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Abstract. With the rapid development of Deepfake techniques, the ca-
pacity of generating hyper-realistic faces has aroused public concerns in
recent years. The temporal inconsistency which derives from the contrast
of facial movements between pristine and forged videos can serve as an
efficient cue in identifying Deepfakes. However, most existing approaches
tend to impose binary supervision to model it, which restricts them to
only focusing on the category-level discrepancies. In this paper, we pro-
pose a novel Hierarchical Contrastive Inconsistency Learning framework
(HCIL) with a two-level contrastive paradigm. Specially, sampling multi-
ply snippets to form the input, HCIL performs contrastive learning from
both local and global perspectives to capture more general and intrinsi-
cal temporal inconsistency between real and fake videos. Moreover, we
also incorporate a region-adaptive module for intra-snippet inconsistency
mining and an inter-snippet fusion module for cross-snippet information
fusion, which further facilitates the inconsistency learning. Extensive ex-
periments and visualizations demonstrate the effectiveness of our method
against SOTA competitors on four Deepfake video datasets, i.e., Face-
Forensics++, Celeb-DF, DFDC, and Wild-Deepfake.

Keywords: Deepfake Video Detection, Inconsistency Learning

1 Introduction

As the rapid development of deep learning [22, 19, 20, 23, 21, 44, 43, 59, 58], the
resulting privacy and security concerns [24, 56, 7] have received numerous atten-
tion in recent years. Face manipulation technique, known as Deepfakes, is one of
the most emerging threats. Since the generated faces in videos are too realistic
to be identified by humans, they can easily be abused and trigger severe societal
or political threats. Thus it is urgent to design effective detectors for Deepfakes.

Recently, the Deepfake detection technique has achieved significant progress

⋆ Equal contributions. †Corresponding authors. This work was done when Zhihao Gu
was an intern at Youtu Lab.
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Fig. 1. Illustration of local and global inconsistency. The former one refers to the
irregular facial movements within several consecutive frames. The latter one stands for
the cases of partial manipulation in the video. Both of them are essential for identifying
Deepfakes. Therefore, we construct the hierarchical contrastive learning from both local
and global perspectives.

and developed into image-based and video-based methods. Image-based meth-
ods [52, 6, 25, 38, 5, 11, 2] aim to exploit various priors for mining discriminative
frame-level features, including face blending boundaries [25], forgery signals on
frequency spectrum [38, 5] and contrast between augmented pairs [52, 6]. How-
ever, the development of manipulation techniques promotes the generation of
highly realistic faces, the subtle forgery cues can hardly be identified in the
static images and it calls for attention to the temporal information in this area.
Therefore, some researches tend to develop video-based approaches. Early works
treat it as a video-level classification task and directly adopt the off-the-shelf
networks like LSTM [17] and I3D [3] to deal with it, which results in inferior
performance and high computational cost. Recent works [26, 14, 12] focus on de-
signing efficient paradigms for modeling inconsistent facial movements between
pristine and forged videos, known as temporal inconsistency. S-MIL [26] treats
faces and videos as instances and bags for modeling the inconsistency in adjacent
frames. LipForensics [14] extracts the high-level semantic irregularities in mouth
movements to deal with the temporal inconsistency. STIL [12] exploits the dif-
ference over adjacent frames in two directions. Although the overall performance
is improved, there are still some limitations. First of all, they heavily rely on the
video-level binary supervision without exploring the more general and intrinsical
inconsistency. Second, they either exploit the sparse sampling strategy, failing
to model the local inconsistency contained in subtle motions or apply dense
sampling over consecutive frames, ignoring the long-range inconsistency.

As illustrated in Fig. 1, the temporal inconsistency can be divided from local
and global perspectives. Moreover, since it reveals the inconsistent facial move-
ments between real and fake videos, we argue that it should be excavated through
comparison, which is significantly neglected by existing works. To address this
issue, we aim to introduce contrast into temporal inconsistency learning, and a
hierarchical contrastive inconsistency learning framework is proposed. However,
there are still several challenges: how to 1) conduct local and global contrast,
and 2) extract finer local and global representations for it. To solve the former
one, we sample a few snippets from each video and build the local contrastive



Hierarchical Contrastive Inconsistency Learning 3

inconsistency learning on snippet-level representations. Snippets from pristine
videos are viewed as positive samples while ones from fake videos are negative
samples (no matter whether the videos are partially manipulated). Then the sim-
ilarity between an anchor snippet and the one from a fake video is used as the
regularizer to adaptively decide whether to repel or not, leading to the weighted
NCE loss. And the global contrast is directly established on video-level repre-
sentations. To solve the latter one, a region-aware inconsistency module and an
inter-snippet fusion module are respectively proposed to generate discrimina-
tive intra-snippet inconsistency for local contrast and promote the interaction
between snippets for the global one. Overall, the proposed framework can cap-
ture essential temporal inconsistency for identifying Deepfakes and outperforms
the SOTA competitors under both full and partial manipulation settings. Be-
sides, extensive ablations and visualizations further validate its effectiveness. In
summary, our main contributions can be summarized as follows:

