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Abstract. Talking head synthesis is an emerging technology with wide
applications in film dubbing, virtual avatars and online education. Re-
cent NeRF-based methods generate more natural talking videos, as they
better capture the 3D structural information of faces. However, a specific
model needs to be trained for each identity with a large dataset. In this
paper, we propose Dynamic Facial Radiance Fields (DFRF) for few-shot
talking head synthesis, which can rapidly generalize to an unseen identity
with few training data. Different from the existing NeRF-based methods
which directly encode the 3D geometry and appearance of a specific per-
son into the network, our DFRF conditions face radiance field on 2D
appearance images to learn the face prior. Thus the facial radiance field
can be flexibly adjusted to the new identity with few reference images.
Additionally, for better modeling of the facial deformations, we propose
a differentiable face warping module conditioned on audio signals to de-
form all reference images to the query space. Extensive experiments show
that with only tens of seconds of training clip available, our proposed
DFRF can synthesize natural and high-quality audio-driven talking head
videos for novel identities with only 40k iterations. We highly recommend
readers view our supplementary video for intuitive comparisons. Code is
available in https://sstzal.github.io/DFRF/.
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1 Introduction

Audio-driven talking head synthesis is an ongoing research topic with a variety
of applications including filmmaking, virtual avatars, video conferencing and on-
line education [4,17,45,51,53,55]. Existing talking head generation methods can
be roughly divided into 2D-based and 3D-based ones. Conventional 2D-based
methods usually depend on GAN model [6, 11, 16] or image-to-image transla-
tion [12, 53–55]. However, due to the lack of 3D structure modeling, most of
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Fig. 1. We propose Dynamic Facial Radiance Fields (DFRF), a learning framework for
few-shot talking head synthesis within a small number of training iterations. Given only
a 15s video clip of Obama for 10k iterations training, our DFRF rapidly generalizes to
this specific identity including the scene, and synthesizes photo-realistic talking head
sequence as shown in row (c). In contrast, NeRF [27] and AD-NeRF [17] fail to produce
plausible results in such a few-shot setting within limited training iterations.

these approaches struggle in generating vivid and natural talking styles. Another
genre for talking head synthesis [4, 36, 39, 49] relies on the 3D morphable face
model (3DMM) [2,40,57]. Benefit from the 3D-aware modeling, they can generate
more vivid talking faces than 2D-based methods. Since the use of intermediate
3DMM parameters leads to some information loss, the audio-lip consistency of
the generated videos may be affected [17].

More recently, the emerging Neural Radiance Fields (NeRF) based talking
head methods [17, 27, 47] have achieved great performance improvement. They
map audio features to a dynamic radiance field for talking portraits rendering
without introducing extra intermediate representation. However, they directly
encode the 3D geometry and appearance of a specific person into the radiance
field, thereby failing to generalize to novel identities. A specific model needs to
be trained for each novel identity with high computational cost. Moreover, a
large training dataset is required, which cannot meet some practical scenarios
where only a few data is available. As shown in Fig. 1, given only a 15s training
clip, AD-NeRF [17] renders some blurry faces after 10k training iterations.

In this paper, we study this more challenging setting, few-shot talking head
synthesis, for the aforementioned practical application scenarios. For an arbitrary
new identity with merely a short training video clip available, the model should
generalize to this specific person within a few iterations of fine-tuning. There
are three key features of the few-shot talking head synthesis i.e. limited training
video, fast convergence, and realistic generation results. To this end, we propose
a Dynamic audio-driven Facial Radiance Field (DFRF) for few-shot talking head
synthesis. A reference mechanism is designed to learn the generic mapping from a
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few observed frames to the talking face with corresponding appearance (including
the same identity, hairstyle and makeup). Specifically, with some 2D observations
as references, the 3D query point can be projected back to the 2D image space
of these references respectively and draw the corresponding pixel information
to guide the following synthesis and rendering. A prior assumption for such
projection operation is that two intersecting rays in 3D volume space should
correspond to the same color [27, 29]. This conception holds for static scenes,
yet talking heads are deformable objects and such naive warping may lead to
some mismatch. We therefore introduce a differentiable face warping module for
better modeling the facial dynamics when talking. This face warping module
is realized as a 3D point-wise deformation field conditioned on audio signals to
warp all reference images to the query space.

