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Abstract. Knowledge distillation is an effective method to improve
the performance of a lightweight neural network (i.e., student model)
by transferring the knowledge of a well-performed neural network (i.e.,
teacher model), which has been widely applied in many computer vi-
sion tasks, including face recognition (FR). Nevertheless, the current FR
distillation methods usually utilize the Feature Consistency Distillation
(FCD) (e.g., L2 distance) on the learned embeddings extracted by the
teacher and student models for each sample, which is not able to fully
transfer the knowledge from the teacher to the student for FR. In this
work, we observe that mutual relation knowledge between samples is
also important to improve the discriminative ability of the learned rep-
resentation of the student model, and propose an effective FR distillation
method called CoupleFace by additionally introducing the Mutual Rela-
tion Distillation (MRD) into existing distillation framework. Specifically,
in MRD, we first propose to mine the informative mutual relations, and
then introduce the Relation-Aware Distillation (RAD) loss to transfer the
mutual relation knowledge of the teacher model to the student model.
Extensive experimental results on multiple benchmark datasets demon-
strate the effectiveness of our proposed CoupleFace for FR. Moreover,
based on our proposed CoupleFace, we have won the first place in the
ICCV21 Masked Face Recognition Challenge (MS1M track).
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1 Introduction

Face recognition (FR) has been well investigated for decades. Most of the progress
is credited to large-scale training datasets [59,19], resource-intensive networks
with millions of parameters [13,38] and effective loss functions [4,47]. In prac-
tice, FR models are often deployed on mobile and embedded devices, which are
incompatible with the large neural networks (e.g., ResNet-101 [13]). Besides,
as shown in Fig. 1(a), the capacities of the lightweight neural networks (e.g.,
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Fig. 1. The illustration of different methods for two samples from different classes.
f t1 and f t2 are extracted by teacher model, and fs1 and fs2 are extracted by student
model. dt and ds denote the distances (i.e., 1 − cos(f t1, f

t
2) and 1 − cos(fs1 , f

s
2 )) of the

embeddings, where cos(·, ·) measures the cosine similarity of two features. Model is
better when distance is larger. (a). The teacher and student models are both trained
by ArcFace [4]. (b). The teacher model is trained by ArcFace. The student model is
trained by using FCD. (c). The teacher model is trained by ArcFace. The student
model is trained by using both FCD and MRD in CoupleFace.

MobileNetV2 [35]) cannot be fully exploited when they are only supervised by
existing popular FR loss functions (e.g., ArcFace [4]). Therefore, how to develop
lightweight and effective FR models for real-world applications has been investi-
gated in recent years. For example, knowledge distillation [14] is being actively
discussed to produce lightweight and effective neural networks, which transfers
the knowledge from an effective teacher model to a lightweight student model.

Most existing knowledge distillation works usually aim to guide the student
to mimic the behavior of the teacher by introducing probability constraints (e.g.,
KL divergence [14]) between the predictions of teacher and student models, which
are not well-designed for FR. In contrast, as improving the discriminative ability
of the feature embedding is the core problem for FR, it is important to enable
the student model to share the same embedding space with the teacher model
for similarity comparison. Thus, a simple and straightforward FR distillation
method is to directly minimize the L2 distance of the embeddings extracted by
teacher and student models [49,37], which aims to align the embedding spaces
between the teacher and student models. We call this simple method as Feature
Consistency Distillation (FCD) as shown in Fig. 1(b), and FCD has been widely
used in practice to improve the lightweight neural networks for FR.

In Fig. 1(b), when FCD is used, feature embeddings extracted by student
model get close to the corresponding feature embeddings extracted by teacher
model. However, there are some cases that the distances of embeddings (i.e., ds)
from different classes of student model are still smaller than dt of teacher model.
Similarly, there are also some cases that ds from the same class is larger than dt.
In practice, when student model is deployed, smaller ds for negative pair or larger
ds for positive pair usually leads to false recognition, which indicates that FCD
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is not sufficient to transfer the knowledge of teacher model to student model. In
Fig. 1(c), we define the cosine similarity between samples as mutual relation and
observe that ds ≈ dt when we additionally utilize the mutual relation information
of teacher model to distill the corresponding mutual relation information of
student model. Thus, we propose to introduce the Mutual Relation Distillation
(MRD) into the existing FR distillation by reducing the gap between teacher
and student models with respect to the mutual relation information.

