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Abstract. 3D face reconstruction and facial action unit (AU) detection
have emerged as interesting and challenging tasks in recent years, but are
rarely performed in tandem. Image-based 3D face reconstruction, which
can represent a dense space of facial motions, is typically accomplished
by estimating identity, expression, texture, head pose, and illumination
separately via pre-constructed 3D morphable models (3DMMs). Recent
3D reconstruction models can recover high-quality geometric facial de-
tails like wrinkles and pores, but are still limited in their ability to re-
cover 3D subtle motions caused by the activation of AUs. We present a
multi-stage learning framework that recovers AU-interpretable 3D facial
details by learning personalized AU-specific blendshapes from images.
Our model explicitly learns 3D expression basis by using AU labels and
generic AU relationship prior and then constrains the basis coefficients
such that they are semantically mapped to each AU. Our AU-aware 3D
reconstruction model generates accurate 3D expressions composed by se-
mantically meaningful AU motion components. Furthermore, the output
of the model can be directly applied to generate 3D AU occurrence pre-
dictions, which have not been fully explored by prior 3D reconstruction
models. We demonstrate the effectiveness of our approach via qualitative
and quantitative evaluations.

Keywords: 3DMM, 3D Face Reconstruction, Facial Action Unit

1 Introduction

With the first 3D morphable model (3DMM) proposed by Blanz et al. [7], 3D
face modeling and reconstruction have gained sustained attention as a research
topic and are frequently used in popular applications like AR/VR, 3D avatar an-
imation, video games and communication. Most existing 3D face reconstruction
methods [62,18,12,41] are based on a pre-constructed 3SDMM, which divides the
space of 3D facial shapes into identity and expression dimensions. The 3DMMs
are constructed from a large database of 3D scans. Among various representa-
tions, orthogonal PCA basis are widely used such as BFM [22] and FLAME [30]
and blendshapes, such as FaceWarehouse [9], FaceScape [53] and Feafa [52].
While the PCA basis usually represents global vertex deformations and does
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not have semantic meaning, each blendshape basis represents local deformations
related to specific facial movements. Responding to increasing demand for gener-
ating high quality 3D faces, more recent works [21,5,4,53] have recovered detailed
facial geometry from monocular or multi-view images by dynamically learning a
displacement map to add a refinement layer to the 3D geometry. However, these
approaches to 3D face reconstruction have not fully considered the inherent 3D
nature of facial movement, which is based upon the muscle activation under a
local region of the skin.

The Facial Action Coding System (FACS) [20] encodes facial expressions in
terms of activation levels of action units (AUs), each of which corresponds to a
specific underlying group of facial muscle movements. Thus AU intensities can
provide a useful basis for interpreting emotions or other reflections of human
internal state such as pain. The definition of AU is widely used in image-based
facial behaviour analysis tasks such as AU detection. Many computational meth-
ods [14,38,26,54] have been developed for directly inferring AU activation from
appearance features. Except for image-based AU detection, combining AU with
3D faces has been explored in terms of learning 3D AU classifiers from 3D scans
in BP4D dataset [50] and synthesizing facial images from a specified set of AU
activation through a generative model [47,34].

Little work, however, has been devoted to constructing the FACS-based cor-
respondence between 3DMM basis and AUs. Such line of work is important for
two reasons. First, semantically mapping the 3SDMM basis to each AU can help
reconstruct 3D subtle motions caused by AU activation, which in turn reflects
the underlying muscle activation. Second, spatial relationships among AUs de-
rived from general anatomical knowledge [33,26,57,58] can be incorporated into
the 3D geometric basis generating process. Achieving this type of coherency be-
tween AU and 3D face models benefits both synergistically: incorporating AU
information in 3D geometry helps capture more accurate facial motions, while
incorporating geometric information helps detect challenging AUs.

Based on the considerations above, we propose a multi-stage training frame-
work that generates a finer-grained blendshape basis that is specific to each input
subject and each AU. We explicitly apply AU labels and a pre-learned Bayesian
Network that captures generic inter-relationships among AUs to constrain the
3D model coefficients during training. Our main original contributions include:

— We propose a deep learning framework that explicitly learns personalized
and AU-explainable 3D blendshapes for accurate 3D face reconstruction.

— We perform a multi-stage training process and utilize AU labels and a generic
AU relationship prior to constrain the AU specific blendshape learning pro-
cess, using a mixture of AU-labeled and unlabeled images.

