to disentangle the identity
and age characteristics so that the AgeTransGAN can handle transformation
across large age gaps.

2. The Conditional Multilayer Projection (CMP) discriminator is proposed to
extract the multilayer age features and fuse these features with age class
labels for better target age generation.
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3. A novel database, the Cross-Age Face (CAF), is released with this paper.
It is one of the very few databases that offer 4000 images of 520 individuals
with large age gaps from early childhood to seniorhood. It can be used to
rectify face verification across large age gaps and verify age estimators.

4. Experiments show that the AgeTransGAN demonstrates better performance
than state-of-the-art approaches by using both the conventional evaluation
metrics and the new metrics proposed in this paper. To facilitate related
research, we release the trained models with this paper, https://github.
com/AvLab-CV/AgeTransGAN.

In the following, we first review the related work in Sec. 2, followed by the
details of the proposed approach in Sec. 3. Sec. 4 presents the experiments for
performance evaluation, and a conclusion is given in Sec. 5.

2 Related Work

As our approach is related to high-resolution image generation, the conditional
GAN and the facial age transformation, this review covers all these topics.

Motivated by the effectiveness of the adaptive instance normalization (AdaIN)
[7], the StyleGAN [9] defines a new architecture for high-resolution image gener-
ation with attribute separation and stochastic variation. The generator is com-
posed of a mapping network, a constant input, a noise addition, the AdaIN and
the mixing regularization. The mapping network transfers the common latent
space into an intermediate but less entangled latent space. Instead of using a
common random vector as input, the StyleGAN uses the intermediate latent
vector made by the mapping network. Given the intermediate latent vector, the
learned affine transformations produce the styles that manipulate the layers of
the generator via the AdaIN operation. To extract the styles from different lay-
ers, the generator processes the bias and noise broadcast within each style block,
making the relative impact inversely proportional to the style magnitudes. The
modified version, the StyleGAN2 [10], moves the bias and noise broadcast oper-
ations outside of the style block, applies a revised AdaIN to remove the artifacts
made by StyleGAN, and uses the perceptual path length (PPL) as a quality
metric to improve the image quality. The architectures for the generator and
discriminator are modified by referring to other work for improvements.

The conditional GAN (cGAN) is considered a promising tool for handling
class-conditional image generation [16]. Unlike typical GANs, the discriminators
in the cGANs discriminate between the generation distribution and the target
distribution given the pairs of generated data x and the conditional variable
y. Most cGANs feed the conditional variable y into the discriminator by con-
catenating y to the input or to some feature vectors [14,18,25,21]. However, the
cGAN with projection discriminator (PD) [15] considers a different perspective
of incorporating the conditional information into the discriminator. It explores
a projection scheme to merge the conditional requirement in the model. The
discriminator takes an inner product of the embedded conditional vector y with

https://github.com/AvLab-CV/AgeTransGAN
https://github.com/AvLab-CV/AgeTransGAN
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the feature vector, leading to a significant improvement to the image generation
on the ILSVRC-2012 dataset.

A significant progress has been made in facial age transformation recently.
The Identity-Preserved Conditional GAN (IPC-GAN) [22] explores a cGAN
module for age transfer and an identity-preserved module to preserve identity
with an age classifier to enhance target age generation. The Pyramid Archi-
tecture of GAN (PA-GAN) [23] separately models the constraints for subject-
specific characteristics and age-specific appearance changes, making the gen-
erated faces present the desired aging effects while keeping the personalized
properties. The Global and Local Consistent Age GAN (GLCA-GAN) [11] con-
sists of a global network and a local network. The former learns the whole face
structure and simulates the aging trend, and the latter imitates the subtle local
changes. The wavelet-based GAN (WL-GAN) [13] addresses the matching am-
biguity between young and aged faces inherent to the unpaired training data.
The Continuous Pyramid Architecture of GAN (CPA-GAN) implements adver-
sarial learning to train a single generator and multiple parallel discriminators,
resulting in smooth and continuous face aging sequences.