Since FCD is able to align the embedding space of student model to teacher
model well, the student model can distinguish most image pairs easily, which
indicates that the differences of the most mutual relations between teacher and
student models are relatively small. In other words, most mutual relations cannot
provide valuable knowledge and affect the similarity distribution of all image
pairs for FR. Therefore, how to generate sufficient informative mutual relations
efficiently in MRD is a challenging issue.

Moreover, recent metric learning works [11,53,39] have shown that hard nega-
tive samples are crucial for improving the discriminative ability of feature embed-
ding. But these works are not well-designed for mining mutual relations between
samples for FR distillation. To this end, we propose to mine informative mutual
relations in MRD. Moreover, as the number of positive pairs is usually small, we
focus on mining the mutual relations of negative pairs.

Overall, in our work, we propose an effective FR distillation method referred
to as CoupleFace, including FCD and MRD. Specifically, we first pre-train the
teacher model on the large-scale training dataset. Then, in FCD, we calculate
the L2 distance of the embeddings extracted by the teacher and student models
to generate the FCD loss for aligning the embedding spaces of the teacher and
student models. In MRD, we first propose the Informative Mutual Relation
Mining module to generate informative mutual relations efficiently in the training
process, where the informative prototype set generation and memory-updating
strategies are introduced to improve the mining efficiency. Then, we introduce the
Relation-Aware Distillation (RAD) loss to exploit the mutual relation knowledge
by using valid mutual relations and filtering out relations with subtle differences,
which aims to better transfer the informative mutual relation knowledge from
the teacher model to the student model.

The contributions are summarized as follows:

– In our work, we first investigate the importance of mutual relation knowledge
for FR distillation, and propose an effective distillation framework called
CoupleFace, which consists of Feature Consistency Distillation (FCD) and
Mutual Relation Distillation (MRD).

– In MRD, we propose to obtain informative mutual relations efficiently in
our Informative Mutual Relation Mining module, where the informative pro-
totype set generation and memory-updating strategies are used. Then, we
introduce the Relation-Aware Distillation (RAD) loss to better transfer the
mutual relation knowledge.

– Extensive experiments on multiple benchmark datasets demonstrate the ef-
fectiveness and generalization ability of our proposed CoupleFace method.
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2 Related Work

Face Recognition. FR aims to maximize the inter-class discriminative ability
and the intra-class compactness. The success of FR can be summarized into the
three factors: effective loss functions [47,58,28,41,46,4,3,31,5,23,24,21,26], large-
scale datasets [59,1,18,57,19], and powerful deep neural networks [43,40,38,42,27].
The loss function design is the main-stream research direction for FR, which im-
proves the generalization and discriminative abilities of the learned feature rep-
resentation. For example, Triplet loss [36] is proposed to enlarge the distances of
negative pairs and reduce the distances of positive pairs. Recently, the angular
constraint is applied into the cross-entropy loss function in many angular-based
loss functions [29,28]. Besides, CosFace [48] and ArcFace [4] further utilize a
margin item for better discriminative capability of the feature representation.
Moreover, some mining-based loss functions (e.g., CurricularFace [16] and MV-
Arc-Softmax [50]) take the difficulty degree of samples into consideration and
achieve promising results. The recent work VPL [5] additionally introduces the
sample-to-sample comparisons to reduce the gap between the training and evalu-
ation processes for FR. In contrast, we propose to design an effective distillation
loss function to improve the lightweight neural network.
Knowledge Distillation. As a representative type of model compression and
acceleration methods [9,10,22], knowledge distillation aims to distill knowledge
from a powerful teacher model into a lightweight student model [14], which has
been applied in many computer vision tasks [56,54,33,44,32,15,2,6,7,55,25,17].
Many distillation methods have been proposed by utilizing different kinds of rep-
resentation as knowledge for better performance. For example, FitNet [34] uses
the middle-level hints from hidden layers of the teacher model to guide the train-
ing process of the student model. CRD [44] utilizes a contrastive-based objective
function for transferring knowledge between deep networks. Some relation-based
knowledge distillation methods (e.g., CCKD [33], RKD [32]) utilize the relation
knowledge to improve the student model. Recently, knowledge distillation has
also been applied to improve the performance of lightweight network (e.g., Mo-
bileNetV2 [35]) for FR. For example, EC-KD [49] proposes a position-aware
exclusivity strategy to encourage diversity among different filters of the same
layer to alleviate the low capability of student models. When compared with
existing works, CoupleFace is well-designed for FR distillation by considering to
mine informative mutual relations and transferring the relation knowledge of the
teacher model using Relation-Aware Distillation loss.