— Our model simultaneously generates an AU basis and a realistic 3D face
reconstruction with improved capture of subtle motions. We achieve state-
of-art 3D reconstruction results on BU3DFE [55] and the Now Challenge [12]
dataset. Moreover, our model directly performs 3D AU detection because the
3D coefficients are readily mapped to AU activation probabilities.
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2 Related Works

Personalized 3D Face Models. 3DMMS were first proposed [7] to model in
three dimensions human variations in facial shape, expression, skin color, etc.
Since then, 3DMMs have been extended and used widely for 3D face repre-
sentation or reconstruction tasks. They are usually constructed from a large 3D
database and have separate bases for identity, expression, texture, etc. The Basel
Face Model(BFM) [10], FLAME [30] and LSFM [8] are popular 3DMMs for 3D
reconstruction tasks. More recently, FaceScape [53] and ICT-Face [29] have been
proposed as “high-resolution” 3D face models that provide meticulous geometric
facial details. Some researchers have attempted to dynamically generate or up-
date accurate 3DMMs directly from images or videos. Tewari et al.[18] learned a
3D facial shape and appearance basis from multi-view images of the same person.
Later, Tewari et al. extended their work to learn a more complete 3DMM in-
cluding shape, expression and albedo from video data [19]. Chaudhuri et al. [11]
proposed an alternative that learns a personalized 3D face model by performing
on-the-fly updating on the shape and expression blendshapes.
3DMDM-based Face Reconstruction. Other researchers have explored using
a pre-constructed 3DMM to perform 3D face reconstruction from monocular
images. 3DMM parameters representing camera, head pose, identity, expres-
sion, texture and illumination are estimated via regression. 3DMM-based face
reconstruction models have achieved great performance improvements in head
pose estimation [61,51,1], 3D face alignment [61,23,1] and facial detail recov-
ery [5,4,62,21]. Moreover, Chang et al. [10] utilize 3DMM to reconstruct 3D fa-
cial expressions and apply the expression coefficients for expression recognition.
Feng et al. [21] propose to learn an animatable detailed 3D face model that can
generate expression-dependent geometric details such as wrinkles. However, us-
ing a 3D face reconstruction model to capture subtle local facial motions caused
by activation of AUs has not been explored previously.
3D AU Modeling and Detection. 3DMMs are closely related to 3D expres-
sion/AU modeling and synthesis. Liu et al. [35] applied 3DMMs to train an
adversarial network to synthesize AU images with given AU intensities. Song et
al. [47] conducted an unsupervised training scheme to regress 3D AU parameters
and generate game-like AU images through differentiable rendering. Li et al. [29]
constructs a non-linear 3DMM with expression shapes closely related to FACS
units and can be used to produce high-quality 3D expression animation.
Except for 3D AU synthesis, AU detection from 3D data have been actively
studied by researchers and 3D scans, 3D point clouds, or 3DMMs can be used.
Given a target 3D mesh or scan, classifiers can be trained based on the extracted

mesh surface features for 3D AU detection [28,25,60,43,6,17]. Similarly, for 3D
point cloud data, Reale et al. [11] trained a network to directly extract 3D
point cloud features and support AU detection. Tulyakov et al. [50] learned

a pose invariant face representation from the point cloud for more robust AU
detection. Ariano et al. [3] propose a method of 3D AU detection by using
3DMM coefficients where they first remove the identity component from their
SLC-3DMM and then train a classifier on 3D meshes for AU detection.
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Fig. 1: Overview of our model structure and pipeline: (1) (grey) Basic module for
regressing all 3D reconstruction parameters (2) (green) Pipeline for 3D face re-
construction, including subject neutral face generation, AU-specific blendshape
construction and differentiable rendering process (3) (orange) Module for inte-
grating AU prior knowledge and applying AU labels as constraints on a. During
training the output AU probabilities are used to compute two AU regularization
losses; during testing the output can be directly used for 3D AU detection.

Our model differs from the above methods in that we construct person-
specific and AU-specific 3D models for AU-interpretable face reconstruction
without requiring any ground-truth 3D data for an input subject.

