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Abstract. Existing one-shot face reenactment methods either present
obvious artifacts in large pose transformations, or cannot well-preserve
the identity information in the source images, or fail to meet the require-
ments of real-time applications due to the intensive amount of compu-
tation involved. In this paper, we introduce Face2Faceρ, the first Real-
time High-resolution and One-shot (RHO, ρ) face reenactment frame-
work. To achieve this goal, we designed a new 3DMM-assisted warping-
based face reenactment architecture which consists of two fast and effi-
cient sub-networks, i.e., a u-shaped rendering network to reenact faces
driven by head poses and facial motion fields, and a hierarchical coarse-
to-fine motion network to predict facial motion fields guided by differ-
ent scales of landmark images. Compared with existing state-of-the-art
works, Face2Faceρ can produce results of equal or better visual quality,
yet with significantly less time and memory overhead. We also demon-
strate that Face2Faceρ can achieve real-time performance for face images
of 1440× 1440 resolution with a desktop GPU and 256× 256 resolution
with a mobile CPU.

Keywords: Face reenactment, One-shot, Real-time, High-resolution

1 Introduction

Face reenactment is the task of synthesizing realistic images of a source actor,
with head poses and facial expressions synchronized with a specified driving
actor. Such technology has great potential for media and entertainment appli-
cations. Traditional reenactment solutions [1] typically rely on costly CG tech-
niques to create a high-fidelity digital avatar for the source actor, and to transfer
the facial movements of the driving actor onto the digitized avatar via motion
capture systems. To bypass the expensive graphics pipeline, image-based meth-
ods have been proposed, which synthesize reenacted faces using image retrieval
and blending algorithms [8,35,38], generative adversarial networks [16,17,19,46]
or neural textures [36,37]. Nevertheless, all these methods require a consider-
able amount of video footage (i.e., several minutes or hours) of the source actor,
which is often infeasible in practical application scenarios.

https://orcid.org/0000-0002-0054-7933
https://orcid.org/0000-0001-6827-9552
https://orcid.org/0000-0003-3743-5449
https://orcid.org/0000-0003-0460-1586
https://orcid.org/0000-0001-6164-8343
https://orcid.org/0000-0002-3807-7447


2 K. Yang et al.

Result

Source Driving

Result Result

Source Driving Source Driving Driving Result

Driving Result

Fig. 1. One-shot face reenactment results synthesized by Face2Faceρ. Left: 1440×1440
resolution images generated at 25 fps on a desktop GPU (Nvidia GeForce RTX 2080Ti);
the source images are from the internet. Right: 256× 256 resolution images generated
at 25 fps on a mobile CPU (Qualcomm Kryo 680). Notice that the time overhead of all
required computations (e.g., facial landmark detection, shape and expression regression,
etc.) for each frame is accounted in the fps calculation, not just the synthesis module.

Hence, few-shot/one-shot solutions have been developed, which can animate
an unseen actor with only a small number of example face images. The key idea
behind these methods is to decouple an actor’s facial appearance and motion
information with two separate encodings, allowing the network to learn the fa-
cial appearance and motion priors from a large collection of video data in a
self-supervised fashion. Based on the way how motion information is encoded
in the network, classic algorithms can be divided into two categories [24,49],
i.e., warping-based and direct synthesis. Warping-based methods [2,32,33,34,45]
learn to warp the source face based on an explicitly estimated motion field, while
direct synthesis methods [5,27,50,52] encode both the appearance and motion
information into some low-dimensional latent representation and then synthesize
the reenacted image by decoding from the corresponding latent codes. Although
both are capable of producing photo-realistic reenactment results, each approach
has its advantages and disadvantages. Warping-based techniques work perfectly
for a small range of motion, but may easily break when large pose transforma-
tions appear. On the contrary, direct synthesis solutions have better robustness
against large pose changes, but the overall fidelity of the synthesized faces tends
to be lower than those produced by warping-based methods, e.g., even the iden-
tity of the source actor may not be well-preserved [7].