3 Method

In this section, we introduce the details of our CoupleFace in Fig. 2, which con-
tains Feature Consistency Distillation (FCD) and Mutual Relation Distillation
(MRD) for FR distillation. The overall pipeline is as follows. First, we train
the teacher model on a large-scale dataset. Then, in the distillation process of
student model, we extract the feature embeddings based on the teacher and stu-
dent models for each face image. After that, in FCD, we compute the Feature
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Fig. 2. The framework of CoupleFace for FR distillation. In FCD, we use the Lfcd loss
between fsi and f ti to align the embedding spaces of the teacher and student models.
In MRD, we first mine the informative features {gk

i }Kk=1 (see Sec. 3.3), where K is the
number of features, and calculate the teacher mutual relations (TMRs) and student
mutual relations (SMRs) based on fsi , f

t
i and {gk

i }Kk=1. Then, we minimize the Lrad

loss to transfer the mutual relation knowledge of the teacher model to student model.

Consistency Distillation (FCD) loss Lfcd based on L2 distance of the feature em-
beddings. Meanwhile, in MRD, we first build the informative mutual relations
using the feature embeddings of teacher and student models with the mined
informative features as shown in Fig. 3, and then calculate the Relation-Aware
Distillation (RAD) loss Lrad to transfer the mutual relation knowledge.

3.1 Preliminary on Face Recognition Distillation

In this section, we define some notations in CoupleFace, and discuss the necessity
of FR distillation when compared with traditional knowledge distillation.
Notations. We denote the teacher model as T and the student model as S.
For each sample xi, the corresponding identity label is yi, and the corresponding
features extracted by T and S are denoted as f ti and fsi , respectively.
Necessity of Face Recognition Distillation. For the traditional knowledge
distillation of image classification, the existing methods usually utilize the prob-
ability consistency [14] (e.g., KL divergence) to align the prediction probabilities
from S with the prediction probabilities from T . However, the traditional knowl-
edge distillation techniques are usually incompatible with FR. In practice, for
FR, we can only obtain a pre-trained T but have no idea about how it was
trained (e.g., the training datasets, loss functions). Therefore, the probability
consistency loss is not available when the number of identities of the training
dataset for T is different from the current dataset for S or T is trained by other
metric learning based loss functions (e.g., triplet loss [36]). Besides, FR models
are trained to generate discriminative feature embeddings for similarity compar-
ison in the open-set setting rather than an effective classifier for the close-set
classification. Thus, aligning the embedding spaces between S and T is more
important for FR distillation.
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3.2 Feature Consistency Distillation

In Feature Consistency Distillation (FCD), to boost the performance of S for
FR, a simple and effective Feature Consistency Distillation (FCD) loss Lfcd is
widely adopted in practice, which is defined as follows:

Lfcd =
1

2N

N∑
i=1

∣∣∣∣∣∣∣∣ f ti
||f ti ||2

− fsi
||fsi ||2

∣∣∣∣∣∣∣∣2, (1)

where N is the number of face images for each mini-batch.

3.3 Mutual Relation Distillation

In this section, we describe the Mutual Relation Distillation (MRD) of Couple-
Face in detail. First, we discuss the necessity of MRD for FR distillation. Then,
we describe how to generate the informative mutual relations by using our in-
formative mutual relation mining strategy. Finally, we introduce the Relation-
Aware Distillation (RAD) loss to transfer the mutual relation knowledge.

