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Abstract. Deep learning has achieved outstanding performance for face
recognition benchmarks, but performance reduces significantly for low
resolution (LR) images. We propose an attention similarity knowledge
distillation approach, which transfers attention maps obtained from a
high resolution (HR) network as a teacher into an LR network as a stu-
dent to boost LR recognition performance. Inspired by humans being
able to approximate an object’s region from an LR image based on prior
knowledge obtained from HR images, we designed the knowledge dis-
tillation loss using the cosine similarity to make the student network’s
attention resemble the teacher network’s attention. Experiments on var-
ious LR face related benchmarks confirmed the proposed method gen-
erally improved recognition performances on LR settings, outperform-
ing state-of-the-art results by simply transferring well-constructed at-
tention maps. The code and pretrained models are publicly available in
the https://github.com/gist-ailab/teaching-where-to-look.

Keywords: Attention similarity knowledge distillation, cosine similar-
ity, low resolution face recognition

1 Introduction

Recent face recognition model recognizes the identity of a given face image
from the 1M distractors with an accuracy of 99.087% [15]. However, most face
recognition benchmarks such as MegaFace [15], CASIA [33], and MS-Celeb-1M
[10] contain high resolution (HR) images that differ significantly from real-world
environments, typically captured by surveillance cameras. When deep learning
approaches are directly applied to low resolution (LR) images after being trained
on HR images, significant performance degradation occurred [1, 21, 30].

To overcome the LR problem associated with face recognition, prior knowl-
edge extracted from HR face images is used to compensate spatial information
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Fig. 1. Proposed attention similarity knowledge distillation (A-SKD) concept for low
resolution (LR) face recognition problem. Well-constructed attention maps from the
HR network are transferred to the LR network by forming high similarity between them
for guiding the LR network to focus on detailed parts captured by the HR network.
Face images and attention maps are from the AgeDB-30 [23].

loss. Depending on the approach of transferring the prior knowledge to LR im-
age domain, LR face recognition methods are categorized into two types: super-
resolution and knowledge distillation based approaches. Super-resolution based
approaches utilize generative models to improve LR images to HR before in-
put to recognition networks [7, 9, 11, 16, 28, 30]. Following the development of
super-resolution methods, LR images can be successfully reconstructed into HR
images and recognized by a network trained on HR images [5, 6, 19, 26]. How-
ever, super-resolution models incur high computational costs for both training
and inference, even larger than the costs required for recognition networks. Fur-
thermore, generating HR from LR images is an ill-posed problem, i.e., many HR
images can match with a single LR image [4]; hence the identity of a LR image
can be altered.

To combat this, knowledge distillation based methods have been proposed to
transfer prior knowledge from HR images to models trained on LR face images [8,
22, 37]. When the resolution of face images is degraded, face recognition models
cannot capture accurate features for identification due to spatial information
loss. In particular, features from detailed facial parts are difficult to be captured
from a few pixels on LR images, e.g. eyes, nose, and mouth [18]. Previous stud-
ies mainly focused on feature based knowledge distillation (F-KD) methods to
encourage the LR network’s features to mimic the HR network’s features by
reducing the Euclidean distance between them [8, 22, 37]. The original concept
of F-KD was proposed as a lightweight student model to mimic features from
over-parameterized teacher models [34]. Because teacher model’s features would
generally include more information than the student model, F-KD approaches
improve the accuracy of the student model. Similarly, informative features from
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the HR network are distilled to the LR network in the LR face recognition prob-
lems.

This study proposes the attention similarity knowledge distillation approach
to distill well-constructed attention maps from an HR network into an LR net-
work by increasing similarity between them. The approach was motivated by the
observation that humans can approximate an object’s regions from LR images
based on prior knowledge learned from previously viewed HR images. Kumar
et al. proposed that guiding the LR face recognition network to generate facial
keypoints (e.g., eyes, ears, nose, and lips) improved recognition performance by
directing the network’s attention to the informative regions [18]. Thus, we de-
signed the prior knowledge as an attention map and transferred the knowledge
by increasing similarity between the HR and LR networks’ attention maps.