Different from previous work that focuses on adult faces and considers the
datasets such as MORPH [19] and CACD [2], the Lifespan Age Transformation
Synthesis (LATS) [17] redefines the age transformation by considering a lifes-
pan dataset, the FFHQ-aging, in which 10 age groups are manually labeled for
ages between 0 and 70+. Built on the StyleGAN [9], the LATS considers the 10
age groups as 10 domains, and applies multi-domain translation to disentangle
age and identity. The Disentangled Lifespan Face Synthesis (DLFS) [5] proposes
two transformation modules to disentangle the age-related shape and texture and
age-insensitive identity. The disentangled latent codes are fed into a StyleGAN2
generator [10] for target face generation. Considering aging as a continuous re-
gression process, the Style-based Age Manipulation (SAM) [1] integrates four
pretrained models for age transformation: a StyleGAN-based encoder for image
encoding, the ArcFace [3] for identity classification, a VGG-based model [20]
for age regression and the StyleGAN2 for image generation. Different from the
above approaches that either directly use the pretrained StyleGAN or made mi-
nor modifications, the proposed AgeTransGAN makes substantial modifications
to the overall StyleGAN2 architecture so that the generator can better disen-
tangle age and identity characteristics, and the discriminator can better criticize
the age traits made on the generated images.

3 Proposed Approach

The proposed AgeTransGAN consists of an encoder-decoder generator G =
[Gen, Gde], where Gen is the encoder and Gde is the decoder, and a conditional
multitask discriminator Dp. The details are presented below.

3.1 Encoder and Decoder

The configuration of the generator G = [Gen, Gde] is shown in Figure 1. The
multitask encoder Gen takes the source image Ii and the target age group label
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Fig. 1. [Left] The generator G = [Gen, Gde] with networks Bid and Bag for age and
identity disentanglement. [Right] The Conditional Multitask Projection (CMP) dis-
criminator Dp with four subnets [nk]

4
k=1 for multilayer feature extraction and an age

classifier Ca. See supplementary document for details on network settings.

yt as input, and generates the identity latent code zid and the age latent code
zag. zn is a Gaussian noise that enters the decoder Gde after each convolution
layer. The encoder Gen is developed based on a modification of the StyleGAN2
discriminator, which consists of an input layer, a convolution layer, 8 downsam-
pling residual blocks and a scalar output layer.

We first fuse the 3-layer (RGB) Ii with the target age group label yt by aug-
menting Ii with the one-hot array that represents yt using Na layers of 0’s and
1’s, where Na is the number of all target age groups. The augmented input Îi
is entered into the common layers of Gen to generate a facial representation z.
The common layers include the input layer, the convolution layer and the down-
sampling residual blocks. z is further processed by two independent component
networks, Bid and Bag, which we propose to disentangle the identity and age
characteristics by jointly minimizing a set of specifically designed loss functions.
The component network Bid, composed of two residual blocks, transfers z to
the identity latent code zid that will enter the decoder Gde. The other compo-
nent network Bag, composed of two residual blocks, a convolution layer and a
mapping network, transfers z to the age latent code zag. The training with the
loss functions presented below makes zid capture the identity characteristics and
zag capture the age characteristics. We may write zid and zag as zid(I, y) and
zag(I, y) to indicate their dependence on the input I and label y. The identity
latent code zid and the age latent code zag will be abbreviated as the ID code
and the age code, respectively, in the rest of the paper for simplicity.

The decoder Gde is modified from the StyleGAN2 generator with three mod-
ifications: 1) Six additional loss functions considered at training, 2) The original
constant input replaced by the ID code zid, and 3) The multi-stream style signals
that enter the upsampling style blocks via the AdaIN are replaces by the age
code zag. The generator takes Ii and the target age group label yo as input to
generate the target age output Io. As we consider the cycle consistency between
input and output during training, we also enter the generated output Io and
the input age group label yi to the generator to reconstruct the source input Ir
during training.

The configurations of Gen and Gde are shown in Figure 1. The details of
network settings are given in the supplementary document.
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The loss functions considered for training the generator G include the ad-
versarial loss, the identity loss, the cycle-consistency loss, the age class loss, the
pixel-wise attribute loss and the perceptual path length regularization. The fol-
lowing adversarial loss Ladv

G warrants the desired properties of the generated
faces.

Ladv
G = EIi∼p(Ii) log [Dp (G(Ii, yt), yt)] + EIo∼p(Io) log [Dp (G(Io, yi), yi)] (1)

The following identity (ID) loss Lid ensures the ID preservation at the output
Io by forcing the ID code zid of the source Ii close to that of Io.

Lid = ∥zid(Ii, yt)− zid(Io, yi)∥1 (2)

The triplet loss Lt, defined on the ID code zid as shown in (3) below, moves the
reconstructed ID code zid(Ir, yi) closer to the source ID code zid(Ii, yi) while
moving the output ID code zid(Io, yt) further away from the source ID code
zid(Ii, yi).