Necessity of Mutual Relation Distillation. First, we define a pair of em-
beddings as a couple. Given a couple (fgi , f

g
j ), g ∈ {s, t} denotes S or T , the

mutual relation R(fgi , f
g
j ) of this couple is defined as follows:

R(fgi , f
g
j ) = cos(fgi , f

g
j ), (2)

where cos(·, ·) measures the cosine similarity between two features. Given two
couples (f ti , f

s
i ) and (f tj , f

s
j ), when FCD loss is applied on S, the mutual relations

R(f ti , f
s
i ) and R(f tj , f

s
j ) will be maximized. However, in practice, when S is de-

ployed, the mutual relation R(fsi , f
s
j ) will be used to measure the similarity of

this couple (fsi , f
s
j ) for FR. Thus, if we only use the FCD loss in FR distillation,

the optimization on the mutual relation R(fsi , f
s
j ) is ignored, which limits the

further improvement of S for FR. Meanwhile, T with superior performance is
able to provide an effective mutual relation R(f ti , f

t
j ) as the ground-truth to dis-

till the mutual relation R(fsi , f
s
j ) from S. Therefore, we introduce the MRD into

the existing FR distillation framework.
However, direct optimization on mutual relation R(fsi , f

s
j ) may not be a

good choice in practice. Due to the batch size limitation and randomly sam-
pling strategy in the training process, the mutual relations for these couples
{(fsi , fsj )}Nj=1,j ̸=i constructed across the mini-batch cannot support an effective
and efficient mutual relation distillation. To this end, in CoupleFace, we propose
to optimize R(fsi , f

t
j ) instead of R(fsi , f

s
j ) for following reasons. First, the quantity

of mutual relations for these couples {(fsi , f tj )}Lj=1,j ̸=i can be very large, where

L is the number of samples of the dataset and f tj can be pre-calculated using
teacher model. Second, the quality of the mutual relation for couple (fsi , f

t
j ) can

be guaranteed as it can be mined from sufficient couples. Third, fsj is almost
the same as f tj from the perspective of fsi when the FCD loss between fsj and f tj
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Fig. 3. We first pre-calculate identity prototypes {rm}Mm=1 and generate the informa-
tive prototype set Hyi for identity yi using our informative prototype set generation
strategy, where M is the number of identities across the training dataset. Then, we
maintain a feature bank E ∈ RM×d to store the feature embeddings of T , which is
updated in each iteration using our memory-updating strategy. Finally, we obtain K
informative features {gk

i }Kk=1 based on Hyi and E, and construct the SMRs and the
TMRs based on fsi , f

t
i and {gk

i }Kk=1. Here, we set K = 4 for better illustration.

is fast converged, which represents that the mutual relation R(fsi , f
t
j ) of couple

(fsi , f
t
j ) is an ideal approximation of R(fsi , f

s
j ) of couple (fsi , f

s
j ). Therefore, we

propose to use the mutual relation R(f ti , f
t
j ) to distill R(fsi , f

t
j ).

Note that we call R(f ti , f
t
j ) and R(fsi , f

t
j ) as teacher mutual relation (TMR)

and student mutual relation (SMR), respectively. To sum up, in MRD, we
propose to utilize TMRs to distill the SMRs in the training process of FR.

Informative Mutual Relation Mining. In this section, we describe how to
generate informative mutual relations efficiently in Fig. 3 of CoupleFace.

Intuitively, for fsi and f ti , a straightforward way is to construct the couples
across all training samples and generate SMRs and TMRs. However, the com-
putation cost is very large in this way, which is not applicable in practice. An
alternative way is to generate SMRs and TMRs across the mini-batch. However,
the batch size is relatively small and most mutual relations cannot provide valu-
able knowledge to improve S, as it is easy to distinguish most image pairs and
only the hard image pairs will greatly affect the performance of FR model. Mean-
while, recent metric learning works [11,53,39] show that hard negative samples
are crucial for improving the discriminative ability of the embeddings. Therefore,
in MRD, we propose to mine informative mutual relations among negative pairs
to reduce the computation cost and improve S as shown in Fig. 3. Specifically,
we use an informative prototype set generation strategy to find a set of most
similar identities called informative prototype set Hyi

for identity yi. Then, we
utilize a memory-updating strategy to build the informative mutual relations
based on fsi , f

t
i and the features belonging to Hyi efficiently.