Experiments on LR face recognition, face detection, and general object clas-
sification demonstrated that the attention mechanism was the best prior knowl-
edge obtainable from the HR networks and similarity was the best method for
transferring knowledge to the LR networks. Ablation studies and attention anal-
yses demonstrated the proposed A-SKD effectiveness.

2 Related Works

Knowledge distillation. Hinton et al. first proposed the knowledge distil-
lation approach to transfer knowledge from a teacher network into a smaller stu-
dent network [12]. Soft logits from a teacher network were distilled into a student
network by reducing the Kullback-Leibler (KL) divergence score, which quanti-
fies the difference between the teacher and student logits distributions. Various
F-KD methods were subsequently proposed to distill intermediate representa-
tions [25, 27, 34, 35]. FitNet reduced the Euclidean distance between teacher and
student network’s features to boost student network training [27]. Zagoruyko
et al. proposed attention transfer (AT) to reduce the distance between teacher
and student network’s attention maps rather than distilling entire features [35].
Since attention maps are calculated by applying channel-wise pooling to feature
vectors, activation levels for each feature can be distilled efficiently. Relational
knowledge distillation (RKD) recently confirmed significant performance gain
by distilling structural relationships for features across teacher and student net-
works [25].

Feature guided LR face recognition. Various approaches that distill
well-constructed features from the HR face recognition network to the LR net-
work have been proposed to improve LR face recognition performances [8, 22, 37].
Conventional knowledge distillation methods assume that over-parameterized
teacher networks extract richer information and it can be transferred to smaller
student networks. Similarly, LR face recognition studies focused on transfer-
ring knowledge from networks trained on highly informative inputs to networks
trained on less informative inputs. Zhu et al. introduced knowledge distillation
approach for LR object classification [37], confirming that simple logit distillation
from the HR to LR network significantly improved LR classification performance,
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even superior to super-resolution based methods. F-KD [22] and hybrid order
relational knowledge distillation (HORKD) [8], which is the variant of RKD [25],
methods were subsequently applied to LR face recognition problems to transfer
intermediate representations from the HR network.

Another approach is to guide the LR network by training it to generate
keypoints (e.g. eyes, ears, nose, and lips) [18]. An auxiliary layer is added to
generate keypoints, and hence guide the network to focus on specific facial char-
acteristics. It is well known that facial parts such as eyes and ears are important
for recognition [17, 18], hence LR face recognition networks guided by keypoints
achieve better performance. Inspired by this, we designed the attention distilla-
tion method that guides the LR network to focus on important regions of the
HR network. However, attention distillation methods have not been previously
explored for LR face recognition. We investigated the efficient attention distilla-
tion methods for LR settings and proposed the cosine similarity as the distance
measure between HR and LR network’s attention maps.

3 Method

3.1 Low resolution image generation

We require HR and LR face image pairs to distill the HR network’s knowledge
to the LR network. Following the protocol for LR image generation in super-
resolution studies [5, 6, 19, 26], we applied bicubic interpolation to down-sample
HR images with 2×, 4×, and 8× ratios. Gaussian blur was then added to generate
realistic LR images. Finally, the downsized images were resized to the original
image size using bicubic interpolation. Figure 2 presents sample LR images.

Fig. 2. The samples of HR and LR images from the training dataset (CASIA [33]) with
the down-sampling ratios of 2×, 4×, and 8×.



Teaching Where to Look: Attention Similarity Knowledge Distillation 5

3.2 Face recognition with attention modules

Face recognition network. ArcFace [3] is a SOTA face recognition network
comprising convolutional neural network (CNN) backbone and angular margin
introduced to softmax loss. Conventional softmax loss can be expressed as

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

, (1)

where xi ∈ Rd is the embedded feature of the i-th sample belonging to the yi-
th class; N and n are the batch size and the number of classes, respectively;
Wj ∈ Rd denotes the j-th column of the last fully connected layer’s weight
W ∈ Rd×n and bj ∈ Rn is the bias term for the j-th class.

