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We first discuss implementation and experiment details. Next, we present
more ablation studies of our approach. Third, we provide additional visualization
to validate the proposed design. Finally, we include additional discussions.

1 Implementation Details

Frame sampling strategy for Protocol 1. Following SSDG [6], we train the
model using only one frame selected in each video, and evaluate the model using
two frames in each video. Both the training and test set videos in the original
dataset are considered as data in one domain, and there are no training and test
splits for cross-domain evaluation. We hold out ten frames in each domain as the
few-shot samples. We calculate the average probability for each video and the
HTER, AUC and TPR@FPR=1% scores are obtained based on videos instead of
frames. We use TPR@FPR=1% as the metric instead of TPR@FPR=0.1% since
the test sets contain only hundreds of images.

Frame sampling strategy for Protocol 2. We train the model using ten
frames equidistantly sampled from each video, and evaluate the model using ten
frames in each video for WMCA and CeFA. We use all frames from the SURF
dataset. We split the data into training and test sets for this protocol. As there
are multiple spoof types in WMCA dataset, we use all videos for training, and use
only print attacks, replay attacks and live videos for test. For CeFA and SURF
datasets, we use all data as training set, and use the original validation set for test.
We hold out ten frames in each domain as the few-shot samples. As SURF does
not contain videos, we calculate the HTER, AUC and TPR@FPR=1% scores
based on the probabilities of frames instead of videos. Based on the sampling
strategy, the numbers of frames used in training/test are 16K/9K (WMCA),
60K/12K (CeFA) and 96K/9K (SURF).

Explanation about the benchmark. We follow the typical cross-domain
evaluation setting that is widely used in face anti-spoofing literature [2, 6, 7, 12–
14,19–23,25]. We note that the zero-shot benchmark proposed in [15] has been
previously retrieved and is no longer available. The benchmark proposed in [18]
is less used in the FAS literature. The authors study a different topic of detecting
novel live/spoof sub-categories, and their zero/few-shot settings use ten live and
spoof samples from two different sub-categories for adaptation. The problem
setup is different from our supervised few-shot domain adaptation task.
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We report the comparison to [18] in Table 1 following their training/test
protocols. Instead of using their meta-learning approach, we simply train the
model with binary classification loss using the training set. At test time, we
follow their zero/few-shot evaluation settings and use a balanced data batch
formed by the few-shot samples and the samples from the training set to adapt
the model. All models are initialized from the ImageNet-pretrained ViT and
fine-tuned following the data splits in their benchmark. Our model performs
favorably against [18], especially for the few-shot settings. No additional datasets
are used in this experiment per ECCV guideline.

Table 1: ACER (%) Comparison to [18]. We report the results on the bench-
marks proposed in [18]. Our model performs favorably against prior work, espe-
cially for the few-shot settings.

Benchmark Method 0-shot 1-shot 5-shot

OULU-ZF
[18] 4.97±1.29 4.00±1.31 2.44±0.71

Ours 4.96±1.18 3.66±1.16 1.60±0.53

SURF-ZF
[18] 30.97 ±1.28 28.75 ±1.49 27.27±1.25

Ours 28.53±2.48 22.50±2.33 21.60 ±2.95

2 More Ablation Studies

2.1 Analysis of the Adaptive Module

As discussed in the paper, fine-tuning large models such as ViT with few samples
usually causes instability. The proposed adaptive transformer model allows the
transformer to operate on fewer parameters with a skip-connection to reduce
optimization difficulty, thus achieving stability for mitigating domain gap in face
anti-spoofing. Here we provide more analysis to justify the effectiveness of the
proposed adaptive transformer model.

First, we plot the loss landscapes [11] of the naive ViT and our adaptive
transformer in Fig. 1(a). The loss landscape by ViTAF∗ is wide and flat compared
to the naive ViT, which indicates better generalization. Second, as discussed in
Section 4.3 and Fig. 3 of the paper, the fine-tuning test performance of ViT model
may fluctuate among different checkpoints even when the training loss converges.
In Fig. 1(b), we show the learning curve of the ViT method and the proposed
ViTAF∗ method. Although the best performance of ViT is already comparable
to state-of-the-art, the performance fluctuates among different checkpoints and
saturates since early iterations. In contrast, the test performance by the ViTAF∗