3 Proposed Method

In general 3D face reconstruction, the shape and expression spaces are spanned
by pre-constructed bases. A target 3D face S can be represented by:

S = B+ By + Beypa (1)

where B is the 3DMM mean shape, Biq, B,,, are shape bases and expression
bases; B, a are the vectors of shape and expression coefficients respectively.
The texture of S can also be represented by a linear model:

T =T + By.,6 (2)

where By, is a texture basis (usually PCA) and § is a texture coefficient vector.
Our method, illustrated in Fig. 1, significantly extends the general SDMM of
Eq. 1. It contains three modules: (1) the basic module for regressing all 3D recon-
struction parameters, including pose and camera parameters, identity coefficients
B3, AU-blendshape coefficients m, expression coefficients a, texture coefficients
4 and illumination parameters «; (2) the module for constructing AU-specific
blendshapes; (3) the module for incorporating AU regularization terms and AU
detection. The remainder of this section discusses each of these in turn.
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3.1 AU-specific 3D Model Learning

We describe the construction of an identity-consistent subject-neutral face and
AU-specific blendshapes.

Identity-consistent parameters learning. With the regressed identity coef-
ficients 3, the neutral blendshape for a subject is calculated by:

Our model focuses on analysing 3D facial motions in sequence data like BP4D [56].
We want to reduce the identity bias during reconstruction for multiple frames
of the same subject and therefore we can focus more on the non-rigid facial ex-
pressions. For the purpose of better estimating a subject-neutral face, we employ
the identity-consistent constraint on the learning of identity parameter 3. We
sample a small batch of F' images I,--- ,Ir for the same subject according to
the identity labels and build F' Siamese structures with shared network weights.
For multi-frame input [[1,- - , Ir], from the output of Siamese structures, we ex-
tract identity coefficients [31, -, Br| and enforce the similarity between every
pair of identity coefficients by the following identity-consistency loss:

1 F
Lig= m Z Hﬂz - ﬂj||2 (4)

i,j=1

AU-specific Blendshape Learning. A linear 3DMM usually contains an iden-
tity basis B;q and expression basis B, as expressed in Eq. 1. However, to adapt
the 3D reconstruction model to an AU detection task, we want to construct an
AU-specific blendshape for each of K blendshapes. For this purpose, we intro-

duce an additional set of person-specific coefficients n = [y, - -+ , Mx] to compose
AU-specific blendshapes B, = [[Bau[l]; " ;s Bau[K]]-
M
Baulk] = Z Me,mWi @ Begp[m],Vk €1, ..., K (5)
m=1

where M is the number of expression bases and By, [k] is the subject blendshape
for AUy, and Wy, is the pre-generated mask constraining local deformation in
certain face regions for each AU. Each 7y has the dimension of the number of
expression bases and 7y, is the myy, factor of ;. For each input image, our
model generates K subject-AU-specific blendshapes by predicting the AU coeffi-
cients 1. By linearly combining the AU-specific blendshapes with the expression
coefficients a, a 3D face can be expressed as:

S == Sneu + Baua (6)

Combining Eq. 5 and Eq. 6, we find that a and 1 are coupled together to compose
a 3D face shape and thus there may exist multiple solutions of e and 1, making
it impossible to properly match blendshapes with AUs. To jointly learn 1 and
a, we constrain a by directly mapping it to AU occurrence probability.
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3.2 AU-aware 3D Face Reconstruction

As depicted in Fig. 1, the expression coefficients @ are the key factor to adapt the
AU information to 3D geometry. In this section, we will demonstrate the process
of applying two AU-related regularization terms as constraints of learning c.

AU Activation Probability. Before introducing AU-related regularization
terms, we design mapping functions from 3D expression parameters a to AU
occurrence probabilities. The intuition underlying the design of the mapping
function is that a represents the deformation intensity in 3D space of each
blendshape component, which is closer to the real-world AU activation defined
in FACS [20] compared with 2D image features. Therefore, it is natural to apply
a threshold on each dimension of & = [a1,- -+, ax]T to determine whether the
corresponding AU is activated. We denote the activation status of AU; as z; with
z; = {0, 1}, and denote the probability of its occurrence as p; with p; = p(z; = 1).
The mapping function f : a; — p; then becomes:

o — T

) (7)

pi =p(zi =1) = o .
where o(z) = 1-&-% is the sigmoid function. 7 is a threshold on expression
intensity and e is the temperature factor. Both 7 and € are pre-defined hyper-
parameters. With the mapping in Eq. 7, AU-related regularization terms based
on AU occurrence probability are then applied to optimize a by means described
in detail below.

Regularization Through AUs. To learn semantically meaningful a;, we de-
rive constraints from both AU occurrence labels and generic prior knowledge on
AU relationships, whereby the former applies to AU-annotated images and the
latter applies to any dataset with various subjects. These constraints are incorpo-
rated into the proposed AU-specific blendshape learning as regularization terms.