For simplicity, the bias term is fixed to 0 as in [20]. Then the logit of the
j-th class can be represented as WT

j xi = ∥Wj∥∥xi∥cos(θj), where θj denotes the
angle between theWj and xi. Following previous approaches [20, 29], ArcFace set
∥Wj∥ = 1 and ∥xi∥ = 1 via l2 normalisation to maximize θj among inter-class
and minimize θj among intra-class samples. Further, constant linear angular
margin (m) was introduced to avoid convergence difficulty. The ArcFace [3] loss
can be expressed as

Larcface = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m))+
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j=1,j ̸=yi
es(cos(θj))

, (2)

where s is the re-scale factor and m is the additive angular margin penalty
between xi and Wyi .

Attention. Attention is a simple and effective method to guide feature focus
on important regions for recognition. Let fi = Hi(x) be intermediate feature out-
puts from the i -th layer of the CNN. Attention maps about fi can be represented
as the Ai(fi), where Ai(·) is attention module.

Many attention mechanisms have been proposed; AT [35] simply applied
channel-wise pooling to features to estimate spatial attention maps. SENet [13]
and CBAM [31] utilized parametric transformations, e.g. convolution layers, to
represent attention maps. Estimated attention maps were multiplied with the
features and passed to a successive layer. Trainable parameters in attention
module are updated to improve performance during back-propagation, forming
accurate attention maps. Attention mechanisms can be expressed as

f
′

i = Ac
i (fi)⊗ fi (3)

and
f
′′

i = As
i (f

′

i )⊗ f
′

i , (4)

where Ac
i (·) and As

i (·) are attention modules for channel and spatial attention
maps, respectively.

Features are refined twice by multiplying channel and spatial attention maps
in order (3) and (4). Any parametric attention transformation could be employed
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Fig. 3. Proposed A-SKD framework. The LR network formulates precise attention
maps by referencing well-constructed channel and spatial attention maps obtained
from the HR network, focusing on detailed facial parts which are helpful for the face
recognition. We only show the attention distillation for the first block.

for the proposed A-SKD, and we adopted the popular CBAM [31] module,

Ac(f) = σ(FC(AvgPool(f)) + FC(MaxPool(f))) (5)

and

As(f) = σ(f7×7(AvgPool(f);MaxPool(f))), (6)

where σ(·) is the sigmoid function; and FC(·) and f7×7(·) are fully connected
and convolution layers with 7× 7 filters, respectively.

3.3 Proposed attention similarity knowledge distillation framework

Unlike the conventional knowledge distillation, the network size of teacher
and student network is same for A-SKD. Instead, the teacher network is trained
on HR images whereas the student network is trained on LR images. Due to the
resolution differences, features from both networks are difficult to be identical.
Therefore, we propose to distill well-constructed attention maps from the HR
network into the LR network instead of features.

ρi = 1− ⟨AT,i(fT,i),AS,i(fS,i)⟩

= 1− AT,i(fT,i)

∥AT,i(fT,i)∥2
· AS,i(fS,i)

∥AS,i(fS,i)∥2
,

(7)

where ρi is the cosine distance between attention maps from the i -th layer of the
teacher and student networks; ⟨·, ·⟩ denotes the cosine similarity; ∥·∥2 denotes
L2-norm; Ai(fi) denotes the attention maps for the i -th layer features; and T
and S denote the teacher and student network, respectively. Thus, AT,i(fT,i) and
AS,i(fS,i) are attention maps estimated from the i -th layer of the teacher and
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student network’s features, respectively. Reducing the cosine distance between
HR and LR attention maps increases the similarity between them.