model gradually increases when it is trained for longer iterations, and there is no
large fluctuation among the checkpoints. The learning curve validates the robust
performance achieved by the ensemble adapters. Third, the skip-connection in the
adapter module makes the output embedding mimic the input embedding, which
yields representations with less deviation from the pre-trained ones and alleviates
the instability caused by the catastrophic forgetting problem [4,9,17]. In Fig. 1(c),
we plot the representational similarity [8] between the ImageNet-pretrained ViT
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and the fine-tuned ViT (blue line) versus the similarity between the ImageNet-
pretrained ViT and the fine-tuned ViTAF∗ (orange line). The results show that
the proposed model has higher feature similarity, thus indicating that ViTAF∗

better alleviates the catastrophic forgetting problem to achieve training stability.
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Fig. 1: Analysis of the adaptive module. (a) The loss landscape of ViTAF∗

is wide and flat compared to naive ViT. (b) The test AUC of ViTAF∗ stably
increases during the training process. (c) The representational similarity of
ViTAF∗ is higher, indicating ViTAF∗ better alleviates the catastrophic forgetting
problem.

2.2 Ablation Study of Number of Ensemble Adapters

In the experiments presented in the manuscript, we set the number of adapters
in the ensemble adapter module as K = 2. In Table 2, we present the results of
using different numbers of adapters in the ensemble module. While the ensemble
module can be extended to include more than two adapters, we do not observe
consistent improvements when increasing the number of adapters to K = 3 and
K = 4. Thus, we keep K = 2 in the paper.

In addition, we include the results of ablating the cosine similarity loss Lcos

in our framework. We observe that no matter how many adapters are used
in the ensemble modules, the performance drop when we remove Lcos, which
suggests that Lcos is essential for the multiple adapters to learn diverse feature
and improve the accuracy.

2.3 Comparison to Feature-level Augmentation Methods

In our adaptive transformer model, we utilize the feature-wise transformation
layer as we find its usefulness for cross-domain anti-spoofing task. We do not
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Table 2: Ablation study of number of ensemble adapters. Increasing the
number of adapters to K = 3 or K = 4 does not bring consistent improvements
to the model. Removing the Lcos causes the AUC drop for all cases.

OCI → M OMI → C OCM → I ICM → O

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

FPR=1% FPR=1% FPR=1% FPR=1%

K=1 3.42 99.30 88.33 1.40 99.85 95.71 3.74 99.34 85.38 7.17 98.26 71.97

K=2 (Ours) 2.92 99.62 91.66 1.40 99.92 98.57 1.64 99.64 91.53 5.39 98.67 76.05
K=3 2.92 99.80 93.33 2.91 99.64 92.14 1.35 99.88 98.46 6.04 98.78 83.38
K=4 1.58 99.51 91.66 2.09 99.81 95.00 1.42 99.88 96.15 5.36 98.87 78.87

K=2 w/o Lcos 5.00 98.58 88.33 3.02 99.45 87.86 3.81 99.20 86.15 7.04 98.02 71.27
K=3 w/o Lcos 5.00 98.80 83.33 2.90 99.55 86.42 2.29 99.44 84.61 5.56 98.55 69.43
K=4 w/o Lcos 3.42 98.89 86.67 1.51 99.73 92.14 2.09 99.64 90.00 6.93 98.38 78.59

Table 3: Comparison to feature-level augmentation methods. We compare
our model to representative feature-level augmentation approaches [5, 28]. The
results show that our model is more effective for few-shot cross-domain anti-
spoofing.

OCI → M OMI → C OCM → I ICM → O
Method HTER AUC HTER AUC HTER AUC HTER AUC

SSDG 8.42 97.39 12.91 93.59 4.48 99.14 7.81 97.46
SSDG+DropBlock 3.41 99.13 14.30 93.79 6.12 98.75 9.56 97.05
SSDG+MixStyle 5.00 97.63 6.51 97.35 3.06 99.54 10.26 96.23
ViTAF∗ 2.92 99.62 1.40 99.92 1.64 99.64 5.39 98.67

claim that we proposed the most effective augmentation approach. In Table 3, we
compare our methods to two representative feature-level augmentation methods
for domain generalization, DropBlock [5] and MixStyle [28]. The two methods are
not directly applicable to ViT and we add these approaches to our baseline SSDG
for comparison. Although these feature augmentation methods [5, 28] achieve
good performance on standard cross-domain object classification benchmark [10],
the results show that our model is more effective for the face anti-spoofing domain.

