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In this supplementary material, we provide:
⋄ Additional implementation details including the network structure of the

face synthesis model and the training process.
⋄ Additional ablation studies, including the effects of different target datasets,

the dimensionality of the style coefficient, the perturbation budget, and the ratio
of real and synthetic images in each mini-batch.

⋄ Additional visualizations of the adversarial training process.

1 Additional Implementation Details

Network Structure. The network architecture of the generator (including
the encoder E and decoder G) used in our face synthesis module is illustrated
in Tab. 1. We apply Instance Normalization [4] to the encoder and Adaptive
Instance Normalization [2] to RESBLOKs (the residual basic block) of the de-
coder. The encoder takes an image X with the resolution of 112× 112 as input,
and outputs its content feature C ∈ R256×28×28. The input and output to the
decoder are C and the synthesized image X̂, respectively. Additionally, as shown
in Fig. 1, the parameters of the Adaptive Instance Normalization (AdaIN) layer
in residual blocks are dynamically generated by a multiplayer perceptron (MLP)
from the linear subspace model. Following [5], we employ multi-scale discrimi-
nators with 3 scales as our discriminator D.

Training Process. We summarize the training process in Tab. 2. In Stage 1,
we train our controllable face synthesis module with the identity consistency loss
and the adversarial objective. In Stage 2, based on the pre-trained and fixed face
synthesis model, we introduce an adversarial regularization strategy to guide the
data augmentation process and train the face feature extractor F .

Specifically, in the adversarial FR model training, givenB face images {X}Bi=1

in a mini-batch, our synthesis model (CFSM) is utilized to produces their syn-

thesized version X̂ with initial random style coefficients {o}Bi=1. Based on the
Eqn. 7 and 8 (main paper), we obtain the updated style coefficients {o∗}Bi=1 with
perturbations. We then generate the perturbed images {X∗}Bi=1 with CFSM. Fi-
nally, we randomly select half of {X}Bi=1 and half of {X∗}Bi=1 to form a new
training batch for the FR model training. Note that, every epoch of the FR
model training we will randomly initialize different style coefficients, even for
the same training samples.
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Table 1. Network architectures of the generator of face synthesis module. RESBLK de-
notes the residual basic block. [Keys: N=Neurons, K=Kernel size, S=Stride, B=Batch
size].

Layer Encoder (E) Decoder (G)

1 CONV-(N64,K7,S1), ReLU RESBLK-(N256,K3,S1)

2 CONV-(N128,K4,S2), ReLU RESBLK-(N256,K3,S1)

3 CONV-(N256,K4,S2), ReLU RESBLK-(N256,K3,S1)

4 RESBLK-(N256,K3,S1) RESBLK-(N256,K3,S1)

5 RESBLK-(N256,K3,S1) CONV-(N128,K5,S1), ReLU

6 RESBLK-(N256,K3,S1) CONV-(N64,K5,S1), ReLU

7 RESBLK-(N256,K3,S1) CONV-(N3,K7,S1), TanH

Output C ∈ RB×256×28×28 X̂ ∈ RB×3×W×H

Fig. 1. Additional illustration of the decoder network structure. The parameters of
Adaptive Instance Normalization (AdaIN) in residual blocks are dynamically generated
by a multiplayer perceptron (MLP) from the linear subspace model.

2 Additional Ablation Studies

Effect of Different Target Datasets. To study how the choice of target
dataset in face synthesis model training would affect the face recognition perfor-
mance, we choose two other datasets, LFW [1] and IJB-S [3] to train the face
synthesis models and apply them for the FR model training. During training,
for each dataset, we randomly select unlabeled 12K face images as the target
data to train the face synthesis model. For efficiency, we train the FR models
with 0.5M labeled training samples from the MS-Celeb-1M dataset. The diver-
sity of the three face datasets can be ranked as IJB-S > WiderFace > LFW.
We show the comparisons on IJB-S protocols in Fig. 2, which shows that the
more diverse the unlabeled target dataset is, the more performance gain is ob-
tained. In particular, although LFW is similar to MS-Celeb-1M, it can introduce
additional diversity in the dataset when augmented with our controllable and
guided face synthesis model. Using unlabeled IJB-S images as the target data
further improves the performance on the IJB-S dataset, which indicates that
our model can be applied for boosting face recognition with limited unlabeled
samples available.

Effect of the Dimensionality (q) of the Style Coefficient. Fig. 3 shows
the recognition performances on IJB-S over the dimensionality of the style coef-
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Table 2. Stages of the training process.

Network or parameters Loss

Stage 1 E, G, D, MLP, U, µ Lort, Ladv, LD, Lid

Stage 2 F , δ∗ Lcla

(a) (b) (c)

Fig. 2. Evaluation results on IJB-S with different target datasets. Baseline refers to
the performance of the FR model trained on 0.5 million labeled samples (a subset of
MS-Celeb-1M) without using the proposed face synthesis model. In this experiment,
other 3 FR models are trained on the 0.5 million labeled samples with the proposed
face synthesis models, which are trained with additional 12K unlabeled samples (from
LFW, WiderFace or IJB-S, respectively).

ficient. Fig. 3 shows that the dimensionality of the style coefficient does have sig-
nificant effects on the recognition performance. The model with q = 10 performs
slightly better in face verification setting, such as V2S and V2B (TAR@FAR=1e-
2). The results also indicate that learning manipulation in the low-dimensional
subspace is effective and robust for face recognition.