Distillation loss for A-SKD is calculated as

Ldistill =

N∑
i=1

(ρsi + ρci )

2
(8)

which average the cosine distance for channel and spatial attention maps between
the HR and LR networks, and sums them across layers (i = 1, 2, 3, ..., N) of the
backbone. N is the number of layers utilized for the distillation.

Total loss for the LR face recognition network is the sum of target task’s loss
and distillation loss (8) weighted by the factor (λdistill). In this work, we utilized
the ArcFace loss (2) as a target task’s loss.

Ltotal = Larcface + λdistill ∗ Ldistill. (9)

Further, our method can be utilized in conjunction with the logit distillation
by simply adding the logit distillation loss [12] to our loss function (9). Since
logit is the final output of the network, incorporating the logit distillation loss
allows the LR network to make the same decision as the HR network based on
the refined attention maps.

4 Experiments

4.1 Settings

Datasets. We employed the CASIA [33] dataset for training, which is a
large face recognition benchmark comprising approximately 0.5M face images
for 10K identities. Each sample in CASIA was down-sampled to construct the
HR-LR paired face dataset. For the evaluation, the manually down-sampled face
recognition benchmark (AgeDB-30 [23]) and the popular LR face recognition
benchmark (TinyFace [1]) were employed. Since AgeDB-30 have similar resolu-
tion to CASIA, networks trained on down-sampled CASIA images were validated
on AgeDB-30 down-sampled images with matching ratio. In contrast, the real-
world LR benchmark (TinyFace) comprises face images with the resolution of
24×24 in average when they are aligned. Therefore, they were validated using a
network trained on CASIA images down-sampled to 24×24 pixels.

Task and metrics. Face recognition was performed for two scenarios: face
verification and identification. Face verification is where the network determines
whether paired images are for the same person, i.e., 1:1 comparison. To evaluate
verification performance, accuracy was determined using validation sets con-
structed from probe and gallery set pairs following the LFW protocol [14]. Face
identification is where the network recognize the identity of a probe image by
measuring similarity against all gallery images, i.e., 1:N comparison. This study
employed the smaller AgeDB-30 dataset for the face verification; and larger
TinyFace dataset for the face identification.
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Comparison with other methods. Typically, the distillation of intermedi-
ate representation is performed concurrently with the target task’s loss. Previous
distillation methods in the experiments utilized the both face recognition and
distillation loss, albeit face recognition loss of varying forms. In addition, some
feature distillation approach reported their performances with the logit distilla-
tion loss. In order to conduct a fair comparison, we re-implemented the prior dis-
tillation methods with the same face recognition loss (ArcFace [3]) and without
the logit distillation loss. Further, our method requires the parametric attention
modules for the distillation. Therefore, we utilized the same backbone network
with CBAM attention modules for all methods; we combined the CBAM mod-
ules to all convolution layers, with the exception of the stem convolution layer
and the convolution layer with a kernel size of 1.

Implementation details. We followed the ArcFace protocol for data pre-
processing: detecting face regions using the MTCNN [36] face detector, cropping
around the face region, and resizing the resultant portion to 112×112 pixel us-
ing bilinear interpolation. The backbone network was ResNet-50 with CBAM
attention module. For the main experiments, we distilled the attention maps for
every convolution layers with the exception of the stem convolution layer and
the convolution layer with a kernel size of 1. Weight factors for distillation (9)
λdistill = 5. This weight factors generally achieved the superior results not only
for the face recognition benchmarks, but also for the ImageNet [2]. Learning
rate = 0.1 initially, divided by 10 at 6, 11, 15, and 17 epochs. SGD optimizer
was utilized for the training with batch size = 128. Training completed after 20
epochs. The baseline refers to the LR network that has not been subjected to any
knowledge distillation methods. For the hyperparameter search, we divided 20%
of the training set into the validation set and conducted a random search. After
the hyperparameter search, we trained the network using the whole training set
and and performed the evaluation on the AgeDB-30 and TinyFace.