Lt = ∥zid(Ii, yi)− zid(Ir, yi)∥22 − ∥zid(Ii, yi)− zid(Io, yt)∥22 +mt (3)

where mt is the margin determined empirically.
Note that both the ID loss Lid in (2) and the triplet loss Lt in (3) are

defined on the ID code zid; but with the following differences: 1) Lid verifies
the ID preservation for the transformation across all age groups/classes, i.e.,
zid(Ii, yt),∀yt and zid(Io, yi),∀yi; however, Lt only considers the within-class
transformation, i.e., zid(Ii, yi) and zid(Io, yt). 2) Lid aims to preserve the iden-
tity only between the source input and the generated output; while Lt aims to
enhance the ID preservation between the source and the reconstructed source,
and simultaneously penalize the ID preservation across age transformation.

The cycle-consistency loss Lcyc makes the age progression and regression
mutually reversible, i.e., the input Ii can be reconstructed from the target It in
the same way as the target It is generated from the input Ii. It is computed by
the following L1 distance between Ii and the reconstructed input Ir = G(Io, yi).

Lcyc = ∥Ii −G(Io, yi)∥1 (4)

The following age class loss La, which is the cross-entropy loss computed by
using the age classifier Ca in the discriminator Dp, is considered when training
G (and also when training Dp).

L(g)
a = EI∼p(I)[− logCa(v(I), y)] (5)

where v(I) is a latent code generated within the discriminator Dp for image I,
and more details are given in Sec.3.2. The following pixel-wise attribute loss Lpx

is need to maintain the perceptual attribute of Ii at the output Io.

Lpx = EIi∼p(Ii)
1

w × h× c
∥Io − Ii∥22 (6)
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where w, h, and c are the image dimension. Lpx is good at keeping the back-
ground, illumination and color conditions of Ii at the generated Io. Similar losses
are used in [11,13,24,1]. Without this loss, as the settings for LATS [17] and
DLFS [5], we have to crop each input face during preprocessing.

To encourage that a constant variation in the style signal results in a constant
scaled change in the image, the StyleGAN2 employs the following perceptual
path length regularization Lpl to make the generator smoother. We apply the
same regularization on the age code zag.

Lpl = Ezag
EIo

(∥∥∥JT
zag

Io

∥∥∥
2
− ap

)2

(7)

where Jzag
= ∂G(Ii, yt)/∂zag is the Jacobian, and ap is a constant. JT

zag
Io can

be written as ∇zag
(G(Ii, yt) · Io) for a better implementation of the needed back

propagation.
The 7 loss functions in (1)∼(7) are combined by the following weighted sum

to train G.

LG = Ladv
G + λidLid + λtLt + λcycLcyc + λ(g)

a L(g)
a + λpxLpx + λplLpl (8)

where λid, λt, λcyc, λ
(g)
a , λpx and λpl are the weights determined empirically.

3.2 CMP Discriminator

The Conditional Multitask Projection (CMP) discriminator Dp is proposed to
not just distinguish the generated images from the real ones, but also force
the facial traits on the generated faces close to the real facial traits shown in
the training set. To attain these objectives, we make a substantial revision to
the StyleGAN2 discriminator with three major modifications: 1) Embedding of
a multilayer age feature extractor Sa, 2) Integration with a label projection
module to make the age-dependent latent code conditional on the target age
group label, and 3) Embedding of an age classifier Ca for supervising the target
age generation. The configuration of Dp is shown in Figure 1.
Multilayer Age Feature Extractor: We keep the same input layer, the
convolution layer and the mini-batch standard deviation as in the StyleGAN2
discriminator, but modify the 8 downsampling residual blocks (res-blocks) for
multilayer feature extraction. The 8 res-blocks is used as the base subnet n0 to
make other subnets for extracting multilayer features. We remove the smallest
two res-blocks in n0 to make the 6-res-block subnet n1. Repeating the same
on n1 makes the 4-res-block subnet n2, and repeating on n2 makes the 2-res-
block subnet n3. The output features from n1, n2 and n3 are added back to
the same dimension features in the corresponding layers in n0, as shown in
Figure 1. Therefore, the feature output from n0 integrates the features from
all subnets. The feature output is further processed by the mini-batch standard
deviation, followed by a convolution layer and a fully-connected layer to generate
an intermediate latent code v. v can be written as v(I) as the input image I
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can be the generator’s input Ii and the generated Io, which are both given to
Dp during training.
Label Projection Module: We design this module to make the age-dependent
latent code conditional on the target age group label. It has two processing paths.
One path converts v(I) to a scalar v(I) by a fully-connected layer. The other
computes the label projection, which is the projection of the age group label
y ∈ INa onto the latent code v, as shown in Figure 1. The computation takes
the inner product of the embedded y and v(I), i.e., (yTEm) · v(I), where Em

denotes the embedding matrix. The operation for the discriminator Dp(I, y) can
be written as follows:

Dp(I, y) = yTEv · v(I) + v(I) (9)

where y = yt when I = Ii, and y = yi when I = Io. The argument I in v(I) and
v(I) shows that both can be considered as the networks with I as input, i.e.,
v(·) is the forward-pass of Dp without the last fully-connected layer, and v(·) is
the forward-pass of Dp.
Age Classifier Embedding: The age classifier Ca in Figure 1 supervises the
target age generation by imposing the requirement of age classification on the
latent code v. It is made by connecting v to an output layer made of a softmax

function. The age class loss L(d)
a is computed on Ca in the same way as given in

(5), but revised for Dp.
We consider the adversarial loss, the age class loss and the R1 regularization

when training Dp. The adversarial loss Ladv
Dp

can be computed as follows.

Ladv
Dp

=EIi∼p(Ii) log [Dp (Ii, yi)] + EIi∼p(Ii) log [1−Dp (G(Ii, yt), yt)] +

EIo∼p(Io) log [1−Dp (G(Io, yi), yi)] (10)

The following R1 regularization Lr1 is recommended by the StyleGAN [9] as it
leads to a better FID score.

Lr1 = EIi∼p(Ii)

[
∥∇IiDp (Ii, yi)∥2

]
(11)

The overall loss for training Dp can be written as follows.

LDp
= Ladv

Dp
+ λr1Lr1 + λ(d)

a L(d)
a (12)

where λr1 and λ
(d)
a are determined in the experiments.

4 Experiments

We first introduce the database and experimental settings in Sec.4.1. As the
Face++ APIs [8] are used as the performance metrics in many previous work
[13,24,12], we follow this convention for comparison purpose but reveal the in-
appropriateness by experiments. We address this issue in Sec.4.1 with proposed
schemes to handle. Sec.4.2 reports an ablation study that covers a comprehen-
sive comparison across different settings on the generator and discriminator. The
comparison with state-of-the-art approaches is presented in Sec.4.3.
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Table 1. Age estimation on FFHQ-aging and CAF by using Face++ API and our age
estimator, better one in each category shown in boldface

Age group 0-2 3-6 7-9 10-14 15-19 20-29 30-39 40-49 50-69 70+

EAM (Estimated Age Mean) on whole FFHQ-aging Dataset

Face++ 10.19 20.31 24.64 25.92 26.10 29.64 39.93 54.34 67.81 76.96
Our Estimator 1.50 5.08 8.96 13.17 18.94 24.27 32.08 42.57 57.57 68.28

EAM / MAE (Mean Absolute Error) on whole CAF Dataset

Real 1.17 4.53 7.93 12.00 17.13 24.04 33.76 43.82 56.61 72.35
Face++ 19/17.29 27.68/22.1529.67/20.9328.70/16.2327.39/10.09 29.31/6.52 36.20/7.27 45.17/7.35 56.92/7.33 70.65/7.56
Our Estimator 1.36/1.28 5.65/2.16 8.78/3.23 14.03/5.68 17.98/5.43 25.37/3.4634.35/3.5046.37/5.5753.91/5.7467.46/6.71

4.1 Databases and Experimental Settings

Due to page limit, we report our experiments on the FFHQ-Aging [17] in the
main paper, and the experiments on the MORPH [19] and CACD [2] in the
supplementary document. The FFHQ-Aging dataset [17] is made of ∼70k images
from the FFHQ dataset [9]. Each image is labeled with an age group which is
not based on ground-truth but on manual annotation via crowd-sourcing [17]. 10
age groups are formed: 0–2, 3–6, 7–9, 10–14, 15–19, 20–29, 30–39, 40–49, 50–69
and ≥70 years, labeled as G100, G101, ..., G109, respectively. We follow the same
data split as in [9] that takes the first 60k images for training and the remaining
10k for testing. G105 (20 ∼ 29) is taken as the source set and the other nine
groups as the target sets.

The weights in (8) are experimentally determined as λpx=10, λpl=2, λcyc=10,

λt=0.1, λid=1 and λg
a=1; and those in (12) are λr1=10 and λ

(d)
a =1. We chose the

Adam optimizer to train G andDp at learning rate 2e
−4 on an Nvidia RTX Titan

GPU. See supplementary document for more details about data preprocessing,
other training and testing settings.