Informative prototype set generation. First, we extract the features of the
training data by using a well-performed trained model. In our work, we directly
use T . The generated features can be denoted as {f ti }Li=1 and the corresponding
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identity label is yi for f
t
i . For the training dataset, we denote the number of sam-

ples as L, the number of identities as M , and the identity label set as {m}Mm=1.
For each identity m, we calculate the identity prototype rm as follows:

rm =
1

lm

L∑
i=1,yi=m

f ti
||f ti ||2

, (3)

where lm is the number of samples in the training dataset for identity m. Then,
all identity prototypes of the dataset can be denoted as {rm}Mm=1. After that, to
find the informative prototype set Hm for rm, we calculate the cosine similarity
between rm and rn, where n ∈ {m}Mm=1 and n ̸= m. Afterwards, we select the
top K (e.g., K = 100) identities with the largest similarities to construct Hm

for identity m, where Hm contains K identity labels. Finally, the informative
prototype set for identity yi is denoted as Hyi

.
Memory-updating. As the number of samples belonging to Hyi is also rela-
tively large, we further propose a memory-updating strategy to reduce the com-
putation cost while making full use of all samples belonging to Hyi

inspired by
MoCo [12]. Specifically, we maintain a feature bank E ∈ RM×d to store feature
embeddings extracted by T , where only one embedding is preserved for each
identity and d is the dimension (e.g., 512) of the embedding. At the beginning of
the training process for S, we initialize the feature bank E by randomly selecting
one feature embedding generated by T for each identity. Then, in each iteration,
we first obtain the feature embeddings {f ti }Ni=1 extracted by T , where N is the
size of mini-batch, and we update the feature bank E by setting E[yi] = f ti ,
where [·] means to obtain features from E based on identity yi.

Based on the informative prototype set Hyi
for yi, we can obtain K in-

formative negative features Gi = E[Hyi ], where Gi ∈ RK×d. Meanwhile, we
denote each feature in Gi as gk

i , where k ∈ {1, ...,K}. Finally, a set of couples
{(fsi ,gk

i )}Kk=1 is constructed for fsi and we can calculate the informative SMRs
using these couples. Similarly, we can also generate the informative TMRs based
on a set of couples {(f ti ,gk

i )}Kk=1 as the ground-truth of these SMRs.

Relation-Aware Distillation Loss. Based on the mined TMRs and SMRs,
the Relation-Aware Distillation (RAD) loss can be easily defined as follows:

Lrad =
1

NK

N∑
i=1

K∑
k=1

|cos(fsi ,gk
i )− cos(f ti ,g

k
i )|. (4)

However, the teacher model is not always better than the student model for
each case in the training dataset. As illustrated in Fig. 4 of Sec. 4.4, we observe
that cos(f ti ,g

k
i ) > cos(fsi ,g

k
i ) does exist between the mined TMRs and SMRs.

Therefore, if we directly use the Eq. (4) to transfer the mutual relation knowledge
of T , S will be misled in some cases, which may degrade the performance of S.

To this end, we propose only to use the valid mutual relations when cos(f ti ,g
k
i ) <

cos(fsi ,g
k
i ), and we reformulate the RAD loss of Eq. (4) as follows:

Lrad =
1

N ′

N∑
i=1

K∑
k=1

max(cos(fsi ,g
k
i )− cos(f ti ,g

k
i ), 0), (5)
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where N
′
is the number of valid mutual relations across the mini-batch. Thus,

RAD loss of Eq. (5) will only affect the gradient when cos(f ti ,g
k
i ) < cos(fsi ,g

k
i )

and transfer the accurate mutual relation knowledge from T to S in MRD.
We mine informative mutual relations for each identity. But there exists some

identities, which can be easily distinguished from other identities, which indicates
that the differences between the mined SMRs and TMRs for these identities are
still subtle. Inspired by the hinge loss [8], we further propose a more effective
variant of our RAD loss by introducing a margin q as follows:

Lrad =
1

N ′

N∑
i=1

K∑
k=1

max(cos(fsi ,g
k
i )− cos(f ti ,g

k
i )− q, 0). (6)

Intuitively, the RAD loss in Eq. (6) further filters out the mutual relations with
subtle differences between the SMRs and TMRs and pays attention to these
SMRs, which are far away from their corresponding TMRs.

3.4 Loss Function of CoupleFace

The overall loss function of CoupleFace is defined as follows:

L = Lfcd + α · Lrad + β · Lce, (7)

where α and β are the weights of RAD loss Lrad and recognition loss Lce (e.g.,
ArcFace [4]), respectively. We also provide an algorithm in Alg. 1.

