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To provide complementary descriptions about our experiments and results,
we divide the supplementary material into the following sections: Traning De-
tails, AU Prior from Bayesian Network, AU-specific Blendshape Results, More
Qualitative Results and Method Limitation.

1 Training Details

We train our baseline+AU label+AU prior model with the following loss
function:

L =λimgLimg + λlmkLlmk + λidLid + λGLG + Lsp

+ λau−labelLau−label + λau−corrLau−corr

(1)

where we set λimg = 1.75,λlmk = 0.002,λid = 0.1, λG = 0.015, λsp = [1.0, 0.75, 0.05],
λau−label = 1.0, λau−prior = 0.1.

2 AU Prior from Bayesian Network

In our paper, we propose to utilize prior relationship between AU pairs to con-
strain the learning of 3D coefficients α. Following the procedure of Cui et al.[3]
of using expression-independent inequality constraints among AUs, we pre-train
a Bayesian Network(BN) to represent the general AU prior relationship among
8 AUs. The output include an adjacency matrix indicating the structure of the
BN and a 256-dim probability array of the joint configuration of 8 AUs. We
select a set of eight AU pairs that are available in Table.1 in our paper and the
pre-trained BN, which is: {(1, 2), (4, 7), (6, 12), (15, 17), (2, 6), (2, 7), (12, 15),
(12, 17)}. We can compute the joint probability for each AU pair by marginaliz-
ing out the rest six nodes.
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Fig. 1. Pre-computed AU mask Wk for constructing AU-aware blendshapes. Row1 &
Row2: registered ICT shapes with BFM topology for {AU1, AU2, AU4, AU6, AU7,
AU10}; Row3 & Row4: registered ICT shapes with BFM topology for {AU12, AU14,
AU15, AU17, AU24, AU23}.

3 AU-specific Blendshape Results

For each input subject, we predict the 3D AU coefficients η to produce the
AU-specific blendshapes follwoing Eq. 2.

Bau[k] =

M∑
m=1

ηk,mWk ⊙Bexp[m],∀k ∈ 1, ...,K (2)

In Eq. 2, we use globally deformed PCA basis Bexp from BFM model to con-
struct our personalized AU-aware blendshapes Bau, which are locally deformed
on certain AU region. In Eq. 2, Wk ∈ [0, 1]N×1(N is total vertex number) for
k-th blendshape is defined to filter out potential deformations from irrelevant
face regions. In particular, for k-th blendshape, a relevant face region consisting
of a subset of vertices on 3D mesh is identified through the ICT model. We first
perform a non-rigid ICP from each ICT templates to BFM topology and com-
pute the vertex deformations between a blendshape and the mean face shape.
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Fig. 2. AU-specific blendshape visualization of each input image.First row: input
image and reconstruction result; row2-row8:AU-specific blendshapes for 7 different
AUs.

Elements in Wk corresponding to identified active vertices are assigned to “1”,
and “0” otherwise. Then we perform a smoothing of the weights in Wk for those
boundary vertices to ensure the transition between ”active” vertices and ”inac-
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tive” vertices are smooth. In Fig. 1, we provide the visualization of Wk for 12
AUs that are involved in our paper and these pre-defined Wk are not updated
during training or testing.

In Fig. 2, we provide visualization examples of personalized blendshapes for
random selected testing subjects in BU3DFE [8], i.e., Sneu + Bau[k] for inter-
ested AUs. Compared with original BFM[4] model, the produced blendshapes
are locally deformed in the AU-related face region and contains left-blendshape
and right-blendshape for most AUs. In total our model generate 49 blendshapes
for constructing accurate expressions.

More discussions on person-specific parameters: we show the diversity
of person specific parameters by visualizing the mean and variance of predicted
facial identity parameter β over 100 subjects in BU3DFE in Fig. 3. On the other
hand, the AU-related parameter α for different subject with similar expressions
will cluster. We show clustering results over 100 subjects on four expressions
using the AU-related parameter α in Fig. 4, by visualizing the intensity coor-
dinates of two specific AUs. We can draw a conclusion that parameters cluster
under the same expression with different subjects (e.g., happy), and vary with
different subjects and expressions.

Fig. 3. Mean (red points) and variance (blue segments) of the first 20 dimensions of β
over 100 subjects in BU3DFE.

visualization of !!"!(x-axis) and !!"!"(y-axis) on BU3DFE  

Fig. 4. Clustering using (αAU1 ,αAU12) for four different expressions over 100 subjects
on BU3DFE.
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Fig. 5. 3D reconstruction error maps on one BU3DFE testing example.

4 3D Reconstruction Error on BU3DFE

Through learning personalized AU-aware blendshapes, our final model can re-
cover subtle facial motions related to AUs in 3D space and achieves SOTA recon-
struction accuracy on BU3DFE [8] dataset. In Fig. 5, we perform a quantitative
comparison of 3D reconstruction error with Tewari et al. [7], Tewari et al. [6],
FML [5] and Chaudhuri et al. [1](note that the color bar scaling is just used to
represent different levels of errors in millimeter and our colorbar is a little bit
different from the colorbar used by Chaudhuri et al. [1].)

5 More Qualitative 3D Reconstruction Results

In Fig. 7 we provide additional reconstruction results on VoxCeleb2[2]. It can be
noted that our model can generate accurate 3D faces of various expressions under
different conditions. Besides 3D face reconstruction, expression manipulation can
also be easily achieved by our model in AU level by adjusting the value of α in
the reconstructed 3D face S = B̄+Bidβ+Bauα. Compared to PCA expression
basis, we can manipulate the deformation intensity for each AU while fixing
other parts, as the example shown in Fig. 6.

Fig. 6. Expression manipulation by adjusting α value corresponding to AU1&AU2
(column 3) and AU10 (column 4).

6 Method Limitation

Our model performs joint face reconstruction and AU detection and achieves
state-of-art 3D reconstruction accuracy but still have limitations in within-
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dataset AU detection on BP4D compared with appearance-based methods. Ac-
cording to the Table. 5 in our paper, our model achieves state-of-art F1-score
on AU1, AU2, AU23 but worse results on the rest AUs. It can be explained
by the mechanism of the 3D blendshape model fitting. First of all, to produce
accurate 3D reconstruction, we construct 49 blendshapes in total while only 12
AU labels are available for the AU label regularization loss. Besides, considering
the number of nodes in the pre-trained BN, the integrated pairwise AU prior
are limited within the combinations of the 8 AUs involved in the BN. Besides,
as we can observe in Fig. 2, the constructed AU-specific blendshapes are not or-
thogonal basis and have deformation redundancy in local face regions for those
positive-correlated AU groups(like AU6, AU12). At the same time, blendshapes
for negative correlated AU groups(like AU12,AU15) may eliminate each other in
vertex deformation. Therefore, we have to introduce a sparsity constraint on the
expression coefficient α to ensure the reconstruction accuracy is maintained.
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Fig. 7. More qualitative results on VoxCeleb2[2].First column: input images; second
column:reconstructed shape withoout texture ; third column: reconstructed shape
with texture.
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