1. We propose a novel Hierarchical Contrastive Inconsistency Learning (HCIL)
framework for Deepfake Video Detection, which performs contrastive learn-
ing from both local and global perspectives to capture more general and
intrinsical temporal inconsistency between real and fake videos.

2. Considering the partial forgery videos, the weighted NCE loss is specially de-
signed to enable the snippet-level inconsistency contrast. Besides, the region-
aware inconsistency module and the inter-snippet fusion module are further
proposed to facilitate the inconsistency learning.

3. Extensive experiments and analysis further illustrate the effectiveness of the
proposed HCIL against its competitors on several popular benchmarks.

2 Related work

Deepfake Detection. Deepfake detection has obtained more and more atten-
tion in recent years. Early researches mainly focus on designing hand-crafted
features for identification, such as face warping artifacts [28, 49], eye blinking [27]
and inconsistent head poses [54]. With the development of deep learning, some
image-based methods are proposed to extract discriminative frame-level features
for detection. [39] evaluates several well-known 2D neural networks to detect
Deepfakes. X-ray [25] identifies Deepfakes by revealing whether the input image
can be decomposed into the blending of two images from different sources. F3-
Net [38] exploits the frequency information as a complementary viewpoint for
forgery pattern mining. All these approaches perform well in image-level detec-
tion. However, with the development of Deepfake techniques, the forgery trace
can be hardly found. Recent works [33, 26, 37, 14, 13] tend to consider the tem-
poral inconsistency as the key to distinguishing Deepfakes and propose various
methods to model it. Two-branch [33] designs a two-branch network to amplify
artifacts and suppress high-level face contents. S-MIL [26] introduces a multi-
instance learning framework, treating faces and videos as instances and bags,
for modeling the inconsistency in adjacent frames. DeepRhythm [37] conjectures
that heartbeat rhythms in fake videos are entirely broken and uses CNNs to
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Fig. 2. Overview of the hierarchical contrastive inconsistency learning. The framework
is constructed on both snippet and video-level representations. To enable the local con-
trast, a weighted NCE loss Ll is designed to adaptively decide whether snippets from
fake videos need to be repelled. DW-Conv, ⊗, ⊕ and ⊙ stand for depth-wise convolu-
tion, matrix multiplication element-wise addition and multiplication, respectively.

monitor them for detection. LipForensics [14] proposes to capture the semantic
irregularities of mouth movements in generated videos for classification. Different
from them capturing the temporal inconsistency via category-level discrepancy,
we conduct two-level contrast to formulate the more general and intrinsical tem-
poral inconsistency.

Contrastive Learning. The main idea behind contrastive learning is to learn
visual representations via attracting similar instances while repelling dissimilar
ones [52, 6, 15]. Recently, some works [1, 45, 10] attempt to introduce the con-
trastive learning to detect Deepfakes. DCL [42] specially designs augmentations
to generate paired data and performs contrastive learning at different granulari-
ties for better generalization. SupCon [53] uses the contrast in the representation
space to learn a generalizable detector. Our hierarchical contrastive framework
differs from these methods in three aspects. 1) We focus on the temporal in-
consistency, specially design the sampling unit called snippet, and establish the
local and global contrast paradigm. 2) Not only constructing the contrastive pair
is essential, so is extracting the inconsistency. Therefore, we elaborately develop
the RAIM and ISF to extract region-aware local temporal inconsistency and
refine the global one. 3) Considering the partial forgery in fake videos (snippet-
level label unavailable), a novel weighted NCE loss is proposed to enable local
contrastive learning.

Video-Analysis. Video-related tasks highly rely on the temporal modeling.
Early efforts say I3D [3], exploit the 3D CNNs to capture temporal dependencies.
Since they are computationally expensive, various efficient temporal modeling
paradigms [30, 47, 32] are then proposed. TSM [30] shifts part of the channels
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along the temporal dimension to enable information exchange among adjacent
frames. TAM [32] learns video-specific temporal kernels for capturing diverse
motion patterns. Although they can be directly applied to detect Deepfakes,
considering no task-specific knowledge largely impacts their performance.