4.2 Face recognition benchmark results

Evaluation on AgeDB-30. Table 1 shows LR face recognition performance
on AgeDB-30 with various down-sample ratios depending on distillation meth-
ods. Except for HORKD, previous distillation methods [22, 35] exhibited only
slight improvement or even reduced performance when the downsampling ratios
increase. This indicates that reducing the L2 distance between the HR and LR
network’s features is ineffective. In contrast, HORKD improved LR recognition
performance by distilling the relational knowledge of the HR network’s features.
When the input’s resolution decrease, the intermediate features are hard to be
identical with the features from the HR network. Instead the relation among the
features of the HR network can be transferred to the LR network despite the
spatial information loss; this was the reason of HORKD’s superior performances
even for the 4× and 8× settings.

However, attention maps from the HORKD exhibit similar pattern to LR
baseline network rather than the HR network in the Figure 4. HR attention maps
are highly activated in facial landmarks, such as eyes, lips, and beard, which
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Table 1. Proposed A-SKD approach compared with baseline and previous SOTA
methods on AgeDB-30 with 2×, 4×, and 8× down-sampled ratios. L, F, SA, and CA
indicate distillation types of logit, feature, spatial attention, and channel attention,
respectively. Ver-ACC denotes the verification accuracy. Base refers to the LR network
that has not been subjected to any knowledge distillation methods.

Resolution Method Distill Type Loss Function
Ver-ACC (%)
(AgeDB-30)

1× Base - - 93.78

2×

Base - - 92.83
F-KD [22] F L2 93.05
AT [35] SA L2 92.93

HORKD [8] F L1+Huber 93.13
A-SKD (Ours) SA+CA Cosine 93.35

A-SKD+KD (Ours) SA+CA+L Cosine+KLdiv 93.58

4×

Base - - 87.74
F-KD [22] F L2 87.72
AT [35] SA L2 87.75

HORKD [8] F L1+Huber 88.08
A-SKD (Ours) SA+CA Cosine 88.58

A-SKD+KD (Ours) SA+CA+L Cosine+KLdiv 89.15

8×

Base - - 77.75
F-KD [22] F L2 77.85
AT [35] SA L2 77.40

HORKD [8] F L1+Huber 78.27
A-SKD (Ours) SA+CA Cosine 79.00

A-SKD+KD (Ours) SA+CA+L Cosine+KLdiv 79.45

are helpful features for face recognition [18]. In contrast, detailed facial parts
are less activated for LR attention maps because those parts are represented
with a few pixels. Although HORKD boosts LR recognition performance by
transferring HR relational knowledge, it still failed to capture detailed facial
features crucial for recognition. The proposed A-SKD method directs the LR
network’s attention toward detailed facial parts that are well represented by the
HR network’s attention maps.

Based on the refined attention maps, A-SKD outperforms the HORKD and
other knowledge distillation methods for all cases. AgeDB-30 verification accu-
racy increased 0.6%, 1.0%, and 1.6% compared with baseline for 2×, 4×, and
8× down-resolution ratios, respectively. In addition, when A-SKD is combined
with logit distillation (KD), the verification accuracy increased significantly for
all settings. From the results, we confirmed that the attention knowledge from
the HR network can be transferred to the LR network and led to significant
improvements that were superior to the previous SOTA method.

Evaluation on TinyFace. Unlike the face verification, the identification
task requires to select a target person’s image from the gallery set consists of a
large number of face images. Therefore, the identification performances decrease
significantly when the resolution of face images are degraded. Table 2 showed the
identification performances on the TinyFace benchmark. When the AT [35] was
applied, the rank-1 identification accuracy decreased 13.34% compared to the
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baseline. However, our approach improved the rank-1 accuracy 13.56% compared
to the baseline, even outperforming the HORKD method. This demonstrated
that the parametric attention modules (CBAM) and cosine similarity loss are
the key factors for transferring the HR network’s knowledge into the LR network
via attention maps. The proposed method is generalized well to real-world LR
face identification task which is not manually down-sampled.