In this context, the main focus of later researches in one-shot face reenact-
ment is to achieve high-fidelity reenactment results for a wide range of poses.
For instance, Meshry et al. [24] relieve the identity preserving problem in direct
synthesis approaches by additionally employing an encoding concerning actors’
facial layouts, Wang et al. [43] incorporate 3D motion fields in the warping-based
methods to improve the performance on large poses, and Doukas et al. [7] propose
a hybrid framework by injecting warped appearance features into a typical di-
rect synthesize backbone so that the two types of methods can complement each
other. Although these strategies improve the overall quality of generated images,
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they also significantly increase the networks’ computational complexity. To our
best knowledge, none of the current state-of-the-art one-shot approaches can be
successfully adapted to meet the requirements of real-time applications, espe-
cially on mobile devices. The only algorithm that reports having barely achieved
25 fps inference speed is [49], but given the additional computational cost for fa-
cial landmark detection, GPU-CPU copy operations, etc., it still fails to support
a real-time face reenactment system. In addition, [49] sacrifices too much quality
for speed, as the quality produced results are clearly below state-of-the-art.

In this paper, we tackle a new challenging problem in one-shot face reenact-
ment, i.e., building a real-time system that can produce results of state-of-the-art
quality. To achieve this goal, we introduce Face2Faceρ, the first real-time high-
resolution and one-shot face reenactment framework. Specifically, Face2Faceρ

can reenact faces at 25 fps for images of 1440 × 1440 resolution on a desktop
GPU and 256× 256 resolution on a mobile CPU (see Fig. 1). The key idea be-
hind this framework is that warping-based backbones have better potentials in
building a light-weighted reenactment framework, since the warped feature maps
already depict most parts of the target face, leaving the generator a relatively
easier task (i.e., refining and in-painting) to learn. In this spirit, we present a
new way to combine the warping-based and direct synthesis approaches, i.e.,
injecting the 3D head pose encodings into a light-weighted u-shaped warping-
based backbone. Further, we introduce a novel hierarchical motion prediction
network that coarse-to-finely estimates the required motion fields based on dif-
ferent scales of landmark images. Such design achieves over 3 times speedup in
both rendering and motion field prediction without damaging the visual quality
or prediction precision. Our experiments also demonstrate that Face2Faceρ has
the ability to perform state-of-the-art face reenactment with significantly less
time and memory overhead than existing methods.

2 Related work

We briefly review previous few-shot/one-shot methods in this section. As men-
tioned before, existing methods can be literately categorized into warping-based
methods, direct synthesis methods, and hybrid methods.

Warping-based methods. These methods represent the pose and expres-
sion transformations using explicit motion fields, and then learn to warp and
synthesize the target faces base on the estimated motion fields. Early methods
[45] typically conduct warping directly on the source image, which often leads
to unnatural head deformation. A more recent warping-based framework is in-
troduced by Siarohin et al. [32] which performs warping on the latent feature
maps and uses relative keypoint locations in the driving images to estimate mo-
tion fields. Followup works use a first-order approximation for keypoints [33]
or keyregions [34] to improve the accuracy and robustness of motion field esti-
mation, but still follow the relative motion transfer scheme. However, relative
motion transfer would lead to obvious flaws if the initial driving face and the
source face are different in head poses or expressions. Therefore, 3D morphable
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face models [3] which can explicitly estimate pose and expression information of
2D faces are incorporated to allow absolute motion transfer [9,47,48]. Nonethe-
less, previous warping-based methods share a common limitation, i.e., they only
work well for a limited range of head poses. The latest work [43] overcomes
this limitation to some extent by lifting the 2D motion fields to the 3D space.
However, expensive operators like 3D convolution also make it unsuitable for
real-time or mobile applications.

Direct synthesis methods. Zakharov et al. [50] introduce the first direct
synthesis method, which projects both the appearance and motion into latent
feature space and synthesizes target faces by decoding from corresponding latent
codes. This framework also demonstrates that it is possible to directly synthesize
reasonable reenactment results without an explicit warp field. However, [50] uses
driving faces’ landmarks for computing motion encodings. As facial landmarks
are person-specific, motion encodings extracted from driving faces’ landmarks
would also contain some identity-related information, causing noticeable identity
gaps in the synthesized face. Later works try to solve this problem by eliminating
the driving actors’ identity information from the motion codes. Various strategies
have been proposed, e.g., FReeNet [52] trains a landmark converter to adapt the
motion of an arbitrary person to the target person in the latent space, LPD [5]
applies pose augmentation to improve cross-person reenactment performance,
DAE-GAN [51] utilizes a deforming autoencoder [31] to learn pose-invariant
embedded faces, etc. The latest method [24] additionally involves an encoding
for the actors’ facial layouts, which can further relieve the identity preservation
problem in some sense. Overall, direct synthesis methods can handle a much
wider range of head pose changes, however, the fidelity of the generated images
is typically lower than their warping-based counterparts under the same condi-
tion, because the high-frequency details may easily be lost when projecting the
source face into a low-dimensional appearance embedding space. Besides, direct
synthesis backbones also tend to be slower than warping-based ones, because the
motion fields provide strong priors about the motion information, while direct
synthesis methods learn everything from scratch.