Metrics for Performance Evaluation
Similar to the previous work [13,24,12], we also use the public Face++ APIs

[8] as the metrics for evaluating the performance, but reveal via experiments the
inappropriateness of using the Face++ APIs for the face verification and age
estimation of subjects younger than 20. The Face++ APIs can estimate the age
of a face and allow different thresholds for face verification. We first followed the
same 1:1 face verification setup as in [13,24,12], where the generated face was
verified against the input face with similarity threshold 76.5 for FAR 10−5.

Using the same evaluation metrics allows a fair comparison with the previous
work. However, using the same similarity threshold for face verification across
the entire lifespan can be inappropriate, because the facial appearance does not
change much across a small age gap, but it can change dramatically across a
large age gap. The dramatic change would affect the ID preservation. This fact
explains that we can sometimes be surprised to see someone’s face has changed
so much that we cannot recognize after tens of years of separation. Besides, we
also found that the Face++ APIs reported large errors when estimating the ages
of infants and young children, although it performed relatively well estimating
the ages of adults older than 20 years.
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Fig. 2. Generated images with different settings: 1. B/L; 2. B/L+Lpre
id ; 3. B/L+Lcyc;

4. B/L+Lcyc +Lt; 5. B/L+Lcyc +Lt +Lpre
id ; 6. (Best) B/L+Lcyc +Lt +Lid with

Dp + Ca; 7.D0 + Ca; 8. Dpw/oCa; and 9.Dp + Ca(s)

To better define the metrics needed for face verification across large age gaps
and the age estimation for infants and children, we propose a rectification to the
Face++ APIs usage and an age estimator that we made. For the rectification,
we need a dataset with face images across large age gaps from early childhood
for a sufficient number of individuals. The existing datasets cannot meet this
requirement. The largest age gap for the same individual in the MORPH is less
than 10 years, and it is 11 years in CACD. The FG-Net only has 1,002 images of
89 subjects although some are across large age gaps. To meet the requirement, we
make the Cross-Age Face (CAF) dataset, which contains 4000 face images of 520
individuals. Each face has a ground-truth age, and each individual has images
in at least 5 age groups across G100 ∼ G109 (0 ∼> 70 years). The numbers of
subjects in G100 ∼ G109 are 341, 364, 312, 399, 469, 515, 435, 296, 195, and 67,
respectively. More detail of the dataset is in supplementary document.

We use the CAF dataset for the following tasks: 1) Rectify the similarity
thresholds given by the Face++ APIs for face verification across various age
gaps. We define the thresholds by forming intra and inter pairs for each age gap,
and selecting the threshold for an allowable FAR, e.g., 10−4. See Supplementary
Materials for more information about the CAF and MIVIA datasets.

The comparison of face verification with and without the proposed rectifica-
tion is given in the following sections. Table 1 shows the age estimation on the
FFHQ-Aging and CAF datasets by using the Face++ APIs and our age estima-
tor. Note that each image in the FFHQ-Aging does not have a ground-truth age,
and only has an age-group label by crowd-sourcing annotation, so we can only
compute the Estimated Age Mean (EAM) for each age group. The EAM refers
to the mean of the estimated ages of all images. But each image in the CAF
has a ground-truth age so we compare in terms of both the EAM and MAE
(Mean Absolute Error). Table 1 reveals that Face++ APIs consistently make
large errors estimating the ages of the faces younger than 20 on both datasets.
Our age estimator instead presents more reliable estimated ages.

4.2 Ablation Study

To compare the effectiveness of the losses considered in (8), we first define a base-
line, denoted as B/L in Table 2, which only includes the adversarial loss Ladv

G ,
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Table 2. Performance on FFHQ-Aging for transferring G105 (20−29) to other 9 groups
with different settings on the loss function (Top) and discriminator Dp (Bottom).
Both the rectified and common thresholds used for face verification, and used for our
age estimator. Best one in each category shown in boldface, those in red show good
verification rates but poor target age generation.