Table 2. Evaluation results on TinyFace identification benchmark depending on the
distillation methods. Acc@K denotes the rank-K accuracy (%).

ACC@1 ACC@5 ACC@10 ACC@50

Base 42.19 50.62 53.67 60.41
AT [35] 36.56 45.68 49.03 56.44

HORKD [8] 45.49 54.80 58.26 64.30
A-SKD (Ours) 47.91 56.55 59.92 66.60

5 Discussion

Attention correlation analysis. Figure 5 shows Pearsons correlation be-
tween attention maps from the HR and LR networks for the different distillation
methods. Spatial and channel attention maps from the four blocks for models
other than A-SKD have a low correlation between the HR and LR networks, with
a magnitude lower than 0.5. In particular, spatial attention maps obtained from
the first block of the LR baseline and HORKD network have negative correlation
with the HR network (r = −0.39 and −0.29, respectively).

Figure 4 shows that spatial attention maps from LR baseline and HORKD
networks are highly activated in skin regions, which are less influenced by resolu-
tion degradation, in contrast to the HR network. This guides the LR network to
the opposite directions from the HR network. However, spatial attention maps
from A-SKD exhibit strong positive correlation with those from the HR network,
highlighting detailed facial attributes such as beard, hair, and eyes. Through the
A-SKD, the LR network learned where to focus by generating precise attention
maps similar to those for the HR network. Consequently, Pearsons correlation,
i.e., the similarity measure between HR and LR attention maps, was significantly
improved for all blocks, with a magnitude higher than 0.6. Thus the proposed
A-SKD approach achieved superior efficacy and success compared with previous
feature based SOTA methods.

Comparison with attention transfer [35]. Primary distinctions between
AT [35] and A-SKD include the cosine similarity loss, parametric attention mod-
ules, and distillation of both channel and spatial attention maps. Correlation
analysis for A-SKD confirmed that the cosine similarity loss is an effective strat-
egy for transferring attention knowledge. Distilling AT attention maps using the
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Fig. 4. Normalized spatial attention maps from the first block for different distillation
methods. Red and blue regions indicate high and low attention, respectively. Face
images and attention maps are from the AgeDB-30.

Fig. 5. Pixel level Pearsons correlation between the HR and LR network’s attention
maps for different distillation methods. B{i}-{S,C} indicates Pearsons correlation for
spatial or channel attention maps obtained from the i-th ResNet block between the
HR and LR networks; and r is Pearsons correlation coefficient representing linear re-
lationships between input variables. Base refers to the LR network that has not been
subjected to any knowledge distillation methods. Pearsons correlation is measured us-
ing the AgeDB-30.
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cosine similarity rather than the L2 loss increased AgeDB-30 verification ac-
curacy by 0.32%p (Table 3). AT calculates attention maps using channel-wise
pooling, a non-parametric layer; whereas A-SKD calculates attention maps using
parametric layers comprising fully connected and convolution layers. When the
input image resolution degrades, the student network’s feature representation
diverges from that of the teacher network. Therefore, it is difficult to match the
attention maps of the student network obtained by the non-parametric mod-
ule with those of the teacher network. Instead, A-SKD employs the paramet-
ric module for the attention maps extraction and the cosine similarity loss for
the distillation; therefore, the attention maps from the student network can be
adaptively trained to be similar to the attention maps from the teacher network
despite the differences in the features. Finally, A-SKD distills both spatial and
channel attention maps in contrast to AT which only considered spatial atten-
tion maps. We confirmed A-SKD with spatial and channel attention additionally
improved AgeDB-30 verification accuracy by 0.34%p compared with spatial-only
attention. This comparison results also confirmed that A-SKD, designed for at-
tention distillation on LR settings, is the most effective approach for transferring
attention knowledge.

Table 3. Comparing attention transfer (AT) [35] and proposed A-SKD on AgeDB-30
benchmark down-sampled with 8× ratio. AT* indicates the cosine similarity loss was
utilized for attention transfer rather than the original L2 loss. SA and CA indicate
spatial and channel attention maps, respectively.