4 Experiments

Datasets. For training, the mini version of Glint360K [1] named as Glint-Mini
[18] is used, where Glint-Mini [18] contains 5.2M images of 91k identities. For
testing, we use four datasets (i.e., IJB-B [51], IJB-C [30], and MegaFace [19]).
Experimental setting. For the pre-processing of the training data, we follow
the recent works [4,20,3] to generate the normalized face crops (112× 112). For
teacher models, we use the widely used large neural networks (e.g., ResNet-34,
ResNet-50 and ResNet-100 [13]). For student models, we use MobileNetV2 [35]
and ResNet-18 [13]. For all models, the feature dimension is 512. For the training
process of all models based on ArcFace loss, the initial learning rate is 0.1 and
divided by 10 at the 100k, 160k, 180k iterations. The batch size and the total
iteration are set as 512 and 200k, respectively. For the distillation process, the
initial learning rate is 0.1 and divided by 10 at the 45k, 70k, 90k iterations. The
batch size and the total iteration are set as 512 and 100k, respectively. In the
informative mutual relation mining stage, we set the number of most similar
identities (i.e., K) as 100. In Eq. (6), we set the margin (i.e., q) as 0.03. The
loss weight α is set as 1, where β is set as 0 in the first 100k iterations, and is
set as 0.01 in CoupleFace+ of Table 1. In the following experiments of different
distillation methods, by default, we use the ResNet-50 (R-50), MobileNetV2
(MBNet) as T and S, respectively.
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Algorithm 1 CoupleFace

Input: Pre-trained teacher model T ; Randomly initialized student model S; Current
batch with N images; The dimension of feature representation d; The number of
identities M ; The training dataset with L images; The feature bank E ∈ RM×d;

1: Extract all features {f ti }Li=1 of the dataset using T ;
2: Generate all identity prototypes {rm}Mm=1 based on {f ti }Li=1 according to Eq. (3);
3: Based on {rm}Mm=1, calculate informative prototype set {Hyi}Li=1 for each sample

according to the label yi;
4: Initialize feature bank E using {f ti }Li=1;
5: for each iteration in the training process do
6: Get features {f ti }Ni=1 extracted by T from {f ti }Li=1;
7: Get features {fsi }Ni=1 extracted by S;
8: Calculate Lfcd of {fsi }Ni=1 and {f ti }Ni=1 by Eq. (1);
9: Update feature bank E using {f ti }Ni=1;
10: for each feature fsi in {fsi }Ni=1 do
11: Get K informative negative features {gk

i }Kk=1 from E using Hyi ;
12: Build TMRs and SMRs by {(fsi ,gk

i )}Kk=1 and {(f ti ,gk
i )}Kk=1, respectively;

13: end for
14: Calculate Lrad using TMRs and SMRs by Eq. (6);
15: Update the parameters of S by minimizing the loss function

L = Lfcd + α · Lrad + β · Lce;
16: end for
Output: The optimized student model S.

4.1 Results on the IJB-B and IJB-C datasets

As shown in Table 1, the first two rows represent the performance of models
trained by using the ArcFace loss function [4]. We compare our method with
classical KD [14], FCD, CCKD [33], SP [45], RKD [32], EC-KD [49]. For FCD,
we only use the FCD loss of Eq. (1) to align the embedding space of the stu-
dent and teacher models, which is a very strong baseline to improve the perfor-
mance of student model for FR. For these methods (i.e., CCKD [33], SP [45] and
RKD [32]), we combine these methods with FCD loss instead of the classical KD
loss to achieve better performance. For EC-KD proposed for FR, we reimplement
this method. In Table 1, FCD is much better than classical KD, which indicates
the importance of aligning embedding space for FR when compared with classi-
cal KD. Moreover, we observe that CoupleFace achieves significant performance
improvements when compared with existing methods, which demonstrates the
effectiveness of CoupleFace. For the CoupleFace+, we first pretrain student by
CoupleFace, and then train student by CoupleFace with ArcFace by setting β
in Eq.( 7) as 0.01 for another 100k iterations, better results are obtained.

4.2 Results on the MegaFace dataset

In Table 2, we also provide the results of CoupleFace on MegaFace [52], and
we observe that CoupleFace is better than other methods. For example, when
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Table 1. Results (TAR@FAR) on IJB-B and IJB-C of different methods.