A. Regularization with AU labels For images with available AU occur-
rence labels, we define a loss function based on the cross-entropy between the
ground-truth label and predicted occurrence probability p;:

Loy—iaper = *ﬁ Ziec(zftlog(pi) +(1— Zigt)log(l — i) (8)

where 29" is the ground-truth label for AU; and C is the set of annotated AUs.
B. Regularization with generic AU relationships. AU labels are not avail-
able for all training data. To further constrain the learning of B,, and «, we
consider generic AU relationships defined by FACS [20]. AUs can be positively or
negatively correlated, depending on the underlying muscle anatomy. We summa-
rize the most commonly considered AU relationships in Table. 1. These correla-
tions are generic and are applicable across different subjects. AU correlations can
be represented as probability inequality constraints [57]. For a positive correlated
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Fig. 2: Pre-learned BN structure

AU pair (i,7), given the occurrence of AU j, the probability of the occurrence
of AU i is larger than the probability of its absence,

pz =1lz; =1) > p(z; =0]z; = 1) (9)

Similarly, we can derive probability constraints for negative correlations [57].

A Bayesian Network (BN) can then be learned from generic probability con-
straints by following [16]. The learned BN captures the joint probability of all
possible configurations of 8 AUs. Its structure is visualized in Fig. 2.

Instead of employing the joint probability of all possible AUs [16], we focus on
local probabilities of pairs of AUs. By employing local pairwise probabilities, we
regularize a; and «; to be similar (or distinct) if AU; and AU; are positively (or
negatively) correlated. Specifically, we obtain the pairwise probability of AU pair
(4,7), i-e., pii*”" (2i, 2;), from the learned Bayesian Network by marginalizing out
the remaining nodes. The pre-generated pairwise probabilities for different AU
pairs, i.e., pj; """ (2i, z;), encode generic AU relationship knowledge and apply to
all subjects. Let Cy represent the set of AU pairs (i, ) of interest®. The pre-
generated pairwise probabilities {p};"”" (2, 2j)} (i j)ec, are then integrated into
the learning of a through the proposed regularization term as follows:

Lau—corr = ﬁ Z(i,j)EC; (KL(pl(Zl) H ]Epj(z])ppriar(Zile)) + KL(p](Z]) H Epi(zz)ppriOT(Zjlzi))) (10)

In Eq. 10, p;(2;) and p;(z;) are calculated with Eq. 7, pP"*°"(z;|z;) are computed

PP (2i,25)
z3=0,1 PP (24,25)
Both p;(z;) and E,, ., p""" (z]z;) are Bernoulli Distribution. KL(-||-) repre-
sents Kullback-Leibler divergence. By applying L,y —corr, AU prior relationships
are leveraged to better learn AU-adaptive expression coefficients a.

With the AU regularization terms above, our personalized AU basis are con-
sistent with AUs. Reciprocally, AU-specific blendshapes support convenient 3D
AU detection. One can apply Eq. 7 to the expression coefficients a during testing
to obtain the AU activation probabilities, and regard the AU; as activated only

if p; > 0.5. The impact on AU detection performance is evaluated in section. 4.

based on pairwise prior from the pre-learned BN: pp””(zj |z;) = =

3 We select a set of eight AU pairs mentioned in Table. 1 that are
available in both the learned BN and the AU indices with Cs =
{(1,2),(4,7),(6,12), (15,17),(2,6), (2, 7), (12,15), (12,17) }
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3D Face Reconstruction The output of our model are 3D reconstruction
parameters p = [s, R, 24,3, , 1,8, 7], where s is the scaling factor; R is the
rotation matrix for head pose pitch, yaw and roll, to4 is the 2d translation vector,
« are the predicted blendshape coefficients; § are the texture coefficients and =y is
the illumination parameter. A weak perspective projection of the reconstructed
3D face can be expressed by

X =s*PrxRx*(B+ BB+ By,a) +t (11)
100( . . L . .
where Pr = 010/ the weak perspective projection matrix. From projected

vertices, we can select 68 facial landmarks I € R%*2 and compute the pro-
jected landmark loss with ground-truth landmarks 19¢ (detected by landmarks
detectors) for 3D alignment.