3 Proposed Method

In this section, we elaborate on how to generate positive and negative pairs and
conduct contrastive inconsistency learning from both local and global perspec-
tives. In Sec. 3.1, we first give the overview of the proposed framework. Then
local contrastive inconsistency learning is introduced in Sec. 3.2. Finally, we
describe the global contrastive inconsistency learning in Sec. 3.3.

3.1 Overview

As mentioned in Sec. 1, compared to pristine videos, the temporal inconsistency
in fake videos can be captured from both local and global perspectives. Therefore,
we aim to explicitly model it via simultaneously conducting local and global
contrast. Given a real video V + = [S+

1 , . . . , S+
U ] with U sampled snippets of

shape T × 3 × H × W from the set N+ of real videos (T , H and W denote
its spatiotemporal dimensions), its anchor videos V a = [Sa

1 , . . . , S
a
U ] ∈ N a are

defined as other real videos and the corresponding negative ones are the fake
videos V − = [S−

1 , . . . , S−
U ] ∈ N−, where N a = N+ \ V + and N− represents the

set of anchor and fake videos, respectively. Then for a positive snippet S+
i ∈ V +,

its anchor snippet, and negative snippets are defined as Sa
j ∈ V a and S−

k ∈ V −.
To enable the local contrast, we mine dynamic snippet-level representations by a
region-aware inconsistency encoder and optimize a novel weighted NCE loss [36]
on them. It attracts real snippets and adaptively decides whether snippets from
fake videos contribute to the loss via measuring their similarity with the anchor
snippets. For global contrast, an inter-snippet fusion module is proposed to fuse
the cross-snippet information and the InfoNCE loss is optimized based on the
video-level features. The overall framework is illustrated in Fig. 2.

3.2 Local Contrastive Inconsistency Learning

The local contrastive inconsistency learning is shown in Fig. 2. The core of it
are the region-aware inconsistency module for rich local inconsistency represen-
tations learning, and the weighted NCE loss for the contrast between snippets
from real and fake videos.
Region-aware inconsistency module. Inspired by DRConv [4] that assigns
generated spatial filters to corresponding spatial regions, we design the region-
aware inconsistency module (RAIM) to mine comprehensive temporal inconsis-
tency features based on different facial regions. As shown in Fig. 2, on the one
hand, it adaptively divides the face into r regions according to the motion infor-
mation by the right branch (PWM-Conv-gamble-softmax). On the other hand, r
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region-agnostic temporal filters are learned via the left branch (AdapP-FC-FC).
Based on these branches, each region is assigned with its unique temporal fil-
ter and the corresponding temporal inconsistency is thus captured through the
convolution between each region and its corresponding temporal filter.

Conv

𝑡 + 1𝑡𝑡 − 1

Conv

Conv

Difference Difference

Sum

𝒞𝑡−1 𝒞𝑡+1

𝑝0

𝒞𝑡

Fig. 3. Illustration of PWM.

Formally, given the input I ∈ RC×T×H×W ,
we split it along channel dimensional into two
parts with the rate α. Then one part X1

is exploited to extract the region-aware in-
consistency while keeping the other part X2

unprocessed, which is found both effective
and efficient [51]. In the left branch, X1 ∈
RαC×T×H×W is first spatially pooled by an
adaptive average pooling (AdaP) operation,
resulting in Xp ∈ RαC×T×r. Then two full
connected layers FC1 and FC2 further deal
with the temporal dimension to produce r
temporal filters with kernel size k:

[W1, · · · .Wr] = FC2(ReLU(FC1(AdaP(X1)))),
(1)

where Wi ∈ RαC×k denotes the learned temporal kernels. We exploit the pixel-
wise motion (PWM) as the guidance for adaptive face division:

PWM(Xp0) =
∑

p∈Ct−1

wp(X(p0 + p)−X(p0))

+
∑

p∈Ct+1

wp(X(p0 + p)−X(p0)) +
∑
p∈Ct

wpX(p),
(2)

where Ct−1, Ct and Ct+1 stands for the 3 × 3 region with center position p0.
wp represents the weight at potion p0 + p. Based on the representations, a 1 ×
1 convolution and a gamble softmax operation are conducted on each spatial
location to generate a r-dimensional one-hot vector, which is used to select their
temporal filters. Positions with the identical one-hot form are viewed to belong
to the same facial region. Finally, X1 is depth-wise convoluted with the temporal
filters to give the region-aware inconsistency within each snippet. The RAIM is
inserted right before the second convolution in each resnet block, leading to the
encoder f . And snippets go through it to form the snippet-level representations.
Local (snippet-level) Contrast. We treat snippets from two real videos as
positive pairs. However, fake videos may be partially manipulated and we can’t
simply treat sampled snippets from them as negative ones. To alleviate this issue,
we use the normalized similarity between Sa

j ∈ V a and S−
k ∈ V − to adjust the

impact of S−
k . A weighted NCE loss is thus proposed and formulated as:

Lw
NCE(qi, pj , {gl(f(S−

w ))}k) = −log
eϕ(qi,pj)/τ

eϕ(qi,pj)/τ +
∑

k (
1−ϕ(pj ,nk)

2 )
β
· eϕ(qi,nk)/τ

,

(3)
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where gl(·) : RC → R128 is a projection head, qi = gl(f(S
+
i )), pj = gl(f(S

a
j )) and

nk = gl(f(S
−
w ))k. ϕ(x, y) denotes the cosine similarity between two l2-normalized

vectors. τ refers to the temperature scalar and β is a tunable factor. The term
(·)β dynamically decides whether the snippet from fake videos contributes to the
contrastive loss based on its similarity with the anchor. That is, if the snippet is
pristine/forged, the term approximates 0/1 and thus it suppresses/activates the
contrast with real snippets. Then the local contrastive loss is given by:

Ll =
1

N

N∑
i=1

N−U∑
j=1

Lw
NCE(gl(f(S

+
i )), gl(f(S

a
j )), {gl(f(S−

w ))}k), (4)

where N = |N+| · U , and |N+| denotes the number of videos in N+. Note that
qi has multiple anchor sample pj , we average their separate contrastive loss.
Analysis of the weighted NCE Loss. We now analyze the relationship be-
tween the proposed loss and the InfoNCE loss [36]. First of all, the NCE loss
can be viewed as a special case (β = 0) of the proposed weighted NCE loss.
Furthermore, we derive the relation between their derivatives:

∂Lw
NCE

∂w
=

∂( b
w

b )

∂w

′

· (eLNCE − 1)e−Lw
NCE +

bw

b
· e

LNCE

eL
w
NCE

· ∂LNCE

∂w
. (5)

where b =
∑

k e
ϕ(q,nk)/τ and bw =

∑
k(

1−ϕ(p,nk)
2 )2eϕ(q,nk)/τ . If all the nk from

fake videos are forged, we then have
∂Lw

NCE

∂w → ∂LNCE

∂w . On the contrary, assume
there exists a snippet nj ∈ N− is in-manipulated, then the learning process
is less affected by nj . Surprisingly, our solution performs on part with or even
better than the InfoNCE loss as shown in Table. 6.

3.3 Global Contrastive Inconsistency Learning

The global contrastive inconsistency learning is illustrated in Fig. 2. The main
components are the inter-snippet fusion module (ISF) for forming the video-level
representation and the NCE loss for the contrast between real and fake videos.
Inter-snippet Fusion. A common way to generate video-level representation is
averaging snippet-level features along the U dimension. Inspired by [50] using the
modified non-local [48] to enhance the short-term features, we instead propose
to enhance the channels that reveal the intrinsical inconsistency in a similar
way. To achieve this, we design an inter-snippet fusion module upon the encoder
f to promote information fusion between f(Si) ∈ RU×C′×T×H′×W ′

in f(V ),
where V = [S1, . . . , SU ]. Specially, the cross-snippet interaction is defined as the
self-attention operation between snippets:

Atten = softmax(
(f(V )WI)(W

T
I f(V )T)√

C ′
)f(V )WI , (6)

where WI is learnable parameter of projection for dimension reduction. Then
Atten is used to re-weight channels of f(V ) by:

ISF(f(V)) = σ(Norm(Atten)WO)⊙ f(V ), (7)
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where WO is the learnable parameters of projection for dimension retrieval.
Norm(·) is the layer-norm and σ refers to the sigmoid function.
Global (video-level) Contrast. We build the video-level contrast on the out-
puts of the inter-snippet fusion module. Different from the snippet-level contrast,
labels of videos are provided and the InfoNCE loss [36] can be directly exploited:

LNCE(ui, vj , {gg(f(V −
w ))}k) = −log

eϕ(ui,vj)/τ

eϕ(ui,vj)/τ +
∑

k e
ϕ(ui,mk)/τ

, (8)

where gg(·) : RC → R128 is the projection head, ui = gg(f(V
+
i )), vj = gg(f(V

a
j )),

nk ∈ N− and mk = gg(f(V
−
w ))k. The video-level contrast can be written as:

Lg =
1

|N+|

|N+|∑
i=1

LNCE(gg(h(f(V
+
i ))), gg(h(f(N a))), gg(h(f(N−)))), (9)

where h(f(V +
i )) = h(f(S+

1 ), . . . , f(S+
U )), h(f(N a)) = {h(f(V a

i ))}j and h(f(N−) =
{h(f(V −

w ))}k. Note that one video ui usually contains multiple anchor videos,
we simply compute the contrastive loss separately and take their average.