Extensive experiments show that our proposed DFRF can generate realistic
and natural talking head videos with few training data and training iterations.
Fig. 1 shows the visual comparison with NeRF [27] and AD-NeRF [17]. Given
only a 15-second video clip of Obama for 10k training iterations, our proposed
DFRF quickly generalizes to this specific identity and synthesizes photo-realistic
talking head results. In contrast, NeRF and AD-NeRF fail to produce plausible
results in such few-shot setting within limited training iterations. To summarize,
we make the following contributions:

– We propose a dynamic facial radiance field conditioned on the 3D aware refer-
ence image features. The facial field can rapidly generalize to novel identities
with only 15s clip for fine-tuning.

– For better modeling the face dynamics of talking head, we learn a 3D point-
wise face warping module conditioned on audio signals for each reference image
to warp it to the query space.

– The proposed DFRF can generate vivid and natural talking head videos using
only a handful of training data with limited iterations, which far surpasses
other NeRF-based methods under the same setting. We highly recommend
readers view the supplementary videos for better comparisons.

2 Related Work

2D-Based Talking-Head Synthesis. Talking-head synthesis aims to animate
portraits with given audios. 2D-based methods usually employ GANs [6,11,16,31]
or image-to-image translation [12,53–56] as the core technologies, and use some
intermediate parameters such as 2D landmarks [5,7,11,25,55] to realize the syn-
thesis task. There are also some works focusing on the few-shot talking head
generation [12,23,26,44,51]. Zakharov et al. [51] propose a few-shot adversarial
learning approach through pre-training high-capacity generator and discrimina-
tor via meta-learning. Wang et al. [44] realize one-shot talking head generation
by predicting flow-based motion fields. Meshry et al. [26] disentangle the spatial
and style information for few-shot talking head synthesis. However, since these
2D-based methods cannot grasp the 3D structure of head, the naturalness and
vividness of the generated talking videos are inferior to the 3D-based methods.
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3D-Based Talking-Head Synthesis. A series of 3D model-based meth-
ods [4, 9, 13, 19–21, 36, 37, 39] generate talking heads by utilizing 3D Morphable
Models (3DMM) [2,34,40,57]. Taking advantage of 3D structure modeling, these
approaches can achieve more natural talking style than 2D methods. Represen-
tative methods [37,39] have generated realistic and natural talking head videos.
However, since their networks are optimized on a specific identity for idiosyn-
crasies learning, per-identity training on a large dataset is needed. Another com-
mon limitation is the information loss brought by the use of intermediate 3DMM
parameters [2]. In contrast, our proposed method gets rid of such computation-
ally expensive per-identity training settings while generating high-quality videos.
More recently, the emerging NeRF [27] provides a new technique for 3D-aware
talking head synthesis. Guo et al. [17] are the first to apply NeRF into the area
of talking head synthesis and have achieved better visual quality. Yao et al. [47]
further disentangle lip movements and personalized attributes. However both of
them suffer in the few-shot learning setting.

Neural Radiance Fields. Neural Radiance Fields (NeRF) [27] store the
information of 3D geometry and appearance in terms of voxel grids [35,38] with
a fully-connected network. The invention of this technology has inspired a se-
ries of following works. pi-GAN [3] proposes a generative model with NeRF as
the backbone for static face generation while our method learns a dynamic ra-
diance field. Since the original NeRF is designed for static scenes, some works
try to extend this technique to the dynamic domain [14, 15, 29, 32, 41]. Gafni et
al. [14] encode the expression parameters into the NeRF for dynamic faces ren-
dering. [29,32,41] encode non-rigid scenes via ray bending into a canonical space.
[45] represents face as compact 3D keypoints and performs keypoint driven ani-
mation. i3DMM [48] generates faces relying on geometry latent code. However,
these methods need to optimize the model to every scene independently requir-
ing a large dataset, while our method realizes fast generalization across identities
based on easily accessible 2D reference images. There are also some other works
that try to improve NeRF’s generalization capabilities [42, 43, 50], yet their re-
search are limited to static scenes.