Age group 0-2 3-6 7-9 10-14 15-19 30-39 40-49 50-69 70+

Face Verification Rate (%), Rectified Threshold (Common Threshold)

Threshold 61.8(76.5) 68.9(76.5) 72.7(76.5) 74.2(76.5) 76.6(76.5) 76.3(76.5) 71.7(76.5) 65.2(76.5) 65.2(76.5)

B/L 61.53.5) 82.9(25.9) 86.45(75.9) 88.5(77.2) 79.46(80.3) 72.7(71.6) 81.1(68.5) 75.5(31.7) 70.9(27.8)
+ Lpre

id 91.7(85.7) 99.2(91.3) 100(100) 100(100) 100(100) 100(100) 100(98.5) 98.7(97.4) 92.8(80.2)
+ Lid 63.1(5.7) 82.9(25.9) 89.4(77.7) 87.9(75.8) 80.88(81.4) 82.1(81.6) 80.9(68.2) 89.4(71.5) 78.3(29.9)
+ Lcyc 74.37(20.47) 93.1(81.7) 93.8(83.2) 93.3(83.3) 93.1(94.1) 95.5(94.3) 95.1(89.7) 93.9(80.3) 91.9(77.4)
+ Lcyc + Lt 77.4(23.7) 95.3(85.1) 95.5(85.1) 95.4(86.6) 93.7(94.6) 95.7(93.6) 96.9(93.2) 96.2(83.7) 95.9(82.7)
+ Lcyc + Lt + Lpre

id 98.3(95.4) 100(98.4) 100(98.6) 100(100) 100(100) 100(100) 100(98.6) 100(97.4) 100(95.7)
+ Lcyc + Lt + Lid 80.3(10.3) 96.5(86.3) 95.9(85.4) 95.8(86.7) 100(100) 100(100) 100(97.7) 97.6(85.7) 96.8(84.7)
D0 + Ca 74.7(20.6) 92.5(80.8) 90.3(82.1) 92.4(83.5) 96.5(97.2) 100(100) 96.6(92.7) 94.3(81.5) 84.5(67.1)
Dp w/o Ca 75.2(22.3) 94.4(85.6) 91.2(82.4) 92.4(83.3) 95.8(96.5) 100(100) 95.6(90.3) 93.4(80.2) 83.8(66.6)
Dp + Ca 80.3(10.3) 96.5(86.3) 95.2(85.4) 95.8(86.7) 100(100) 100(100) 100(97.7) 97.6(85.7) 96.8(84.7)
Dp + Ca(single) 77.7(23.9) 94.8(85.7) 93.6(83.7) 94.3(85.3) 98.6(100) 100(100) 100(96.6) 95.2(82.9) 94.4(82.3)

EAM, Ours / Mean Error

Raw data (Training set) 1.5/- 4.9/- 8.6/- 12.8/- 18.9/- 31.9/- 43.9/- 57.2/- 68.9/-
B/L 1.2/0.3 4.5/0.4 12.0/3.4 17.2/4.4 20.8/1.9 28.0/3.9 32.2/11.7 41.7/15.5 53.8/15.1
+ Lpre

id 7.9/6.4 6.6/1.7 12.4/3.8 17.4/4.6 21.5/2.6 26.1/5.8 30.8/13.1 40.6/16.6 53.2(61.1)/15.7
+ Lid 1.1/0.4 2.5/2.0 6.7/1.9 13.8/1.0 18.6/0.3 32.5/0.6 40.4/3.5 51.3/5.9 67.2/1.7
+ Lcyc 1.4/0.1 3.3/1.6 7.0/1.6 13.2/0.4 17.2/1.2 32.8/0.9 41.4/2.5 52.6/4.6 67.5/1.4
+ Lcyc + Lt 1.4/0.1 3.3/1.6 7.2/1.4 12.6/0.2 17.6/1.3 32.6/0.7 41.7/2.2 54.6/2.6 69.0/0.1
+ Lcyc + Lt + Lpre

id 8.9/7.4 7.9/3.0 11.9/1.5 15.5/3.4 20.2/1.3 29.9/2.0 37.0/6.9 41.0/16.2 48.7/24.2
+ Lcyc + Lt + Lid 1.1/0.4 4.5/0.4 8.8/0.2 13.5/0.7 18.7/0.2 32.3/0.4 41.7/2.2 55.5/1.7 68.4/0.5
D0 + Ca 2.6/1.1 6.2/1.3 10.0/1.4 14.3/1.5 21.2/1.3 29.1/2.8 39.9/4.0 52.3/4.9 62.2/6.7
Dp w/o Ca 3.6/2.1 7.1/2.2 10.7/2.1 15.7/2.9 20.1/1.2 28.4/3.5 36.6/7.3 50.6/7.2 61.8/7.1
Dp + Ca 1.1/0.4 4.5/0.4 8.8/0.2 13.5/0.7 18.7/0.2 32.3/0.4 41.7/2.2 55.5/1.7 68.4/0.5
Dp + Ca(single) 2.3/0.8 5.8/0.9 9.3/0.7 14.0/1.2 19.3/0.4 30.6/1.3 38.2/3.7 53.5/3.7 64.4/4.5

the age class loss L(g)
a , the pixel-wise attribute loss Lpx, and the perceptual path

length regularization Lpl. Ladv
G is needed to warrant the quality of the generated

images; L(g)
a is needed for age classification; Lpx is needed to preserve the source

image attribute; and Lpl is needed for image quality improvement (A compari-
son of the baselines with and without these losses is given in the supplementary
document). We compare the performance when combining the baseline with the
identity loss Lid, the triplet loss Lt and the cycle-consistency loss Lcyc. We also
compare with a general way to compute the identity loss by using an off-the-shelf
pretrained face encoder [24,22], and we choose the pretrained ArcFace [3].