3.4 Loss Function

Apart from using the contrastive loss mentioned above, we also adopt the binary
cross-entropy loss Lce to supervise the category-level discrepancies. The final loss
function for training is formulated as the weighted sum of them:

L = Lce + λ1Ll + λ2Lg, (10)

where λ1 and λ2 are two balance factors for balancing different terms. All the
projection heads for contrastive learning are discarded during inference.

4 Experiments

4.1 Datasets

We conduct all the experiments based on four popular datasets, i.e., FaceForen-
sics++ (FF++) [39], Celeb-DF [29], DFDC-Preview [9] and WildDeepfake [60].
FaceForensics++ is comprised of 1000 original and 4000 forged videos with
several visual quality, i.e., high quality (HQ) and low quality (LQ). Four ma-
nipulation methods are exploited for forgery, that is DeepFakes (DF), Face2Face
(F2F), FaceSwap (FS), and NeuralTextures (NT). It provides only video-level
labels and nearly every frame is manipulated.
Celeb-DF contains 590 real and 5639 fake videos and all the videos are post-
processed for better visual quality. Only video-level labels are provided in it and
nearly every frame is manipulated.
WildDeepfake owns 7314 face sequences of different duration from 707 Deep-
fake videos. Video-level labels are provided only and whether videos in it are
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partially forged is not mentioned. Therefore, it is relatively more difficult.
DFDC-Preview is the preview version of the DFDC dataset and consists of
around 5000 videos. These videos are partially manipulated videos by two un-
known manipulations, making it more challenging. And no frame-level labels are
provided.

4.2 Experimental Settings

Implemental Details. For each Deepfake video dataset, we perform face de-
tection with a similar strategy in [26]. λ1, λ2, β and τ are empirically set as 0.1,
0.01, 2 and 5. For simplification, we select the split ratio α = 0.5 and the region
number r = 8. The squeeze ratio is 1

8 by default. ResNet-50 [16] pre-trained
on the ImageNet [8] is exploited as our backbone network. During training, we
equally divide a video into U = 4 segments and randomly sample consecutive
T = 4 frames within them to form a snippet. Each frame is then resized into
224× 224 as input. We use Adam as the optimizer and set the batch size to 12.
The network is trained for 60 epochs and the initial learning rate is 10−4, which
is divided by 10 for every 20 epochs. Only random horizontal flip is employed
as data augmentation. During testing, we centrally sample U = 8 snippets with
T = 4 and also resize them into the shape of 224 × 224. The projection heads
gl(·) and gg(·) are implemented as two MLP layers, transforming features to a
128-dimension space for computing similarity.
Baselines. In order to demonstrate the superiority of our HCIL, we select several
video-based detectors for comparison, including Xception [39], VA-LogReg [34],
D-FWA [28], FaceNetLSTM [41], Capsule [35], Co-motion [46], DoubleRNN [33],
S-MIL [26], DeepRhythm [37], ADDNet-3d [60], STIL [12] , DIANet [18] and TD-
3DCNN [55]. Besides, for more comprehensive validation, we also re-implement
some representative works in video analysis to detect Deepfakes, i.e., LSTM [17],
I3D [3], TEI [31], TDN [47], V4D [57], TAM [32] and DSANet [51].

4.3 State-of-the-art Comparisons

Following [37, 12], we conduct both intra-dataset evaluation and cross-dataset
generalization to demonstrate the effectiveness of the proposed framework. The
accuracy and the Area Under Curve (AUC) metrics are reported, respectively.
Comparison on FF++ dataset. We first conduct the comprehensive exper-
iments on four subsets of the FF++ dataset under both HQ and LQ settings.
Table 1 illustrates the corresponding results, from which we have several ob-
servations. Firstly, since no temporal information is considered, the frame-based
detectors achieve inferior accuracy compared to video analysis methods. Besides,
V4D and DSANet can also achieve a comparable result to the SOTA method
STIL. However, they usually employ the sparse sampling strategy and no local
motion information is involved, which is also important for this task. Secondly,
The proposed HCIL outperforms nearly all the competitors in all settings. Specif-
ically, in challenging LQ NT setting, HCIL owns 94.64% accuracy, exceeding
the best action recognition model V4D and the SOTA Deepfake video detector
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Table 1. Comparisons on FF++ dataset under both HQ and LQ settings. All subsets
are measured and accuracy is reported. † indicates re-implementation.