Hybrid methods. Inspired by FS-VID2VID [41], hybrid methods [7,49] that
combine warping and synthesis have been proposed. Bi-layer [49] combines them
in a parallel fashion, i.e., a direct synthesis branch to generate low-frequency
components of the face image and a warping-based branch to add high-frequency
details. Such combination makes the fastest one-shot reenactment network ever
(i.e., 25 fps inference speed for 256 × 256 resolution images on mobile GPU),
however, its quality of results are clearly below state-of-the-art. Moreover, it is
still not fast enough to support real-time face reenactment applications, because
other required operations like facial landmark detection and GPU-CPU copy
operations also cost nonignorable computational time. HeadGAN [7] combines
them in another way, injecting the warped appearance features into a direct
synthesis backbone. Such design achieves the best visual performance among
all existing algorithms but also makes HeadGAN [7] one of the most complex
frameworks, unusable for time-critical applications. Face2Faceρ also follows the
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Fig. 2. Training pipeline of Face2Faceρ. We first regress the 3DMM coefficients from the
source image Is and driving image Id, and reconstruct three different scales of landmark
images (i.e., Ln

s and Ln
d ). The landmark images and the resized source images are fed

to the motion module to coarse-to-finely predict facial motion fields, i.e., Θ1, Θ2 and
Θ3. Θ3 and Is are sent to the rendering module to generate the reenacted image Îd.
Head pose information is also injected into the encoder EI and decoder DI to improve
the performances on large poses. The image sizes are adjusted for better illustration.

hybrid scheme, but we combine warping and synthesis in a new way. Specifically,
we inject the pose encodings which are normally used in direct synthesis methods,
into a warping-based generator backbone. We demonstrate that such architecture
allows us to build a better one-shot face reenactment framework, which produces
state-of-the-art results with significantly less time and memory overhead.

3 Method

The training pipeline of Face2Faceρ is illustrated in Fig. 2. For each pair of
source and driving face images, we calculate their shape coefficients, expression
coefficients, head poses, and landmark images with the help of 3DMM (Sec. 3.1),
and then, the rendering module learns to synthesize the reenacted face image
based on the source image, the estimated motion field, and the source/driving
head pose pairs (Sec. 3.2), while the motion module learns to coarse-to-finely
recover the motion fields from three different scales of landmark images (Sec. 3.3).
Training and inference details are described in Sec. 3.4.

3.1 3DMM fitting

Similar to previous methods [7,48], our method also relies on 3DMM [3] to dis-
entangle face shape s ∈ R50, expression e ∈ R51 and head pose hp ∈ R6. We
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Fig. 3. Architecture of rendering module.

fit 3DMM to the source and driving image based on [44], yielding two vectors
[hps, es, ss] and [hpd, ed, sd], where the subscripts s and d denote source and
driving respectively. Each vector corresponds to a 3D face mesh in the 3DMM
space. However, unlike previous methods, our framework does not require the
entire face mesh to be constructed, thus, we only use the fitting 3DMM infor-
mation to compute the locations of a set of pre-specified 3D keypoints (i.e., Ms

and Md) on the 3DMM face template. In our implementation, 72 keypoints were
selected (as shown in Fig. 4) which are a subset of the 106-point facial landmark
specification [20]. Using the standard 68-point specification [4] (i.e., two fewer
points at the boundary of each eye) is also OK. It is also worth noting that, Md is
calculated using [hpd, ed, ss] rather than [hpd, ed, sd] to eliminate the interference
of driving actor’s identity.

3.2 Rendering module

As mentioned before, the network structure of our rendering module is derived
from a warping-based backbone. Previous warping-based methods [32,33,34,43]
support at most 4 times downsampling. Further downsampling layers would
quickly reduce the network’s performance, resulting in intensive time and mem-
ory consumption when dealing with high-solution images. To address this prob-
lem, we present a much more effective rendering network architecture that sup-
ports 16 times downsampling without damaging the quality of results. The de-
tailed structure of the rendering module is shown in Fig. 3, which is a u-shaped
encoder–decoder architecture with a warp field applied to each connected feature
map between the image encoder EI and decoder DI . Since each downsampling
operation would discard some detail, we add skip connections to compensate for
the information loss, as suggested in other high-speed rendering networks [23,54].
Such design allows the encoder to employ two additional downsampling blocks,
making the network 3 times faster than previous warping-based backbones.