2.4 Ablation Study of Increasing Few-shot Samples

In Fig. 2, we conduct an ablation study of increasing the number of few-shot
target domain samples provided at training time. The x-axis shows the number
of few-shot samples including 5-shot, 10-shot, 20-shot, 50-shot, 100-shot and
all-shot. The y-axis shows the TPR@FPR=1% metric. Note that to conduct this
experiment, we split the datasets into training and test sets, and thus the result
is not directly comparable to the results in the main paper. We observe that
the TPR@FPR=1% scores increase when more few-shot samples are included
in training for all datasets. In addition, the TPR@FPR=1% score achieves 90%
(which is almost saturated) when there are 5 shots (OCI → M), 10 shots (OMI
→ C), 20 shots (OCM→ I), 100 shots (ICM→ O), 50 shots (CS→W), 50 shots
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(SW → C) and 20 shots (CW → S). The results suggest that including less than
5% samples in the target domain at training time can achieve good performance.

Fig. 2: Ablation study of increasing few-shot samples. We conduct ablation
study of increasing the number of few-shot target domain samples provided at
training time. The x-axis shows the number of few-shot samples from 5-shot to
100-shot and all-shot in log scale. The y-axis shows the TPR@FPR=1% metric.

2.5 Intra-database Evaluation

To continue the discussion in the previous section, we provide the intra-database
results on four protocols of the Oulu-NPU dataset in Table 4. Although our
approach does not aim at intra-database evaluation where the training/test sets
are from the same domain, our method achieves performance comparable to
the state-of-the-art method DC-CDN [24] for protocol 2 and 3, and it obtains
favorable results for protocol 1 and 4. No additional datasets are used in this
experiment per ECCV guideline.

Table 4: Intra-database evaluation on Oulu-NPU dataset. Our method is
comparable to the state-of-the-art method for protocol 2 and 3, and it achieves
favorable results for protocol 1 and 4.

Prot. Method APCER(%)↓ BPCER(%)↓ ACER(%)↓

1
CDCN [26] 0.4 1.7 1.0

DC-CDN [24] 0.5 0.3 0.4
Ours 0.4 1.8 1.1

2
CDCN [26] 1.5 1.4 1.5

DC-CDN [24] 0.7 1.9 1.3
Ours 1.1 1.1 1.1

3
CDCN [26] 2.4 2.2 2.3

DC-CDN [24] 2.2 1.6 1.9
Ours 0.4 3.3 1.9

4
CDCN [26] 4.6 9.2 6.9

DC-CDN [24] 5.4 2.5 4.0
Ours 0.0 15.0 7.5
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2.6 Ablation Study of Using Different 5-shot Samples

In our experiments in the paper, the 5-shot samples of the target domains are
selected randomly and fixed for all the experiments. In Table 5, we provide an
ablation study of using different sets of 5-shot samples randomly selected from
the target domain. We conduct the experiments for five runs and report the
average performance and standard deviation.

The standard deviation of AUC score in five runs are: 0.27 (OCI → M), 0.50
(OMI→ C), 0.98 (OCM→ I), 0.36 (ICM→ O), 0.33 (CS→W), 0.64 (SW→ C),
1.87 (CW → S). Although the performance varies due to the selection of 5-shot
samples, the variation is not large for most datasets. There are higher variations
for Idiap (I), CeFA (C) and SURF (S). The datasets CeFA (C) and SURF (S)
have 10× more examples than other datasets and the 5-shot samples cover only
0.1% of the data. Therefore, using different sets of 5-shot samples leads to a larger
performance variation for SW → C and CW → S. On the other hand, OCM → I
also has a larger performance variation caused by the selection of 5-shot samples.
This might be due to the low resolution (480P) of the Idiap (I) dataset which
causes some live videos to have even worse visual quality than spoof videos, and
the recording environments are less diverse than other datasets. Therefore, if the
selected 5-shot samples are outliers that do not cover the common live/spoof
types, the model will be biased and the performance degrades. We note that
although in Protocol 2 there are seven kinds of spoof attacks in the WMCA (W)
dataset, we have only used replay and print attacks for testing. Thus, the 5-shot
selection strategy is not an issue for CS → W as shown in Table 5. More details
about the frame sampling strategy are in Section 1. It is interesting to study
which samples obtained from the new domain are most beneficial for the few-shot
adaptation, which we leave as future work.

Table 5: Ablation study of using different 5-shot samples. In our experi-
ments in the paper, the 5-shot samples of each dataset are selected randomly and
fixed for all the experiments. Here we provide an ablation study of using different
sets of 5-shot samples randomly selected in the target domain. We conduct the
experiments for five runs and report the average results and standard deviation.