Models Method
IJB-B IJB-C

1e-4 1e-5 1e-4 1e-5

R-50 [13] ArcFace [4] 93.89 89.61 95.75 93.44
MBNet [35] ArcFace [4] 85.97 75.81 88.95 82.64

MBNet [35]

KD [14] 86.12 75.99 89.03 82.69
FCD 90.34 81.92 92.68 87.74

CCKD [33] 90.72 83.34 93.17 89.11
RKD [32] 90.32 82.45 92.33 88.12
SP [45] 90.52 82.88 92.71 88.52

EC-KD [49] 90.59 83.54 92.85 88.32
CoupleFace 91.18 84.63 93.18 89.57
CoupleFace+ 91.48 85.12 93.37 89.85

compared with the FCD baseline, our method improves the rank-1 accuracy by
0.62% on MegaFace under the distractor size as 106.

Table 2. Rank-1 accuracy with different distractors on MegaFace.

Models Method
Distractors

104 105 106

R-50 [13] ArcFace [4] 99.40 98.98 98.33
MBNet [35] ArcFace [4] 94.56 90.25 84.64

MBNet [35]

KD [14] 94.46 90.25 84.65
FCD 97.81 96.39 93.65

CCKD [33] 98.07 96.43 93.90
RKD [32] 98.06 96.41 93.84
SP [45] 98.01 96.58 93.95

EC-KD [49] 98.00 96.41 93.85
CoupleFace 98.09 96.74 94.27

4.3 Ablation Study

The effect of different variants of RAD loss. In MRD, we propose three
variants of RAD loss (i.e., Eq. (4), Eq. (5) and Eq. (6)). To analyze the effect of
different variants, we also perform additional experiments based on Eq. (4) and
Eq. (5) and report the results of MBNet on IJB-B and IJB-C. In Table 3, for
CoupleFace-A, we replace the RAD loss of Eq. (6) with Eq. (4), which means
that we transfer the mutual relations by distilling all TMRs to the corresponding
SMRs without any selection process. For CoupleFace-B, we replace the RAD loss
of Eq. (6) with Eq. (5) without using the margin item. In Table 3, we observe that
CoupleFace-B outperforms CoupleFace-A a lot, which shows the effectiveness
of only using the mutual relations when cos(f ti ,g

k
i ) < cos(fsi ,g

k
i ). Moreover,
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Table 3. Results on IJB-B and IJB-C of different methods.

Methods
IJB-B IJB-C

1e-4 1e-5 1e-4 1e-5

CoupleFace 91.18 84.63 93.18 89.57
CoupleFace-A 90.73 83.68 92.75 88.35
CoupleFace-B 90.88 84.23 93.02 88.99
CoupleFace-C 90.65 83.18 92.52 88.89
CoupleFace-D 90.85 83.73 92.86 89.04
CoupleFace-E 90.78 83.32 92.78 88.79

CoupleFace also outperforms CoupleFace-B, so it is necessary to emphasize the
distillation on these SMRs, which are far from their corresponding TMRs.
The effect of Informative Mutual Relation Mining. To demonstrate the
effect of mining the informative mutual relations, we further propose three alter-
native variants of CoupleFace (i.e., CoupleFace-C, CoupleFace-D, CoupleFace-
E). Specifically, for CoupleFace-C, we propose to directly optimize mutual rela-
tion R(fsi , f

s
j ) without the process of mining mutual relations, where only mutual

relations from limited couples {(fsi , fsj )}Nj=1,j ̸=i across the mini-batch are con-
structed. For CoupleFace-D, we randomly select K = 100 identities to construct
the Hyi for each identity yi, while for CoupleFace-E, we propose to build the
TMRs and SMRs across the mini-batch without mining process, and compute
the RAD loss from them. As shown in Table 3, we observe that CoupleFace
is much better than three alternative variants, which demonstrates that it is
beneficial to mine the informative mutual relations in CoupleFace.
The effect of informative prototype set generation when using dif-
ferent models. In our work, we directly use T (i.e., R-50) to generate the
informative prototype set Hyi

for each identity yi. Here, we propose to use
other pre-trained models (i.e., MBNet and ResNet-100 (R-100)) trained by
ArcFace loss to generate Hyi

for yi, and we call these alternative methods as
CoupleFace-MBN and CoupleFace-RN100, respectively. In Table 4, we report
the results of MBNet on IJB-B and IJB-C after using CoupleFace, CoupleFace-
MBN and CoupleFace-RN100. We observe that CoupleFace achieves comparable
performance with CoupleFace-RN100, and higher performance than CoupleFace-
MBN. For this phenomenon, we assume that when using a more effective model,
we will generate more discriminative identity prototypes {rm}Mm=1, which leads
to generating a more accurate informative prototype set Hyi . Thus, it is benefi-
cial to use effective models for obtaining the informative prototype set.