3 Methodology

3.1 Problem Statement

Some limitations of existing talking head technologies hinder them from practical
applications. 2D-based methods struggle to generate a natural talking style [39].
Classical 3D-based approaches have information loss due to the use of 3DMM
intermediate representations [17]. NeRF-based ones synthesize superior talking
head videos, however the computational cost is relatively high since a specific
model needs to be trained for each identity. And a large dataset is required
for training. We therefore focus on a more challenging setting for the talking
head synthesis task. For an arbitrary person with merely a short training video
clip available, a personalized audio-driven portrait animation model with high-
quality synthesis results should be constructed within only a few iterations of
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Fig. 2. Overview of the proposed Dynamic Facial Radiance Fields (DFRF).

fine-tuning. Three core features of this setting can be summarized as: limited
training data, fast convergence and excellent generation effect.

To this end, we propose a Dynamic Facial Radiance Field (DFRF) for few-
shot talking head synthesis. The image features are introduced as a condition
to build a fast mapping from reference images to the corresponding facial ra-
diance field. For better modeling the facial deformations, we further design a
differentiable face warping module to warp reference images to the query space.
Specifically, for fast convergence, a base model is firstly trained across differ-
ent identities to capture the structure information of the head and establish a
generic mapping from audio to lip motions. On this basis, efficient fine-tuning
is performed to quickly generalize to a new target identity. In the following, we
will detail these designs.

3.2 Dynamic Facial Radiance Field

The emerging NeRFs [27] provide a powerful and elegant framework for 3D scene
representation. It encodes a scene into a 3D volume space with a MLP Fθ. The
3D volume can then be rendered into images by integrating colors and densities
along camera rays [10, 28, 33]. Specifically, using P as the collection of all 3D
points in the voxel space, with a 3D query point p = (x, y, z) ∈ P and a 2D view
direction d = (θ, ϕ) as input, this MLP infers the corresponding RGB color c
and density σ, which can be formulated as (c, σ) = Fθ (p, d).

In this work, we employ NeRF as the backbone for 3D-aware talking head
modeling. The talking head task focuses on the audio-driven face animation.
However, the original NeRF is designed for only static scenes. We therefore pro-
vide the missing deformation channel by introducing audio condition as shown
in the audio stream of Fig. 2. We firstly use a pre-trained RNN-based Deep-
Speech [18] module to extract the per-frame audio feature. For inter-frame consis-
tency, a temporal filtering module [39] is further introduced to compute smooth
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Fig. 3. Visualization of the differentiable face warping. A query 3D point (purple) is
projected to the reference image space (red). Then an offset ∆o is learned to warp it
to the query space (green), where its feature is computed by bilinear interpolation.

audio features A, which can be denoted as the self-attention-based fusion of its
neighbor audio features. Taking these audio feature sequences A as the condi-
tion, we can learn the audio-lip mapping. This audio-driven facial radiance field
can be denoted as (c, σ) = Fθ (p, d,A).