Methods
FaceForensics++ HQ FaceForensics++ LQ

DF F2F FS NT DF F2F FS NT

ResNet-50† 0.9893 0.9857 0.9964 0.9500 0.9536 0.8893 0.9464 0.8750

Xception 0.9893 0.9893 0.9964 0.9500 0.9678 0.9107 0.9464 0.8714

LSTM 0.9964 0.9929 0.9821 0.9393 0.9643 0.8821 0.9429 0.8821

I3D† 0.9286 0.9286 0.9643 0.9036 0.9107 0.8643 0.9143 0.7857

TEI† 0.9786 0.9714 0.9750 0.9429 0.9500 0.9107 0.9464 0.9036

TAM† 0.9929 0.9857 0.9964 0.9536 0.9714 0.9214 0.9571 0.9286

DSANet† 0.9929 0.9929 0.9964 0.9571 0.9679 0.9321 0.9536 0.9178

V4D† 0.9964 0.9929 0.9964 0.9607 0.9786 0.9357 0.9536 0.9250

TDN† 0.9821 0.9714 0.9857 0.9464 0.9571 0.9178 0.9500 0.9107

FaceNetLSTM 0.8900 0.8700 0.9000 - - - - -

Co-motion-70 0.9910 0.9325 0.9830 0.9045 - - - -

DeepRhythm 0.9870 0.9890 0.9780 - - - - -

ADDNet-3d† 0.9214 0.8393 0.9250 0.7821 0.9036 0.7821 0.8000 0.6929

S-MIL 0.9857 0.9929 0.9929 0.9571 0.9679 0.9143 0.9464 0.8857

S-MIL-T 0.9964 0.9964 1.0 0.9429 0.9714 0.9107 0.9607 0.8679

STIL 0.9964 0.9928 1.0 0.9536 0.9821 0.9214 0.9714 0.9178

HCIL 1.0 0.9928 1.0 0.9676 0.9928 0.9571 0.9750 0.9464

STIL by 2.14% and 2.86%, respectively. All these improvements validate that the
well-designed contrastive framework prompts learning general while intrinsical
inconsistency between pristine and forged videos.

Comparison on other datasets. We also evaluate the proposed method on
Celeb-DF, WildDeepfake, and DFDC datasets, as listed in Table 2. On Celeb-DF
and WildDeepfake datasets, our framework consistently performs better than
SOTAs (0.2% ↑ on Celeb-DF and 1.24% ↑ on Wild-DF). This is mainly be-
cause we extract the rich local inconsistency features and generate the global
ones, leading to more comprehensive representations. The overall performance
on Wild-DF is still low since the duration of videos varies a lot, making them
difficult to deal with. On the more challenging DFDC dataset containing vast
partially forged videos, HCIL still outperforms the compared works. A large
performance margin can be observed (up to 6.0%). Several reasons may account
for this. First, different from compared works exploiting either sparse or dense
sampling strategy, we sample several snippets from each video to form the input.
This strategy enables to capture partially forged parts and both local and global
temporal information are covered. Second, the constructed local contrast allows
the network to perform fine-grained learning. Therefore, the intrinsical inconsis-
tencies are obtained from contrast, not only from the category-level differences.
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Table 2. Comparison on Celeb-
DF, DFDC, and WildDeepfake
datasets. Accuracy is reported.

Methods Celeb-DF Wild-DF DFDC

Xception 0.9944 0.8325 0.8458

I3D† 0.9923 0.6269 0.8082

TEI† 0.9912 0.8164 0.8697

TAM† 0.9923 0.8251 0.8932

V4D† 0.9942 0.8375 0.8739

DSANet† 0.9942 0.8474 0.8867
D-FWA 0.9858 - 0.8511
DIANet - - 0.8583

ADDNet-3D† 0.9516 0.6550 0.7966
S-MIL 0.9923 - 0.8378

S-MIL-T 0.9884 - 0.8511

STIL† 0.9961 0.8462 0.8980

HCIL 0.9981 0.8586 0.9511

Table 3. Cross-dataset generaliza-
tion in terms of AUC. † implies re-
implementation.