Table 2 shows the comparisons on the FFHQ-Aging by using the common
and rectified Face++ thresholds for face verification and our age estimator,where
Lpre
id denotes the identity loss computed using the pretrained ArcFace to replace

Lid. The performance measures in parentheses are for the common threshold
76.5 and Face++ APIs, and those out of parentheses are for rectified thresholds
and our age estimator. The results can be summarized as follows.

– When Lpre
id is included, the ID preservation is substantially upgraded, on the

cost of much deteriorating target age generation, as shown by B/L + Lpre
id

and B/L + Lcyc + Lt + Lpre
id . The large errors in the estimated mean ages

are shown in red. Clearly Lpre
id can well preserve identity, but badly damage

the target age generation. Figure 2 shows the generated images.

– The triplet loss Lt, which can only be computed with the cycle-consistency
loss Lcyc, demonstrates a balanced performance for ID preservation and age
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Fig. 3. Qualitative comparison with state-of-the-art methods for age transformation
with the source faces on the left side.

transformation with B/L+Lcyc +Lt. The performance is further enhanced
when Lid is added in, resulting in the final selected settings.

– With the selected B/L + Lcyc + Lt + Lid, the face verification rates with
rectified thresholds show more plausible results than the common constant
threshold 76.5.

To better determine the settings for the CMP discriminator Dp, we com-
pare the performance with and without the age classifier Ca, and the condition
without the label projection. We also compare the performance of using mul-
tilayer and single-layer features in Dp. The bottom part of Table 2 shows the
comparison of 1) Ca with D0, where D0 is the discriminator Dp without the
label projection; 2) Dp without Ca; 3) Dp with Ca; 4) Dp with Ca but using
single-layer features, i.e., only with the subnet n0 in Figure 1. Figure 2 shows the
samples made by the four settings. The results can be summarized as follows:

– The performances of D0 + Ca and Dp w/o Ca are similar for both tasks of
ID preservation and target age generation, although the former is slightly
better for generating the children’s ages.

– Dp +Ca(single) with single-layer feature slightly outperforms D0 +Ca and
Dp w/o Ca for both tasks.

– Dp+Ca with multilayer feature outperforms Dp+Ca(single) for both tasks
with clear margins, especially on the youngest groups, i.e., G100 and G101.

The above comparisons have verified the settings with Dp+Ca, which is used for
the comparison with other approaches. The margin mt in (3) is experimentally
determined as 0.5 out of a study reported in the supplementary document.
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Table 3. Performance on FFHQ-Aging for transferring G105 (20−29) to other 9 groups
(only 6 groups available by using LATS and DLFS), using both common and rectified
thresholds for Face++ face verification (Top), and Face++ and our age estimator for
age estimation (Bottom).

Age group 0-2 3-6 7-9 10-14 15-19 30-39 40-49 50-69 70+

Verification Rate(%) (Common Threshold)

Threshold 61.8(76.5) 68.9(76.5) 72.7(76.5) 74.2(76.5) 76.6(76.5) 76.3(76.5) 71.7(76.5) 65.2(76.5) 65.2(76.5)

LATS [17] 51.5(5.2) 62.9(12.5) 82.7(78.9) - 92.7(92.7) 92.7(91.5) - 88.9(71.1) -
DLFS [5] 52.8(12.4) 67.7(15.3) 81.9(75.2) - 97.9(97.9) 97.5(96.8) - 88.4(72.1)
SAM [1] 93.7(54.8) 88.3(67.8) 85.9(74.8) 88.8(82.9) 89.8(90.0) 90.8(90.5) 87.7(76.7) 83.1(46.2) 68.9(23.6)
AgeTransGAN 80.3(10.3) 96.5(86.3) 95.2(85.4) 95.8(86.7) 100(100) 100(100) 100(97.7) 97.6(85.7) 96.8(84.7)