Since the identity information is implicitly encoded into the facial radiance
field, and no explicit identity feature is provided when rendering, this facial ra-
diance field is person specific. For each new identity, it needs to be optimized
from scratch on a large dataset. This leads to expensive calculation costs and
requires long training videos. To get rid of these restrictions, we design a ref-
erence mechanism to empower a well-trained base model to quickly generalize
to new person categories, with only a short clip of the target person available.
An overview of this reference-based architecture is shown in Fig. 2. Specifically,
takenN reference imagesM =

{
Mn ∈ RH×W |1 ≤ n ≤ N

}
and their correspond-

ing camera position {Tn} as input, a two-layer convolutional network is used to
calculate their pixel aligned image features F =

{
Fn ∈ RH×W×D|1 ≤ n ≤ N

}
without down sampling. Feature dimension D is set as 128 in this work, and
H,W indicates the height and width of an image respectively. The use of mul-
tiple reference images provides better multi-view informations. For a 3D query
point p = (x, y, z) ∈ P, we project it back to the 2D image spaces of these
references using intrinsics {Kn} and camera poses {Rn, Tn} and get the corre-
sponding 2D coordinate. Using prefn = (un, vn) to denote the 2D coordinate in
the n-th reference image, this projection can be formulated as:

prefn = M(p,Kn, Rn, Tn), (1)

where M is the traditional mapping from world space to image space. These
corresponding pixel-level features {Fn(un, vn)} ∈ RN×D from N references are
then sampled after a rounding operation and fused with an attention-based mod-
ule [24] to get the final feature F̃ = Aggregation({Fn(un, vn)}) ∈ RD. These
feature grids contain rich information about identity and appearance. Using them
as an additional condition for our facial radiance field makes the model possible
to quickly generalize to a new face appearance from a few observed frames. This
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dual-driven facial radiance field can be finally formulated as:

(c, σ) = Fθ

(
p, d,A, F̃

)
. (2)

3.3 Differentiable Face Warping

In Section 3.2, we project the query 3D point back to the 2D image spaces of
these reference images as Eq. (1) to get the conditioned pixel features. This
operation bases on the prior knowledge in NeRF that intersecting rays casting
from different viewpoints should correspond to the same physical location and
thus yield the same color [29]. This strict spatial mapping relationship holds
for rigid scenes yet the talking face is dynamic. When speaking, the lip and
other facial muscles moves according to the pronunciation. Applying Eq. (1)
directly on a deformable talking face may result in the key points mismatch.
For example, a 3D point near the corner of the mouth in the standard volume
space is mapped back to the pixel space of a reference image. If the reference
face shows a different mouth shape, the mapped point may fall away from the
desired real mouth corner. Such inaccurate mapping results in incorrect pixel
feature conditions from reference images, which further affects the prediction of
deformations of talking mouth.

To tackle this limitation, we propose an audio-conditioned and 3D point-wise
face warping module Dη. It regresses offsets ∆o = (∆u,∆v) for every projected
point pref under the specific deformations, just as shown in the image stream of
Fig. 2. Specifically, Dη is realized as a deformation field with a three-layer MLP,
where η is the learnable parameters. To regress the offset ∆o, dynamics differ-
ences between the query image and these reference images need to be effectively
exploited. The audio information A reflects the dynamics of the query image,
while the deformations of the reference images can be seen through image fea-
tures {Fn} implicitly. We therefore take these two parts together with the query
3D point coordinate p as the input for Dη. The process to predict the offset with
the face warping module Dη can be formulated as:

∆on = Dη(p,A, Fn(un, vn)). (3)

The predicted offset on is then added to the prefn as shown in Fig. 3 to get the

exact corresponding coordinate prefn
′
for the 3D query point p,

prefn

′
= prefn +∆on = (u′

n, v
′
n), (4)

where u′
n = un +∆un and v′n = vn +∆vn.

Since the hard index operation Fn(un
′, vn

′) is not differentiable, the gradient
cannot be back propagated to this warpping module. We therefore introduce a
soft index function to realize the differentiable warpping, where the feature of
each pixel is obtained through features interpolation of its surrounding points by
bilinear sampling. In this way, the deformation field Dη and the facial radiance
field Fθ can be jointly optimized end to end. A visualization of this soft index
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operation is shown in Fig. 3. For the green point, its pixel feature is computed
through the features of its four nearest neighbours by bilinear interpolation. To
better constrain the training process of this warping module, we introduce a
regularization term Lr to limit the value of predicted offsets in a reasonable
range to prevent distortions,