For the illumination model, we follow the typical assumption that the face is a
Lambertian surface and the illumination is modeled by Spherical Harmonics(SH)
[37]. The color ¢ of a vertex x; with its surface normal n; and texture t; can be
formulated as ¢(n;, t;|v) = t; ZkKjl v - Hi(n;), where Hy : R — R is SH basis
functions, 7, are the corresponding SH coefficients and K = 3,~ € RK”,

With a differentiable renderer module, we generate a synthetic image I using
the projected 3D vertices X along with the texture and illumination parame-
ters, i.e., I = R(X,d,~). By computing the pixel-level differences between the
original image I and I , the loss is back propagated to update p.

3.3 Training loss

We perform a three-stage training process, each stage progressively adding more
terms to the loss function as described in Algorithm 1. For the first stage (training
the 3D reconstruction), the model training is self-supervised with the identity-
consistency constraint. The model takes image batches as input. At the second
stage, we train our model only on AU-annotated data. For the last stage, we
further fine-tune our model with AU priors introduced in Section 3.2.

The total training loss function for the final stage is:

L =XimgLimg + NimkLimk + NiaLia + AgLa + Lsp

12
+ )\auflabelLauflabel + )\aufcorrLaufcorr ( )

The loss term L;q4 is defined in Eq. 4, the AU regularization terms Lqy_apel, Law—corr
are defined in Eq. 8 and Eq. 10. Ling, Limk, Lid, La, Lsp are described below.
Photometric loss. The main component of the training loss is the pixel-level
loss between the synthetic image I and original image I, formulated as:

A |11
L/ng - Z‘"Lzm |J477L H2 (13)
where A,, is pre-generated facial skin mask so that we only calculate the pixel
difference in face region.



AU-aware 3D Face Reconstruction 9

Algorithm 1 Multi-Stage Training Process

1: Stagel: Identity-aware baseline model training
2: Input: BS,,, B2,

{[Ifi7 T ?];iL [lii7 o 7l;?i}gt[Aii7 U 7‘4?]};\21

Training Loss: L1 = XimgLimg + Aimk Limk + AcLa + AiaLia + AspLsp

Stage2: AU-adaptive training with AU labels

Input: {Ii,lft,Ai,zigt}fv:ll,Bgeu,Bgu,pfjﬁor

Training Loss: L2 = XimgLimg + AimkLimk + AcLc + Aau—tabet Lau—tabel + AspLisp
Stage3: AU-adaptive training with AU prior

Input: {Ii,lft,Ai}ZN:ll, BC.., Bgu,pf;i”

Training Loss: Lz = AimgLimg + AimkLimk + AcLc + AspLsp + Aau—corr Lau—corr

Projected landmark loss. We select 68 landmark vertices on the mesh model
and define the landmark loss term as the distance between the projected 3D
landmarks I and the pre-generated results I from landmark detectors.

Limp = (1 =172 (14)

Deformation gradient loss. Except for the soft constraints of AU labels and
AU prior knowledge on expression coefficients a, we further apply a regular-
ization term on the generated B,, to ensure they are locally deformed and
semantically mapped to each AU. Inspired by the work of Chaudhur et al. [11]
and Li et al. [27], we pre-define a template neutral face BY_,the same number
of AU-blendshape template BY, by performing Non-Rigis ICP [2] process from
BFM template to ICT-Face [29] expression template and impose regularization
term of deformation gradient similarity, formulated as below:

\F (15)

where G(B, ., [k]—S,...), i the deformation gradient between the k;;, AU-blendshape
and neutral shape for a specific subject following the calculation defined in [12].
The loss L¢ is utilized to enforce that the learned B,, are not exaggerated and
have similar local deformations as the template ICT blendshapes so that By,
can semantically match with each AU. Without this loss, By, will be deformed
in a free-form manner and lose the interpretability as AU-blendshapes.
Coefficients sparsity loss. To avoid generating implausible faces we apply a
regularization term to constrain small 3D coefficients, including 3, ¢, §, which is
denoted as the sparsity loss Ly, and it’s based on the Lo norm of the coefficients.

K
La =3 -1 |G Bulkl =+ 5nen) — G(BY, K—B2,.)

neu

Lsp = AspllBll2 + Asp 2llllo + Asp,3(19]]2 (16)
The training process is described in Algorithm 1.

4 Experiments

Datasets. To fully assess the proposed model under different environments, we
evaluate both face reconstruction performance and AU detection performance
on the following benchmark datasets:



10 C. Kuang et al.

— CelebA [36] contains more than 200k celebrity images with annotations
of 40 attributes. We utilize the full CelebA images and the corresponding
landmark and identity annotation for training. The landmarks are used to
crop and initially align the images; identity attributes are used to generate
image triplets for the identity consistency training.