EAM, Ours/Mean Error

Raw data 1.5 4.9 8.6 12.8 18.9 31.9 43.9 57.2 68.9
LATS [17] 4.6/3.1 5.4/0.5 7.6/1.0 -/- 20.4/1.5 31.6/0.3 -/- 52.1/5.1 -/-
DLFS [5] 2.0/0.5 4.1/0.8 10.6/2.7 -/- 21.6/4.5 30.2/3.6 -/- 49.5/7.1 -/-
SAM [1] 5.4/3.9 7.3/2.4 10.4/1.8 13.7/0.9 20.3/1.4 32.3/0.4 43.2/0.7 58.7/1.6 70.7/1.8
AgeTransGAN 1.1/0.4 4.5/0.4 8.8/0.2 13.5/0.7 18.7/0.2 32.3/0.4 41.7/2.2 55.5/1.7 68.4/0.5

Table 4. Performance on CAF for transferring G105 (20− 29) to other 9 groups (only
6 groups available by using LATS and DLFS), using rectified thresholds for Face++
face verification, and our age estimator for target age estimation.

Age group 0-2 3-6 7-9 10-14 15-19 30-39 40-49 50-69 70+

CAF

Verification Rate (%)

LATS [17] 66.5 72.9 73.7 - 98.1 82.7 - 83.2 -
DLFS [5] 54.7 69.4 83.2 - 100 100 - 85.3
SAM [1] 95.2 88.3 85.8 88.7 89.6 90.9 87.9 83.5 69.4
AgeTransGAN 88.6 97.9 99.7 100 100 100 100 100 100

EAM

LATS [17] 4.5 5.8 10.6 - 21.8 32.2 - 44.4 -
DLFS [5] 2.0 4.2 10.3 - 22.4 31.2 - 51.3
SAM [1] 6.2 7.5 10.4 14.6 21.1 33.4 44.8 55.2 68.8
AgeTransGAN 1.8 5.4 8.8 13.8 16.1 32.1 43.5 54.0 69.3

4.3 Comparison with SOTA Methods

Table 3 shows the comparison with LATS [17], DLFS [5], and SAM [1], which all
offer pretrained models in their GitHub sites. As revealed in Table 1, the Face++
APIs performs poorly for the estimation of younger ages and our age estimator
performs well, we only use the latter for the comparison. The AgeTransGAN
shows the best balanced performance for both ID preservation and target age
generation for transforming to most age groups. Although the SAM performs
best for ID preservation on G100, the corresponding target age generation is the
worst with mean error 3.9 years. SAM also performs best for target age genera-
tion on G107 and G108, the corresponding verification rates for ID preservation
are incomparable to those of the AgeTransGAN. Figure 3 shows a qualitative
comparison. The AgeTransGAN demonstrates better age traits generated on
faces of different age groups while maintaining plausible levels of similarities to
the input (source) images. Note that the LATS and DLFS lack the attribute loss
Lpx, all faces must be cropped during preprocessing, but the AgeTransGAN can
process images with backgrounds.

Table 4 shows the comparison on the CAF dataset with faces of real ages.
The AgeTransGAN outperforms other approaches for ID preservation on 8 age
groups, and for target age generation on 5 age groups, showing the best overall
balanced performance. The performance difference for age generation decreases
considerably for the groups older thanG106, showing that all approaches perform
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Fig. 4. Qualitative comparison with state-of-the-art methods for age regression (fe-
male) and progression (male) on CAF.

similarly well for generating adult faces. SAM performs best for ID preservation
on G100, but is the worst for target age generation. Figure 4 shows the CAF
samples with images generated for age progression (male) and regression (female)
by all approaches. Although LATS makes beard, it does not generate sufficient
wrinkles. The faces generated by SAM do not preserve some required levels of
identity similarities to the source faces. The faces made by the AgeTransGAN
show better qualities on identity similarity and target age traits.

5 Conclusion

We propose the AgeTransGAN for identity-preserving facial age transforma-
tion, and a rectification scheme for improving the usage of the popular metrics,
Face++ APIs. The AgeTransGAN merges cycle-generation consistency, age clas-
sification and cross-age identity consistency to disentangle the identity and age
characteristics, and is verified effective for balancing the performance for age
transformation and identity preservation. The rectification scheme is offered with
a new dataset, the CAF (Cross-Age Face), and an age estimator. We follow the
conventional way to compare with other approaches, and highlight the issues
with the existing metrics on the new FFHQ-Aging and CAF benchmarks. We
address those issues through the rectification scheme and experiments, and verify
the AgeTransGAN, the CAF dataset and our age estimator.
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