Lr =
1

N · |P|
∑
p∈P

N∑
n=1

√
∆u2

n +∆v2n, (5)

where P is the collection of all 3D points in the voxel space, and N is the number
of reference images. Furthermore, we argue that the points with low density are
more likely to be background areas that should have low deformation offset. In
these regions, stronger regularization constraints should be imposed. For more
reasonable constraint, we change the above Lr as:

Lr
′ = (1− σ) · Lr, (6)

where σ indicates the density of these points. The dynamic facial radiance field
can finally be formulated as:

(c, σ) = Fθ

(
p, d,A, F̃ ′

)
, (7)

where F̃ ′ = Aggregation({Fn(un
′, vn

′)}).
With this face warping module, all reference images can be transformed to

the query space for better modeling the talking face deformations. The ablation
study in Section 4.2 has proven the effectiveness of this component in producing
more accurate and audio-synchronized mouth movements.

3.4 Volume Rendering

The volume rendering is used to integrate the colors c and densities σ from
Eq. (7) into face images. We treat the background, torso and neck parts to-
gether as the rendering ‘background’ and restore it frame by frame from the
original videos. We set the color of the last point of each ray as the correspond-
ing background pixel to render a natural background including the torso part.
Here we follow the setting in the original NeRF, and the accumulated color C of
a camera ray r under the condition of audio signal A and image features F̃ ′ is:

C
(
r; θ, η,R, T,A, F̃ ′

)
=

∫ zfar

znear

σ (t) · c(t) · T (t) dt, (8)

where θ and η are the learnable parameters for the facial radiance field Fθ

and the face warping module Dη respectively. R is the rotation matrix and

T is the translation vector. T (t) = exp
(
−
∫ t

znear
σ (r (s)) ds

)
is the integral

transmittance along camera ray, where znear and zfar are the near and far
bound of the camera ray. We follow the NeRF to design a MSE loss as LMSE =
∥C − I∥2, where I is the ground truth color. Coupled with the regularization
term in Eq. (6), the overall loss function can be formulated as:

L = LMSE + λ · Lr
′. (9)
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3.5 Implementation Details

We train only one base radiance field across different identities from coarse to
fine. In the coarse training stage, the facial radiance field Fθ as Eq. (2) is trained
under the supervision of LMSE to grasp the structure of the head and establish
a general mapping from audio to lip motions. Then we add the face warping
module into training as Eq. (7) to jointly optimize the offset regression network
Dη and the Fθ end to end with the loss function L in Eq. (9).

For an arbitrary unseen identity with only a short training clip available, we
only need tens of seconds of his/her speaking video for fine-tuning based on the
well-trained base model. After short iterations of fine-tuning, the personalized
mouth pronunciation patterns can be learned, and the rendered image quality
is greatly improved. Then this fine-tuned model can be used for inference.

4 Experiments

4.1 Experimental Settings

Dataset. AD-NeRF [17] collects several high-resolution videos in natural scenes
to better evaluate the performance in practical application. Following this prac-
tice, we collect 12 public videos with an average length of 3 minutes from 11
identities from the YouTube. The protagonists of these videos are all celebrities
like news anchors, entrepreneurs or presidents. We resample all videos to 25 FPS
and set the resolution as 512×512. We select three videos from different races and
languages (English and Chinese), and combine them into a three-minute video to
train the base model. For other videos, we split each of them into three training
sets of the length of 10s, 15s and 20s. Then the remaining part is used as the
test set. There is no overlap between the training set and the test set. All videos
and the corresponding identities used in the following experiments are unseen
when training the base model. These data will be released for reproduction.

Head Pose. Following the AD-NeRF, we estimate head poses based on
Face2Face [40]. To get temporally smooth poses, we further apply the bundle
adjustment [1] as a temporal filtering. The camera poses {Rn, Tn} are the inverse
of head poses, where R is the rotation matrix and T is the translation vector.