Methods FF++ DF Celeb-DF DFDC

Xception 0.9550 0.6550 0.5939

I3D† 0.9541 0.7411 0.6687

TEI† 0.9654 0.7466 0.6742

TAM† 0.9704 0.6796 0.6714

V4D† 0.9674 0.7008 0.6734

DSANet† 0.9688 0.7371 0.6808
Capsule 0.9660 0.5750 -
DIANet 0.9040 0.7040 -

TD-3DCNN - 0.5732 0.5502
DoubleRNN 0.9318 0.7341 -

ADDNet-3D† 0.9622 0.6085 0.6589

STIL† 0.9712 0.7558 0.6788

HCIL 0.9832 0.7900 0.6921

Cross-dataset generalization. Following previous work [37], we first train the
network on the FF++ dataset to discern the pristine videos against four ma-
nipulation types under the LQ setting. Then evaluating on FF++ DF, Celeb-
DF, and DFDC datasets to measure its generalization capacity, as studied in
Table 3. We achieve 98.32% AUC on FF++ DF and 69.21% on the DFDC
dataset, improving the state-of-the-art competitors by about 1% on average.
Larger performance gains of 3.42% are obtained on Celeb-DF. Since FF++ DF
and Celeb-DF datasets are manipulated through similar face forgery techniques
frame-by-frame, the detector presents relatively better generalization compared
to the DFDC dataset. Note that videos in DFDC are partially forged and contain
varied lighting conditions, head poses, and background. Therefore, it is harder
to generalize. However, benefiting from the mechanism that learning represen-
tations from not only label-level discrepancies but also the local and global con-
trast, the network owns robustness to a certain degree and consequently exceeds
the previous SOTA STIL by 1.3%.

4.4 Ablation Study

We conduct comprehensive ablation studies to further explore the effectiveness
of the proposed modules and contrastive framework from Table 4 to Table 6.
Study on key components. The core components of HCIL include the RAI
module and ISF module and the specially designed hierarchical contrastive learn-
ing paradigm. We perform the ablation under both the intra and inter-dataset
settings. And the corresponding results are shown in Table 4 and 5, respectively.
In the FF++ dataset, only extracting the frame-level features, the baseline
model has the lowest accuracy and AUC. Surprisingly, based on these frame-
level representations, directly constructing the contrastive inconsistency learn-
ing from multi-hierarchy improves the performance a lot (88.93% → 91.43%
on F2F and 87.50% → 90.36% on NT). Besides equipping the baseline with
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Table 4. Ablation study on key components under intra-dataset evaluation. ResNet-50
is used as baseline.

(a) RAI and CSI on FF++.

model DF F2F FS NT

Baseline 0.9536 0.8893 0.9464 0.8750
+ RAI 0.9821 0.9321 0.9607 0.9214
+ ISF 0.9785 0.9286 0.9607 0.9178
+ RAI + ISF 0.9857 0.9428 0.9643 0.9250
+ All 0.9928 0.9571 0.9750 0.9464

(b) Contrastive framework on FF++.

model DF F2F FS NT

Baseline 0.9536 0.8893 0.9464 0.8750
+ Ll + Lg 0.9750 0.9143 0.9571 0.9036
+ RAI + Ll 0.9857 0.9393 0.9678 0.9250
+ ISF + Lg 0.9857 0.9325 0.9642 0.9214
+ All 0.9928 0.9571 0.9750 0.9464

Table 5. Ablation study on key components under cross-dataset generalization.

ResNet-50 is used as baseline.

(c) Generalization for RAI and ISF.

model FF++ DF Celeb-DF DFDC

Baseline 0.9232 0.6956 0.6323

+ RAI 0.9673 0.7478 0.6575

+ ISF 0.9603 0.7392 0.6601

+ RAI + ISF 0.9743 0.7578 0.6665

+ All 0.9832 0.7900 0.6921

(d) Generalization for contrastive framework.

model FF++ DF Celeb-DF DFDC

Baseline 0.9232 0.6956 0.6323

+ Ll + Lg 0.9572 0.7323 0.6518

+ RAI + Ll 0.9764 0.7569 0.6898

+ ISF + Lg 0.9711 0.7668 0.6792

+ All 0.9832 0.7900 0.6921

RAI to extract diverse region-related inconsistency within snippets, large per-
formance gains are observed (95.36% → 98.21% on DF, 88.93% → 93.21% on
F2F, 94.64% → 96.06% on FS and 87.50% → 92.14% on NT). This is reasonable
that without mining the temporal relation within snippets, the general incon-
sistency can not be captured well via contrast. Similarly, the ISF module also
improves the baseline but achieves an inferior result to the RAI module, which
implies the importance of local temporal information. If constructing contrastive
framework with the corresponding representations, i.e., Ls+ RAI and Lv+ CSF,
the accuracy are further boosted (0.36% ↑ on DF, 0.72% ↑ on F2F, 0.71% ↑ on
FS and 0.36% ↑ on NT). Combining RAI and ISF modules is better than con-
trasting based on one of them, indicating both local and global temporal features
are essential for the task. No doubt, combining them all obtains the best results.
Similar conclusions can be observed in cross-dataset generalization settings.