— BP4D [50] is a spontaneous database containing 328 sequences from 41 sub-
jects performing different facial expressions. Each subject is involved in 8
expression tasks, and their spontaneous facial actions are encoded by binary
AU labels and AU intensity labels. Around 140k frames with AU occur-
rence labels are employed for evaluation. Subject-exclusive three-fold cross-
validation experiment protocol is employed for AU detection evaluation.

— BUSDFE [55] is a 3D facial expression database with 3D scans available
for 2500 face shapes of neutral face and six expressions. We use BUSDFE
for the evaluation of 3D reconstruction performance.

— Now Challenge [12] provides around 2k 2D multi-view images of 100 sub-
jects categorized by neutral, expressional, occluded and selfie images. We
employee Now dataset only for 3D reconstruction evaluation with provided
ground-truth 3D scans.

Implementation Details. We use the BFM [22] 3DMM for face reconstruction.
In Eq. 5, the deformation mask is generated by using expression shapes provided
by the ICT-Face [29] model. We use NICP [2] tools to project each ICT-face
vertex to the closest triangle of the BFM mesh. We first generate a binary
weight map by thresholding the vertex deformation for each blendshape and then
perform Gaussian smoothing on the boundary to generate W (visualizations
are available in the supplementary material). We use CelebA and BP4D as our
training data. At the first stage, we sampled small image batches from both
databases with F' = 3 in Eq. 4. In Eq. 7, we set the hyper-parameter 7 = 0.15
and € = 0.05 by grid-search. We assign € = 0.01, which is used to amplify the
difference between ¢ and .

For BP4D, we generate multiple triplet samples for each subject and each
sequence. We train the baseline model for five epochs. At the second stage,
we split BP4D into 3 folds and select two folds for AU-supervised training. The
trained model is denoted as baseline+AU label model. For the last stage, we
perform AU-adaptive training on both datasets by employing AU prior regular-
ization term. The final model is denoted as baseline+AU label+AU prior
model. We use CelebA and two folds of BP4D images for training. We train 170k
iterations with batch size of 30.

4.1 Evaluation of 3D Reconstruction Error

To validate the reconstruction efficiency of AU-specific blendshapes, we perform
quantitative and qualitative comparisons of the reconstruction results against
state-of-the-art weakly-supervised 3D face reconstruction methods.
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Table 2: 3D Reconstruction Error on  Table 3: 3D Reconstruction Error on

BU3DFE [55] Now [42] validation set
Methods Mean (mm) SD Methods Mean (mm)| SD
Chaudhuri et al. [11]|  1.61 | 0.31 Shang et al. [1] 187 12.63
Shang et al. [11] 1.55 0.32 Dib et al. [19] L.57 1';1
Bai et al [ ] 1.21 0.25 RingNet [12] 1.53 1.31
. . ) Deep3dFaceRecon-pytorch [18] 1.41 1.21
FML [18] 178 10.45 DECA [21] 138 |18
Ours-final 1.11 0.28 Ours-final 1.33 1.21

Table 4: Ablation Study on 3D Reconstruction

BU3SDFE [o7] Now [17]
Mean (mm)| SD |Mean (mm)| SD

Stages with different losses (ResNet50)

backbone 1.62 0.68 1.90 1.45

backbone+L;q 1.58 0.50 1.84 1.56

backbone+Lg 1.37 0.35 1.52 1.36

backbone+L;q + L (baseline) 1.32 0.32 1.47 1.38
backbone+Lig + L + Lau—1avel 1.18 0.30 1.39 1.20