Metrics. We conduct performance evaluations through some quantitative
metrics and visual results. Peak Signal-to-Noise Ratio (PSNR↑), Structure SIMi-
larity (SSIM↑) [46] and Learned Perceptual Image Patch Similarity (LPIPS↓) [52]
are used as image quality metrics. PSNR tends to give higher scores to blurry
images [29]. We therefore recommend the more representative perceptual met-
rics LPIPS. We further use the SyncNet (offset↓/confidence↑) [8] to measure the
audio-visual synchronization. The SyncNet offset is better with smaller absolute
value. Here we use the ‘↓’ as a brief indication.

Training Details. Our code is based on PyTorch [30]. All experiments are
performed on an RTX 3090. The coefficient λ in Eq. (9) is set as 5e-8. We train
the base model with an Adam solver [22] for 300k iterations and then jointly
train it with the offset regression network for another 100k iterations.
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Reference 1 2 4 6

Metric PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
31.03 0.019 31.19 0.019 31.23 0.019 31.23 0.020

Table 1. Quantitative comparisons with different numbers of reference images.

Method
NeRF [27] AD-NeRF [17] Ours

10s 15s 20s 10s 15s 20s 10s 15s 20s

PSNR↑ 19.83 19.77 8.02 31.21 31.32 30.90 30.95 30.75 30.96
SSIM↑ 0.773 0.781 0.003 0.948 0.947 0.949 0.948 0.947 0.949
LPIPS↓ 0.237 0.239 1.058 0.039 0.041 0.040 0.036 0.036 0.036

SyncNet↓↑ - - - 15/1.313 -14/0.654 -5/0.932 0/3.447 0/4.105 0/4.346

Table 2. Method comparisons when using different lengths of training videos.

4.2 Ablation Study

The Number of Reference Images. In this work, we learn a generic render-
ing from arbitrary reference face images to talking head with the corresponding
appearance (including identity, hairstyle and makeup). Here we perform exper-
iments to investigate the performance gains from various reference face images.
We select different numbers of references and fine-tune the base model for 10k
iterations on 15s video clip respectively. Quantitative comparisons in Table 1
show that our method is robust to the number of reference images. According
to results, we uniformly use four references in the following experiments.

Impact of the Length of Training Data. In this subsection, we investi-
gate the impact of different amounts of training data. We fine-tune the proposed
DFRF with 10s, 15s, and 20s training videos for 50k iterations. For fair com-
parisons, we train NeRF and AD-NeRF with the same data and iterations. It is
worth noting that we have tried to pre-train NeRF and AD-NeRF across identi-
ties following DFRF. However since they lack the ability to generalize between
different identities, such per-training fails to learn the general audio-lip mapping.
Experimental results in Table 2 show that tens of seconds of data are insuffi-
cient for NeRF training. PSNR tends to give higher scores to blurry images [29],
so we recommend LPIPS as more representative metrics for visual quality. In
comparison, our method is able to acquire more prior knowledge about the gen-
eral audio-lip mapping from the base model, thus achieving better audio-visual
sync with limited training data. With only a 10s training video, the proposed
DFRF can achieve superior 0.036 LPIPS and 3.447 SyncNet confidence, while
AD-NeRF struggles in the lip-audio sync.

Effect of Differentiable Face Warping. In DFRF, we propose an audio
conditioned differentiable face warping module for better modeling the dynamics
of talking face. Here we conduct an ablation study to investigate the contribu-
tion of this component. Table 3 shows the generated results with and without
warping module on two test sets. All models are fine-tuned on 15s videos for 50k
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Method
Test Set A Test Set B

PSNR↑ SSIM↑ LPIPS↓ SyncNet↓↑ PSNR↑ SSIM↑ LPIPS↓ SyncNet↓↑
GT - - - 4/7.762 - - - 3/8.947
w/o 29.50 0.907 0.057 -1/4.152 28.98 0.899 0.104 -2/2.852
w 29.66 0.911 0.053 0/4.822 29.14 0.899 0.101 0/4.183

Table 3. Ablation study to investigate the contribution of the proposed differentiable
face warping module. ‘w’ indicates the model equipped with the face warping module.