Effect of the Perturbation Budget (ϵ). We conduct experiments to demon-
strate the effect of the perturbation budget ϵ. As shown in Fig. 4, we can clearly
find that a large perturbation budget (ϵ = 0.628) leads to a better performance
in the protocol of Surveillance-to-Surveillance (V2V) while performs slightly
worse in the protocols of Surveillance-to-Still (V2S) and Surveillance-to-Booking
(V2B). These observations are not surprising because the large style coefficient
perturbation would generate faces with low qualities, which is beneficial for im-
proving generalization to the unconstrained testing scenarios.

Effect of the Ratio of Real and Synthetic Images in Each Mini-batch.
As illustrated in Sec. 3.2 (main paper), we combine the original real images
and their corresponding synthesized version as a mini-batch for the FR model
training. In this experiment, we further study the ratio of real (R) and synthetic
(S) images in each mini-batch. As shown in Fig. 5, with more synthetic images
in each mini-batch (R:S = 25% : 75%), the model achieves the best performance
in the most challenging Surveillance-to-Surveillance (V2V) protocol (Rank1).
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(a) (b) (c)

Fig. 3. Evaluation results on IJB-S with the different dimensionalities of the style coef-
ficient (q = 5, 10, 20). Baseline refers to the performance of the FR model trained on
0.5 million labeled samples (a subset of MS-Celeb-1M) without using the proposed face
synthesis model. In this experiment, other 3 models are trained on the 0.5 million la-
beled samples with the proposed face synthesis model, which is trained with additional
70K unlabeled samples from WiderFace.

(a) (b) (c)

Fig. 4. Evaluation results on IJB-S with different perturbation budget values (ϵ =
0.157, 0.314 or 0.628). Baseline refers to the performance of the FR model trained on
0.5 million labeled samples (a subset of MS-Celeb-1M) without using the proposed face
synthesis model. In this experiment, other 3 models are trained on the 0.5 million la-
beled samples with the proposed face synthesis model, which is trained with additional
70K unlabeled samples from WiderFace.

3 Additional Visualizations

The Perturbations in Direction or Magnitude. In adversarial FR model
training, our synthesis model is able to offer two meaningful possibilities to
perform style coefficient perturbation: magnitude and direction. To study the
perturbation properties (direction or magnitude), we collect the initial style
coefficient o and style perturbation δ∗ of 10K samples during the FR model
training. We first measure the Cosine Similarity SC (Fig. 6 (a)) between the
initial style coefficient o and the updated one o∗ = o + δ∗. Then we present
the histogram of the differences (Fig. 6 (b)) between the magnitude of o and
o∗: a∗ − a, where a∗ = ||o||, a = ||o∗||. Finally, in Fig. 6 (c), we show the Sc
over (a∗ − a). As observed in Fig. 6, the style coefficient perturbation guided by
FR model training indeed leads to the changes of both magnitude and direction
of the initial style coefficient, which supports the motivation of our controllable
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(a) (b) (c)

Fig. 5. Evaluation results on IJB-S with different ratios of real (R) and synthetic (S)
images in each mini-batch (R:S = 75% : 25%, 50% : 50% or 25% : 75%). Baseline
refers to the performance of the FR model trained on 0.5 million labeled samples
(a subset of MS-Celeb-1M) without using the proposed face synthesis model. In this
experiment, other 3 models are trained on the 0.5 million labeled samples with the
proposed face synthesis model, which is trained with additional 70K unlabeled samples
from WiderFace.

(a) (b) (c)

Fig. 6. (a) Histogram of the Cosine Similarity between the initial style coefficient o
and its updated one o∗ with perturbation. (b) Histogram of differences between the
magnitude of o and o∗: a − a∗, where a∗ = ||o||, a = ||o∗||. (c) Scatter plot showing
the correlation between Sc and a− a∗.

face synthesis model design. More interestingly, the synthesis model attempts
to achieve a balance between magnitude and direction in the adversarial-based
augmentation process (see Fig. 6 (c)). For example, when the magnitude is de-
creasing ((a− a∗) < 0), the model is inclined to generate faces in lower quality
but more target styles (lower Sc). In contrast, when the magnitude is increasing
((a − a∗) > 0), the model prefers to generate faces with higher quality but less
target style (larger Sc).

Additional Visualizations of X, X̂ and X∗. In Fig. 7, we show the original
examples X, synthesized examples with initial style coefficients X̂ and synthe-
sized examples with style perturbations X∗ in a mini-batch during the FR model
training. Additionally, we visualize the pairwise error maps among these 3 types
of data. As shown, the guide from the FR model encourages the face synthesis
model to generate images with either increased or decreased target face style.
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Fig. 7. Training examples in a mini-batch with our face synthesis model during the FR
model training. For each image set, we show the original images X, synthesized results
with initial style coefficients, and synthesized results with style perturbations X∗. We
additionally show their corresponding error maps: |X̂−X|, |X∗ −X| and |X̂−X∗|.
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