Method Type Transformation Loss Function
Ver-ACC (%)
(AgeDB-30)

AT [35] SA Non-parametric layer L2 77.40
AT∗ SA Non-parametric layer Cosine 77.72

A-SKD SA Parametric layer Cosine 78.66
A-SKD SA + CA Parametric layer Cosine 79.00

6 Extension to Other Tasks

6.1 Object classification

We conducted experiments for object classification on LR images using the
4× down-sampled ImageNet [2]. For the backbone network, we utilized the
ResNet18 with CBAM attention modules. We compared our method to other
knowledge distillation methods (AT [35] and RKD [25]) which are widely uti-
lized in the classification domains. We re-implemented those methods using its
original hyperparameters. Usually, AT and RKD were utilized along with the
logit distillation for the ImageNet; therefore, we performed the AT, RKD, and
A-SKD in conjunction with the logit distillation in the Table 4. Training details
are provided in the Supplementary Information.
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Table 4 shows that A-SKD outperformed the other methods on the LR Im-
ageNet classification task. Park et al. demonstrated that introducing the ac-
curate attention maps led the significant improvement on classification perfor-
mances [24, 31]. When the attention maps were distilled from the teacher net-
work, student network could focus on informative regions by forming precise
attention maps similar with the teacher’s one. Thus, our method can be gener-
alized to general object classification task, not restricted to face related tasks.

Table 4. Proposed A-SKD performance on low resolution ImageNet classification. All
distillation methods were performed in conjunction with the logit distillation.

Resolution Method ACC (%)

1× Base 70.13

4×

Base 65.34
AT [35] 65.79
RKD [25] 65.95
A-SKD 66.52

6.2 Face detection

Face detection is a sub-task of object detection to recognize human faces in
an image and estimate their location(s). We utilized TinaFace [38], a deep learn-
ing face detection model, integrated with the CBAM attention module to extend
the proposed A-SKD approach to face detection. Experiments were conducted
on the WIDER FACE [32] dataset (32,203 images containing 393,703 faces cap-
tured from real-world environments) with images categorized on face detection
difficulty: easy, medium, and hard. LR images were generated with 16× and 32×
down-resolution ratios, and further training and distillation details are provided
in the Supplementary Information.

Table 5. Proposed A-SKD performance on LR face detection. mAP is mean average
precision; easy, medium, and hard are pre-assessed detection difficulty.

Resolution Model
mAP (%)

Easy Medium Hard

1× Base 95.56 95.07 91.45

16× Base 54.38 52.73 35.29
A-SKD 62.93 60.19 47.28

32× Base 31.15 26.68 14.00
A-SKD 33.50 30.04 16.02

Table 5 shows that A-SKD improved the overall detection performance by
distilling well-constructed attention maps, providing significant increases of mean
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average precision (mAP) for the easy (15.72% for 16× and 7.54% for 32×),
medium (14.15% for 16× and 12.59% for 32×), and hard (33.98% for 16× and
14.43% for 32×) level detection tasks. Small faces were well detected in the LR
images after distillation as illustrated in Figure 6. Thus the proposed A-SKD
approach can be successfully employed for many LR machine vision tasks.

Fig. 6. Qualitative results for LR face detection before and after applying A-SKD.
Small faces were better detected after A-SKD. The face images are from the evaluation
set of WIDERFACE.

7 Conclusion

We verified that attention maps constructed from HR images were simple
and effective knowledge that can be transferred to LR recognition networks to
compensate for spatial information loss. The proposed A-SKD framework en-
abled any student network to focus on target regions under LR circumstances
and generalized well for various LR machine vision tasks by simply transferring
well-constructed HR attention maps. Thus, A-SKD could replace conventional
KD methods offering improved simplicity and efficiency and could be widely
applicable to LR vision tasks, which have not been strongly studied previously,
without being limited to face related tasks.
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