Fig. 4. Ablation study on the proposed face warping module. The ground truth se-
quence shows a pout-like expression. Generated results from the model equipped with
the deformation field reproduce such pronunciation trend well in line (b), while results
in line (a) hardly reflect such lip motions.

iterations. Without this module, the query 3D point cannot be mapped to the
exact corresponding point in the reference image, especially in some areas with
rich dynamics. Therefore, the dynamics of the speaking mouth are affected to
some extent, which is reflected in the audio-visual sync (SyncNet score). In con-
trast, the model equipped with the deformation field can significantly improve
the SyncNet confidence and the visual quality also has slight improvement. Fig. 4
further shows some visual results for more intuitive comparisons. In this video
sequence, the ground truth shows a pout-like expression. The generated results
(b) with the deformation field show such pronunciation trend well, while results
in (a) hardly reflect this kind of lip motions.

4.3 Method Comparisons

Method Comparisons in the Few-shot Setting. In this section, we perform
method comparisons on two test sets using a 15s training clip for different train-
ing iterations. Quantitative results in Table 4 show that our proposed method far
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Method
Test Set A Test Set B

PSNR↑ SSIM↑ LPIPS↓ SyncNet↓↑ PSNR↑ SSIM↑ LPIPS↓ SyncNet↓↑
Ground-truth - - - 0/7.217 - - - -1/7.762

NeRF
1k 16.88 0.708 0.198 - 14.69 0.397 0.442 -
10k 13.98 0.531 0.338 - 15.24 0.396 0.427 -
40k 15.87 0.556 0.306 - 15.91 0.405 0.394 -

AD-NeRF
1k 27.38 0.901 0.084 -15/0.136 27.61 0.863 0.115 14/0.798
10k 29.14 0.931 0.057 -14/0.467 30.07 0.905 0.083 -2/0.964
40k 29.45 0.936 0.039 -14/0.729 30.72 0.909 0.059 -2/1.017

Ours
1k 28.96 0.933 0.040 -1/2.996 29.05 0.892 0.076 0/3.157
10k 29.33 0.935 0.043 0/4.246 29.68 0.905 0.063 0/4.038
40k 29.48 0.937 0.037 1/4.431 30.44 0.925 0.045 0/4.951

Table 4. Method comparisons on two test sets using 15s training clip for different
training iterations. More visual results can be seen in Fig. 5 and Fig. 6.

NeRF (Trained for 1k iters) AD-NeRF (Trained for 1k iters) Ours (Fine-tuned for 1k iters)

NeRF (Trained for 40k iters) AD-NeRF (Trained for 40k iters) Ours (Fine-tuned for 40k iters)

Fig. 5. Visual comparison using 15s training clip for different training iterations.

surpasses NeRF and AD-NeRF in the perceptual image quality metric LPIPS.
PSNR tends to give higher scores to blurry images [29] which can be proved
in the visualization in Fig. 6, so we recommend LPIPS as more representative
metrics for visual quality. We also achieve higher audio-lip synchronization indi-
cated by the SyncNet score while AD-NeRF nearly fails on this indicator. Fig. 5
visualizes the generated frames of the three methods. Under the same 1k training
iterations, the visual quality of our method is far superior to others. When train-
ing for 40k iterations, the AD-NeRF achieves acceptable visual quality, however
some face details are missing. The visual gap with our method can be seen ob-
viously from the zoomed-in details in Fig. 6. We show two generated talking
sequences driven by the same audio from our method and AD-NeRF with 15s
training clip after 40k iterations in Fig. 6. Compared with the ground truth,
our method shows more accurate audio-lip synchronization than AD-NeRF. For
example, in the fifth frame, the rendered face from AD-NeRF opens the mouth
wrongly. We zoom in some facial details for clearer comparison. It can be seen
that our method has generated more realistic details such as sharper hair tex-
ture, more obvious wrinkles, brighter pupils and more accurate mouth shape. In
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Fig. 6. Comparison with AD-NeRF using the same 15s training clip for 40k training
iterations. We zoom in on some facial details for better visual quality comparison.