Study on parameter β. Eq. 3 plays an important role in our contrastive incon-
sistency framework. β in it indeed adaptively adjusts the importance extent of
each negative pair based on the similarity between anchor and snippets from fake
videos. Table 6 studies the impacts of it under intra-dataset evaluation settings.
In full manipulation settings, i.e., FF++, Celeb-DF and Wild-DF datasets, com-
pared to the baseline, constructing the snippet-level contrast boosts the accuracy
(0.35% ↑ on DF, 1.07% ↑ on F2F, 0.72% ↑ on FS and 1.39% ↑ on NT). And
NCE loss with adaptive weights presents on part with or even slightly better
performance than the vanilla NCE loss. This implies that adjusting the weights
in full manipulation settings is helpful. However, the gains from it are limited
(0.% ↑ on DF, 0.35% ↑ on F2F, 0.36% ↑ on FS and 0.16% ↑ on NT). In the
DFDC dataset, using the NCE loss leads to slight accuracy gains (0.64%). On
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Table 6. Ablation study on β under intra-dataset evaluation settings. The proposed
detector without Ls is set as baseline.

(e) FF++ dataset.

β DF F2F FS NT

Baseline 0.9893 0.9464 0.9678 0.9321
LNCE 0.9928 0.9536 0.9750 0.9428
Lw

NCE 0.9928 0.9571 0.9750 0.9464

(f) Other three datasets.

β Celeb-DF Wild-DF DFDC

Baseline 0.9942 0.8472 0.9331
LNCE 0.9981 0.8573 0.9395
Lw

NCE 0.9981 0.8586 0.9511

NeuralTexturesDeepfake Face2Face FaceSwap

Fig. 4. Visualization of activation maps with CAM. First row: RGB images, Second
row: forgery masks, Third row: activation maps.

the contrary, our weighted NCE loss surprisingly gives a larger improvement
(from 0.9331% to 0.9511%).

4.5 Visualization Analysis

In this section, we visualize the region-of-interest via Grad-CAM [40], as shown
in Fig. 4. Similar analyses of the RAI module and the weighted NCE loss are
presented in Fig. 5.
Class activation maps. In Fig. 4, we visualize the class activation maps against
four manipulations to verify which regions the model focuses on. The forgery
masks derive from the difference between the manipulated videos and the cor-
respondingly pristine videos. The activation maps almost cover the whole faces
for Deepfake that are generated from deep learning tools. Similarly, the detec-
tor also notices the swapped facial region for FaceSwap. On more challenging
Face2Face and NeuralTextures whose transferred expression and mouth regions
are difficult to identify, our model still successfully locates the forged areas.
Impacts of RAI module. The RAI module aims to adaptively extract dy-
namic local representations for snippet-level contrastive inconsistency learning.
We compare it with the vanilla temporal convolution and visualize the corre-
sponding cam maps in the third and second row of Fig. 5 (a). With the content-
agnostic weights, the vanilla temporal convolution treats all the facial regions
equally and is easy to focus on incomplete forgery regions (second row of left
part in Fig. 5 (a)) or wrong areas (second row of right part in Fig. 5 (a)). On
the contrary, the RAI module generates the region-specific temporal kernels to
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NeuralTexturesFaceSwapDeepfake NeuralTextures

(a) Impacts of RAI Module (b) Impacts of Hierarchical Contrast 

Fig. 5. Visualization on impacts of (a) snippet-level feature extraction (second row:
without RAIM, third row: with RAIM) and (b) hierarchical contrast (second row:
without contrast, third row: with contrast).

extract dynamic temporal information and, therefore, more complete temporal
inconsistency representations can be captured for identification.
Impacts of hierarchical contrast. The hierarchical contrast attracts positive
samples while repelling negative ones from both snippet and video levels. To
intuitively illustrate impacts of it, we directly visualize the activation in Fig. 5
(b). From the figure, we can observe that for the manipulation performed on
small facial areas, the hierarchical contrastive loss acts as a regularizer, regu-
larizing the attention on more accurate regions. Besides, for the manipulation
performed on large facial regions, the loss instead guides the detector to focus
on more comprehensive locations.

5 Conclusions

In this paper, we introduce the hierarchical contrastive inconsistency learn-
ing framework for Deepfake video detection from local and global perspec-
tives. For local contrast, we design a region-aware inconsistency module for dy-
namic snippet-level representations and a novel weighted NCE loss to enable the
snippet-level contrast. For global contrast, an inter-snippet fusion module is in-
troduced for fusing cross-snippet information. The proposed framework presents
superior performance and generalization on several benchmarks, and extensive
visualizations also illustrate its effectiveness.
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