OCI → M OMI → C OCM → I ICM → O

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

FPR=1% FPR=1% FPR=1% FPR=1%

Mean 2.37 99.55 91.53 3.14 99.34 86.64 5.60 98.68 72.77 8.33 97.68 64.79
Std 1.26 0.27 3.69 1.47 0.50 9.00 3.15 0.98 17.08 0.74 0.36 5.42

CS →W SW → C CW → S

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

FPR=1% FPR=1% FPR=1%

Mean 4.31 99.32 86.51 6.51 98.20 68.76 9.31 96.15 66.76
Std 1.19 0.33 6.58 1.50 0.64 10.38 2.65 1.87 12.84
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2.7 Ablation Study of Excluding CelebA-Spoof

Table 6 shows the ablation study of excluding CelebA-Spoof [27] from the source
datasets. We present the results of our 0-shot ViT and 5-shot ViTAF model.
ViT† and ViTAF† denote the model trained without using CelebA-Spoof in the
source datasets. Excluding CelebA-Spoof causes the performance drop in all
target datasets for the 0-shot ViT model, and six out of seven target datasets for
the 5-shot ViTAF model. These results show that including CelebA-Spoof in the
source datasets increases the diversity of training data and helps learn a better
representation.

The 0-shot ViT† has an average 6.38 AUC performance drop compared to
0-shot ViT, while 5-shot ViTAF† has a 1.31 AUC drop compared to 5-shot ViTAF.
The results suggest that when there are no target domain samples provided at
training time, the diversity of source datasets highly affects the results. On the
other hand, when there are few-shot samples, excluding CelebA-Spoof does not
cause a drastic performance drop, though still a moderate difference, which shows
the effectiveness of CelebA-Spoof dataset on improving the generalizability of
the model.

Table 6: Ablation study of excluding CelebA-Spoof. We present the abla-
tion study of excluding CelebA-Spoof [27] from the source datasets. We present
the results of our 0-shot ViT and 5-shot ViTAF model. ViT† and ViTAF† denote
the model trained without using CelebA-Spoof as the supplementary source
dataset.

OCI→M OMI→C OCM→I ICM→O

Method
HTER AUC

TPR@
HTER AUC

TPR@
HTER AUC

TPR@
HTER AUC

TPR@
FPR=1% FPR=1% FPR=1% FPR=1%

0-shot ViT 1.58 99.68 96.67 5.70 98.91 88.57 9.25 97.15 51.54 7.47 98.42 69.30

ViT† 4.75 98.79 68.33 15.70 92.76 36.43 17.68 86.66 50.77 16.46 90.37 24.23

5-shot ViTAF 3.42 99.30 88.33 1.40 99.85 95.71 3.74 99.34 85.38 7.17 98.26 71.97

ViTAF† 4.75 98.59 80.00 4.19 98.59 57.86 3.28 99.27 76.92 10.74 95.70 51.13

Method
CS→W SW→C CW→S

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

FPR=1% FPR=1% FPR=1%

0-shot ViT 7.98 97.97 73.61 11.13 95.46 47.59 13.35 94.13 49.97

ViT† 21.04 89.12 30.09 17.12 89.05 22.71 17.16 90.25 30.23

5-shot ViTAF 4.51 99.44 88.23 7.21 97.69 70.87 11.74 94.13 50.87

ViTAF† 4.91 98.78 75.95 13.56 93.68 30.90 12.63 94.21 55.03

2.8 Ablation Study of Alternative Transfer Learning Strategies

As discussed in Section 3.2 in the paper, one straightforward transfer learning
strategy is to train a classifier on top of features extracted by the ViT backbone
pre-trained on ImageNet [3] using anti-spoofing data. Another common strategy
is to freeze a majority of the backbone and partially fine-tune the network.
In Table 7, we investigate the transfer learning strategies on ViT models by
comparing several alternatives: (1) ViT (fixed): fixing the ViT backbone and
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fine-tuning only the MLP head; (2) ViT (fine-tune last four): fine-tuning the last
four layers along with the MLP head; (3) ViT (fine-tune last eight): fine-tuning
the last eight layers.

The result shows that our transfer learning strategy outperforms the other
alternatives where only parts of the network are fine-tuned. It also validates that
fine-tuning the introduced ensemble adapters and feature-wise transformation
layers effectively adapts the features of ViT to the anti-spoofing tasks. In addition,
only fine-tuning the MLP head on top of a fixed ViT backbone leads to degraded
performance, suggesting that ImageNet-pretrained ViT features are high-level
thus cannot be directly used for anti-spoofing tasks where the subtle low-level
information is crucial.