Ours-final: backbone+L;q + Lg + Lau—iavel + Lau—corr 1.11 0.28 1.33 1.21

Quantitative evaluation. We perform monocular face reconstruction evalua-
tion on the BUSDFE and Now validation datasets. On the BUSDFE dataset,
we follow the evaluation procedure of [48] and [5] to pre-generate a dense-
correspondence map between each ground-truth scan and reconstructed 3D face,
applying the Iterative-Closest-Point(ICP) algorithm using Open3d [59]. On the
Now dataset, we compute the correspondence by following the RingNet evalua-
tion procedure [12]. With the correspondence between each scan vertex and the
BFM mesh surface, the reconstruction accuracy is evaluated in terms of vertex-
to-plane mean square error (MSE) in units of mm and standard deviation (SD).
A. Comparison to State-of-the-art Methods. We compare our model against
four state-of-the-art methods: Chaudhuri et. al [11], Shang et al. [44], Bai et al. [4]
and FML [18] on both the BUSDFE and Now datasets. Results are shown in
Table 2 and Table 3, respectively. On both benchmark datasets, our final model
outperforms existing state-of-the-art methods. On BU3DFE, our model achieves
an MSE of 1.11 MSE, which is 0.67 less than the MSE achieved by FML [48].
On the Now validation dataset, our final model’s MSE is also better than the
state-of-the-art methods [12,18,44,19]. We provide visualizations examples of er-
ror maps on BU3DFE and Now in the supplementary materials.

B. Ablation Study. To further study the effectiveness of each component in
section 3.3, we report the performance of our model trained on the same train-
ing data but with different loss terms on both the BUSDFE and Now vali-
dation datasets. Results are shown in Table 4. In the following, the “back-
bone” refers to the ResNet50 structure trained with basic loss terms includ-
ing Limg, Limk, Lsp. We refer to the model trained with L;q + Lg as identity-
aware baseline model; model trained with L;q + Lg + Lou_iaper is referred to
as baseline4+AU label model; our final model, i.e., the model trained with
Li;g+ Lg + Lau_1apel + Lau—corr, is referred to as baseline+AU label+AU
prior model.
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Fig. 3: Reconstruction result visualization on VoxCeleb2[13] using ours: base-
line+AU label+AU prior, Chaudhuri et al.[l1] and FML [48]. Our model
can produce accurate facial expressions.

The first four rows of Table 4 reveal that, prior to adding any AU regu-
larization terms, adding L provides the most significant performance improve-
ment. This demonstrates the effectiveness of constraining locally deformed blend-
shapes, even before they are made AU-specific. Advancing to the fifth and sixth
rows of Table 4, where the regularization terms for AU labels and AU prior rela-
tionships are added, we observe that AU-based regularization provides another
significant gain in 3D accuracy over the baseline model for both datasets. Fur-
thermore, even at intermediate stages, our models can sometimes outperform
state-of-the-art methods. For example, on BU3SDFE, our baseline4+AU label
model achieves MSE = 1.18, which is better than MSE = 1.21 achieved by [4].
Since the available ground-truth scans in Now validation data do not have sig-
nificant facial expressions, the degree to which AU regularization improves the
final model is somewhat less than for BUSDFE. Even without AU regularization,
our baseline+ AU label model outperforms nearly all of the prior methods.

Qualitative evaluation. The PCA basis used in BFM [22] has no seman-
tic meaning, and usually contains global deformations. In contrast, our learned
AU-blendshapes have the advantage that they are capable of representing sub-
tle local facial motions closely related to AUs, and moreover they are adapted
to the known AU relationship priors described in Section 3.2. This advantage
is illustrated qualitatively in Fig. 3, where we compare the 3D reconstruction
result on VoxCeleb2[13] images with the models of FML [48] and Chaudhur
et al. [11].It is evident from the examples given in Fig. 3 that our model can
produce more reliable 3D facial motion details, especially in eye-brow motion
and mouth motion. In Fig. 4, we perform a more comprehensive comparison of
our model trained using different loss functions with state-of-art reconstruction
methods. By self-comparison, our model (C) and (D) capture 3D expressions
more accurately than our baseline model (B). In Fig. 5, we provide testing ex-
amples on BU3BDFE and Now. For more qualitative results, please reference
our supplementary materials.
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Fig. 4: Reconstruction result comparison of our model and state-of-art face re-
construction models: 3DDFA [23], Bai et al. [5], Bai et al. [4], Feng et al. [21] on
BP4D [56] dataset. For our model, (B) is baseline model, (C) is baseline+AU
label model and (D) is baseline+AU label + AU prior model.
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Fig.5: Reconstruction visualization on BU3BDFE samples and Now Challenge
samples using our baseline4+ AU label4+AU prior model.