Method
Test Set A Test Set B Few-shot

PSNR↑ LPIPS↓ SyncNet↓↑ PSNR↑ LPIPS↓ SyncNet↓↑ Method

Suwajanakorn et al. [37] - - 3/4.301 - - - ✕

NVP [39] - - - - - -1/4.677 ✕

AD-NeRF [17] 33.20 0.032 0/5.289 33.85 0.028 0/4.200 ✕

Ours 33.28 0.029 1/5.301 34.65 0.027 1/5.755 ✓

Table 5. Method comparisons with two non-NeRF based methods SO [37] and
NVP [39] and the AD-NeRF [17] under the setting with more training data.

our supplementary video, we further add the visual comparison with AD-NeRF
when it is trained to convergence (400k iterations).

Method Comparisons with More Training Data. Our DFRF is far
superior to others in the few-shot learning setting. For more comprehensive
evaluations, we further compare the DFRF with some recent high-performance
non-NeRF 3D-based methods [37,39] and the AD-NeRF [17] with more training
data (180s training clip). Since the source of [37,39] are not fully open, we follow
the AD-NeRF to collect two test sets from the demos of [37,39] for method com-
parisons, and the results are shown in Table 5. Our method still surpasses others
with long training clip up to 180s, since the proposed face warping module better
models the talking face dynamics. Moreover, our DFRF is the only method that
works in the few-shot learning setting. In the supplementary video, we further
include more comparisons with 2D-based (non-NeRF based) methods.

Cross-Language Results.We further verify the performance of our method
driven by audios with different languages and genders. We select four models
trained with 15s training clips from different languages (source), then conduct
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Source-Target
Same English Chinese Russian French Spanish German

Identity (Male) (Male) (Male) (Female) (Female) (Female)

English (Male) -3/5.042 -2/3.805 -2/4.879 -1/4.118 -2/3.019 -2/4.986 -1/4.820
Chinese (Male) 0/4.486 -2/3.029 -2/3.534 -3/4.206 -3/3.931 -3/4.085 -2/4.494
Russian (Male) -1/4.431 -2/2.831 -2/4.397 -2/5.109 -3/4.307 -1/5.011 -1/5.008
French (Male) -2/4.132 -2/3.193 -3/3.383 -3/4.088 -2/3.339 -2/3.728 -1/3.529

Table 6. SyncNet scores under the cross language setting.

inference with driven audios cross six languages and different genders (target).
We also list the self-driven (source and target are from the same identity) results
(the second column) for reference. SyncNet (offset/ confidence)(↓ / ↑) scores in
Table 6 shows that our method produces reasonable lip-audio synchronization
in such cross language setting.

4.4 Applications and Ethical Considerations

The talking head synthesis technique can be used in a variety of practical scenar-
ios, including correcting pronunciation, re-dubbing, virtual avatars, online edu-
cation, electronic game making and providing speech comprehension for hearing
impaired people. However, the talking head technology may bring some poten-
tial misuse issues. We are committed to combating these malicious behaviors and
advocate more attention to the active application of this technology. We sup-
port those organizations that devote themselves to identifying fake defamatory
videos, and are willing to provide them with the generated videos to expand the
training set for automatic identification technology. Meanwhile, any individual
or organization should obtain our permission before using our code, and it is
recommended to use a watermark to indicate the generated video.

5 Conclusion

In this paper, we have proposed a dynamic facial radiance field for few-shot
talking head synthesis. We employ audio signals coupled with 3D-aware image
features as the condition for fast generalizing to novel identities. To better model
the mouth motions of talking head, we further learn an audio-conditioned face
warping module to deform all reference images to the query space. Extensive
experiments show the superiority of our method in generating natural talking
videos with limited training data and iterations.
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