4.4 Further Analysis

Visualization on the differences of SMRs and TMRs. To further analyze
the effect of CoupleFace, we visualize the distributions of the differences between
SMRs and TMRs for both FCD and CoupleFace in Fig. 4. Specifically, we use
the models of MBNet in the 20,000th, 60,000th, 100,000th iterations for both
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Table 4. Results on IJB-B and IJB-C of different methods.

Methods
IJB-B IJB-C

1e-4 1e-5 1e-4 1e-5

CoupleFace 91.18 84.63 93.18 89.57
CoupleFace-MBN 91.06 83.91 92.95 88.94
CoupleFace-RN100 91.15 84.65 93.16 89.58
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Fig. 4. The distributions of differences between the SMRs and TMRs of different iter-
ations for FCD and CoupleFace.

FCD and CoupleFace. The first and the second rows show the results of FCD and
CoupleFace, respectively. In Fig. 4, during training, for CoupleFace, we observe
that the differences of SMRs and TMRs gradually decrease at the right side of
the red line, which demonstrates the effect of minimizing the RAD loss of Eq. (6).
Besides, when compared with FCD, most SMRs are less than or approximate
to TMRs in CoupleFace, which indicates that CoupleFace transfers the mutual
relation knowledge of the teacher model to the student model well.

Visualization on the distributions of similarity scores. We visualize the
distributions of similarity scores on IJB-C of MBNet based on different methods
in Fig. 5. Specifically, we still use the R-50 as T to distill MBNet in FCD
and CoupleFace. As shown in Fig. 5, when compared with FCD, the similarity
distributions of positive pairs and negative pairs in CoupleFace are more compact
and separable, which further shows the effectiveness of CoupleFace.

Comparison with existing relation-based knowledge distillation meth-
ods (RB-KDs). The differences between CoupleFace and existing RB-KDs
(e.g., CCKD, RKD [33,32]) are as follows. (1) General KDs are usually incom-
patible with FR. Existing RB-KDs are proposed for general vision tasks (e.g.,
close-set classification). In contrast, it is non-trivial to transfer relation knowl-
edge for open-set FR well and CoupleFace is well-designed for FR distillation.
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Fig. 5. Cosine similarity distributions of the positive pairs and negative pairs.

(2) Mining is considered. We observe that most mutual relations cannot pro-
vide valuable knowledge and affect the similarity distribution for FR, so how to
produce sufficient informative mutual relations efficiently is a challenging issue.
In CoupleFace, we propose to mine informative mutual relations in MRD, while
existing RB-KDs have not discussed the mining process. (3) Loss function is in-
trinsically different. The RAD loss in Eq. (6) aims to better exploit the mutual
relation knowledge by using valid mutual relations and filtering out the mutual
relations with subtle differences, which are not discussed in existing works. (4)
Better performance. CoupleFace outperforms existing RB-KDs a lot.
Computation costs.When compared with FCD, training time and GPU mem-
ory use of CoupleFace are 1.056 times and 1.002 times, respectively. which further
demonstrates the efficiency of our proposed CoupleFace.

5 Conclusion

In our work, we investigate the importance of mutual relation knowledge for FR
distillation and propose an effective FR distillation method named as Couple-
Face. When compared with existing methods using Feature Consistency Distil-
lation (FCD), CoupleFace further introduces the Mutual Relation Distillation
(MRD), where we propose to mine the informative mutual relations and uti-
lize the Relation-Aware Distillation (RAD) loss to transfer the mutual relation
knowledge from the teacher model to the student model. Extensive experiments
on multiple FR benchmark datasets demonstrate the effectiveness of Couple-
Face. In our future work, we will continue to explore what kind of information
is important for FR distillation and develop more effective distillation methods.
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