Table 7: Ablation study of alternative transfer learning strategies. The
alternative strategies include: (1) ViT (fixed): fixing the ViT backbone and
fine-tuning only the MLP head; (2) ViT (fine-tune last four): fine-tuning the last
four layers along with the MLP head; (3) ViT (fine-tune last eight): fine-tuning
the last eight layers.

OCI → M OMI → C OCM → I ICM → O

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

HTER AUC
TPR@

FPR=1% FPR=1% FPR=1% FPR=1%

ViT (fixed) 13.66 93.55 45.00 21.39 87.23 38.57 20.81 86.89 30.77 19.44 88.61 26.06
ViT (fine-tune last four) 6.83 98.00 68.33 10.69 95.52 49.29 9.32 95.99 52.31 11.69 94.86 50.99
ViT (fine-tune last eight) 3.41 98.63 80.00 5.69 98.33 70.71 6.12 98.31 66.15 12.03 95.50 40.56
ViTAF∗ 2.92 99.62 91.66 1.40 99.92 98.57 1.64 99.64 91.53 5.39 98.67 76.05

2.9 ViTF in 0-shot Setting

In the proposed framework, both the ensemble adaptor modules and the FWT
layers are specifically designed and suitable for the few-shot domain adaptation
problem. On the other hand, the ViTF model with FWT layers can be served as a
general feature-wise augmentation method and applied to the 0-shot setting when
there are no target domain samples available. We include the results of ViTF
model in 0-shot setting in Table 8. We observe that the ViTF model does not
have improvements compared to ViT for the setting ICM→O. A possible reason
is O has a more diverse distribution than other datasets in protocol 1. Thus, the
data augmentation on the source datasets ICM does not bring improvement to
the target O.

Table 8: ViTF in 0-shot setting. Including the FWT layer does not bring
improvement to ICM→O in 0-shot setting.

OCI → M OMI → C OCM → I ICM → O
Method HTER AUC HTER AUC HTER AUC HTER AUC

SSDG 6.58 97.21 12.91 93.92 7.01 98.28 12.47 94.87
ViT 1.58 99.68 5.70 98.91 9.25 97.15 7.47 98.42

ViTF 2.20 99.74 4.89 99.21 6.12 98.55 7.89 97.58
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2.10 Runtime Analysis and Network Comparison

In Table 9, we show the training and inference time of the proposed method,
the details of network sizes and the computational complexity. The analysis is
conducted on a desktop machine equipped with an Nvidia 2080Ti GPU. We
show that the network parameters and the computational complexity of the
ViTAF∗ model increase only ≈ 5.5% compared to the naive ViT model. The
analysis shows that the proposed ensemble adapter modules and the feature-wise
transformation layers are lightweight. In practice, the training time and inference
time of ViTAF∗ increase only 15% compared to the ViT model. Overall, it takes
three hours to finish the training/evaluation for protocol 1, and six hours for
protocol 2.

Table 9: Run-time analysis. We present the training, inference time, network
sizes and computational complexity of the proposed method.

Pre-training time (seconds / per iteration) ViT/ViTAF∗ 0.17

Fine-tuning time (seconds / per iteration) ViT 0.18
ViTAF∗ 0.21 (+15%)

Inference time (seconds / per input frame) ViT 0.013
ViTAF∗ 0.015 (+15%)

Number of parameters ViT 86.39M
ViTAF∗ 91.15M (+5.5%)

FLOPs ViT 33.69G
ViTAF∗ 35.56G (+5.5%)

3 Visualization

ROC curves. The ROC curves represent equivalent information as the AUC
scores provided in the paper. In Fig. 3 we plot the ROC curves of our method
and the baseline model SSDG for reference.

Fig. 3: ROC curves. We compare the ROC curves of our method and the SSDG
baseline for protocol 1.
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Failure cases. In Fig. 4, we provide additional failure case analysis for Protocol
2. The live faces misclassified as spoof faces are shown in blue boxes and the spoof
faces misclassified as live faces are shown in red boxes. The live faces misclassified
as spoof faces (blue) are in dark light conditions (top left), or have bad visual
quality and larger pose changes (top right). In addition, the live faces with darker
skin are more challenging (example shown in the top middle). The spoof faces
misclassified as live faces (red) are mostly replay attacks without obvious spoof
cues for CS → W. As for SW → C, faces printed on clothes in either indoor
or outdoor light conditions are the most challenging spoof types as there are
no obvious spoof cues. The most challenging spoof type for CW → S is the
person holding curved photos with good visual quality. Since images in the SURF
dataset generally have low resolution and bad visual quality, the spoof faces with
better quality are easily misclassified as live.