Table 5: Comparison to state-of-the-art methods on BP4D (F1 score)
[ Method [AU1[AU2[AU4]AUG[AU7[AU10[AUI2[AUI4[AU15[AU17[AU23[AU24[Avg.|
DRML[32] [36.4][41.8][43.0]55.0]67.0] 66.3 | 65.8 | 54.1 | 33.2 | 48.0 | 31.7 | 30.0 | 48.3

ROI[31] 36.2| 31.6 |43.4|77.1|73.7| 85.0 | 87.0 | 62.6 | 45.7 | 58.0 | 38.3 | 37.4 | 56.4
JAA-Net[15] |47.2| 44.0 |54.9|77.5|74.6| 84.0 | 86.9 | 61.9 | 43.6 | 60.3 | 42.7 | 41.9 | 60.0
DSIN|[15] 51.7|40.4 |56.0|76.1|73.5| 79.9 | 85.4 | 62.7 | 37.3 | 62.9 | 38.8 | 41.6 | 58.9
LP-Net[39] [43.4]38.0|54.2|77.1|76.7|83.8 87.2| 63.3 | 45.3 | 60.5 | 48.1 | 54.2 | 61.0
ARL [40] 45.8|39.8 |55.1|75.7|77.2| 82.3 | 86.8 | 58.8 | 47.6 | 62.1 | 47.4 | 55.4 | 61.1

Jacob et al.[24]|51.7| 49.3 |61.0|77.8|79.5| 82.9 | 86.3 | 67.6|51.9|63.0| 43.7 | 56.3 | 64.2
Ours-final |55.2]57.0(53.7|66.7|77.8| 76.4 | 79.7 | 59.8 | 44.1 | 60.1 | 53.6 | 46.0 | 60.8

4.2 Evaluation of 3D AU Detection Performance

Comparison to State-of-the-art Methods. To prove that the learned 3DMM
is AU-interpretable with the proposed AU regularization terms, we perform AU
detection directly using our 3D model and compare to state-of-the-art image-
frame-based methods accordingly, including EAC-Net [32], ROI [31], JAA-Net [15],
DSIN [15] and LP-Net [39], ARL [16], Jacob et al. [24]. We stress that our model
performs AU detection as an outcome of 3D face reconstruction, which is a totally
different mechanism from these SOTA methods, and yet our proposed method
still achieves comparable AU detection performance for within-dataset evalua-
tion on BP4D. During testing, given a set of predicted expression parameters
a, we apply Eq. 7 to obtain activation probabilities and regard AU; as active if
p; > 0.5. Results are shown in Table. 5.

According to Table 5, the overall average F1-score of our 3D model achieves
comparable performance compared to most of the frame-based methods. More
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Table 6: Ablation Study on AU Detection

‘ Models with different losses (ReseNet50) ‘Avg. (Fl)‘
backbone 30.3
backbone+L;q 30.4
backbone+Lg 51.0
backbone+ Liq + La (baseline) 56.0
backbone+L;q + L + Lau—1iabe 60.0
Ours-final: backbone+L;q + L + Lau—tabel + Lau—corr 60.8

importantly, our model performs significantly better performance on three chal-
lenging AUs: AUL, AU2 and AU23 and very close performance with [24] on AU7
and AU17. For AUs with distinguishable vertex deformations (like AU1 and
AU2) that can be more easily identified from the overall geometry, our model
can achieve good performance. For AUs with highly correlated blendshapes, i.e.
the vertex deformations are overlapped and similar, our model is more suscep-
tible to misclassification than image-based methods.

Ablation Study. To better understand whether the effect of each loss com-
ponent on AU detection performance is consistent with 3D reconstruction, we
employ the same model nomenclature as introduced in the previous section and
report the average AU detection Fl-score. During the training of the baseline
model, no AU labels are used; only generic AU-blendshapes are used as weak
constraints for AU modeling. Comparing the baseline4+AU label Fl-score to
that of baseline, it is clear that AU label regularization helps significantly.
Adding the AU relationship priors helps as well, albeit to a lesser extent.

5 Conclusion

We have proposed a novel framework for learning subject-dependent AU blend-
shapes by directly applying AU-related regularization terms on a 3D face model.
With a learned AU-specific basis, our model is able to generate accurate 3D face
reconstruction, especially for subtle motions in the eye and mouth regions, and
can be directly utilized for AU detection. Experimental results demonstrate that
our model achieves state-of-the-art 3D reconstruction accuracy and generates
comparable AU detection results through integrating AU information during
the model learning. Most importantly, quantitative evaluation of the two tasks
shows that incorporating AU information in 3D geometry helps recover more
realistic and explainable facial motions and 3D basis provide a new perspective
of detecting challenging AUs, indicating a great potential for using our model
in conjunction with image-based methods in a complementary fashion to create
an AU detector that combines the best of both.
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