CS→W SW→C CW→S

Fig. 4: Failure case analysis for Protocol 2. We provide additional failure
case analysis. The live faces misclassified as spoof faces are shown in blue boxes
and the spoof faces misclassified as live faces are shown in red boxes.

Attention maps. As shown in Fig. 5, we visualize the attention maps of different
transformer models on spoof images using Transformer Explainability [1]. We
observe that different regions are highlighted by transformers to make predictions
for different spoof face domains. For example, transformers make predictions
mainly based on the paper boundaries or reflection on screens for paper and
replay attack in CS→W. For attacks printed on clothes, transformers focus on
the wrinkles in SW→ C. As for the paper attacks where eye or nose regions are
cut out in CW→ S, transformers pay more attention to the cut regions (holes)
on the spoof medium. Moreover, our methods can better capture the spoof cues
compared to the naive ViTs, as the attention region given by our models is more
conspicuous.

In Fig. 6, we provide additional visualization of attention. Live or spoof faces
are shown in blue or red boxes. Transformer focuses on reflection light on noses for
live faces in OCI → M and OMI → C. The reflection light on noses is usually
a cue of live faces. In addition, transformer focuses on reflections on glasses and
boundaries of the painting on the background for OCM → I. Though glasses
or painting on the background are not spoof cues, the reflection on glasses is
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0-shot ViT 5-shot ViT Ours              Input 0-shot ViT 5-shot ViT Ours             Input

CS→W

SW→C

CW→S

Fig. 5: Transformer attention on spoof images for Protocol 2. We visualize
the attention maps of transformers using Transformer Explainability [1] and
make a comparison of naive ViT and our models. Transformers focus on paper
boundaries or reflection on screens (CS → W), clothes wrinkles (SW → C),
holes at eye or nose regions (CW → S). Our models generate more accurate and
conspicuous attention maps to capture spoof cues compared with others.

OCI→M

OCM→IICM→O

CS→W

SW→CCW→S

OMI→C

Fig. 6: Additional results. We provide additional visualization of the attention
maps. Live or spoof faces are shown in blue or red boxes.
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similar to the reflections caused by replay attacks, and the painting boundaries
look similar to the boundaries of spoof mediums. Our model focuses on glasses
region for OMI → C, ICM → O and CS →W as well. As for the live faces in
CW → S and SW → C, transformer model mainly focuses on eyes, nose, and
mouth region which usually show cues for live faces.

Feature visualization of Protocol 2. We present the t-SNE plot [16] of
Protocol 2 in Fig. 7. Each plot indicates the features extracted from the model
of each setting shown on the top. Each color in the plot shows the live/spoof
samples in each dataset. We observe that features of WMCA (purple, brown)
extracted from model CS →W (left) are well-separated, demonstrating that the
model generalizes well to the target domain. In addition, features of CeFA (blue,
orange) extracted from model SW → C (middle) are almost but not entirely
separated, indicating there is still room of improvement for this model. On the
other hand, features of SURF (green, red) extracted from model CW→ S (right)
are mixed. Since images in SURF have very low visual quality, the model trained
on CW does not generalize well to S.

CS→W SW→C CW→S

Fig. 7: Feature visualization of Protocol 2. We present the t-SNE plot of
Protocol 2. Each plot indicates the features extracted from the model of each
setting shown on the top. Each color in the plot shows the live/spoof samples in
each dataset.

4 Discussions

Although adapter methods are recently developed in natural language processing
(NLP), our paper aims at the face anti-spoofing problem in computer vision,
which is significantly different from NLP. We develop the first method to suc-
cessfully apply the adaptive module to vision transformers for face anti-spoofing
domain, especially for the cross-domain FAS task. Our adaptive transformer
model effectively adapts the pre-trained model to novel domains with only a few
samples available. Therefore, it is a promising direction for face anti-spoofing
domain where the data is usually hard to obtain.

It is challenging to apply the adaptive module to cross-domain face anti-
spoofing task. We introduce the ensemble adaptive module with the cosine loss
which is essential to achieve the stable and good performance. We believe that
our findings are worth sharing with the face anti-spoofing community.
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