The major drawback of standard warping-based methods is that they can
only handle a limited range of pose changes. Since using pose information to
supervise the synthesis process proves to be an effective way to improve the
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scales of landmark images, top left shows the pre-configured 72 keypoints on the mesh
template, and keypoints of the coarse-scale landmark images are subsets of these points.

robustness against large poses in recent direct synthesis approaches [5,50], we
inject pose encodings into the image encoder EI and decoder DI . The commonly
used inputs to account for head poses are 2D facial landmarks [41,49,50], 3D fa-
cial landmarks [43] and rasterized 3DMM face meshes [7]. However, producing or
processing such input information would cost non-negligible computational time.
Alternatively, we directly provide the head rotations and translations estimated
in the 3DMM fitting process, as pose encodings, to the rendering network. The
6-dimensional head pose vectors are reshaped into square matrices by deconvo-
lution (i.e., Eps and Epd), and injected into the rendering backbone via SPADE
[28]. Actually, AdaIn [11] can also be utilized for the same purpose, but the MLP
layers therein tend to be more time-consuming. As no noticeable differences can
be found between these two strategies in our experiments, we adopt SPADE [28]
in our implementation.

3.3 Motion module

The precision of the estimated motion field is of vital importance to a warping-
based pipeline. As fitting 3DMM meshes have proven to be the best guidance
information for such purpose [7,48], our motion module also follows a 3DMM-
assisted fashion. However, different from previous 3DMM-assisted approaches
which require the building and/or rendering of the entire face mesh, our method
only needs to track the 3D positions of a small set of pre-configured 3D keypoints
on the 3DMM template mesh, since a reasonable number of sparse keypoints are
already sufficient to reveal the global motion field [32,33,43]. The tracked sparse
3D keypoints are then projected to the image space and transformed into a face
sketch, which we refer to as a landmark image. The main advantage of such
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design is that it successfully avoids soft rasterizing (i.e., a very costly operation)
the whole mesh, ensuring all inputs of the motion module to be quickly generated
even on mobile CPUs.

The classic backbone for predicting the motion field is the single-scale hour-
glass network [32,33,34], effective but low-efficient. Inspired by recent optical flow
estimation algorithms (e.g., [12]) which progressively produce high-resolution op-
tical flow maps based on lower ones, we apply a similar coarse-to-fine strategy
to motion field estimation, and successfully increase the inference speed of the
motion branch by 3.5 times without sacrificing precision. As shown in Fig. 4, the
motion module predicts three scales of motion fields Θ1, Θ2 and Θ3, with three
sub-networks F1, F2 and F3 respectively. Each sub-network takes a different scale
of the source and landmark images, and the feature maps after the upsampling
block in each sub-network are accumulated to the subsequent sub-network to
help convergence, as suggested in [42]. Notice that the number of keypoints n
used when generating different scales of landmark images (i.e., Ln

s and Ln
d ) also

follows a coarse-to-fine scheme, where n = 8, 27, 72 (see right of Fig. 4).

3.4 Training and inference

We train Face2Faceρ on the VoxCeleb dataset [26], which contains over 20k video
sequences of different actors. For each video frame, we pre-compute its 3DMM
coefficients as described in Sec. 3.1. Notice that the shape coefficients for the
same video are forced to be identical in the 3DMM fitting process. Training
pairs of source image Is and driving image Id are sampled from the same video.
The rendering and motion module are jointly trained in an adversarial way for
380k iterations with a batch size of 6. We use an Adam [18] optimizer with
β1 = 0.9 and β2 = 0.999, respectively. The learning rate is 0.0002 for the first
330k iterations and then linearly decays to 0. We adopt the commonly used
training loss configuration in face reenactment [5,7,9,33,41,43], and the loss for
the generator G (i.e., rendering and motion module) is calculated as:

LG = λr
GLr

G + λw
GLw

G + λadv
G Ladv

G + λfm
G Lfm

G , (1)

where Lr
G, Lw

G, Ladv
G and Lfm

G denote the reconstruction loss, warp loss, adver-
sarial loss, and feature matching loss respectively. The corresponding balancing
weights λ’s are set to 15, 500, 1 and 1, which are determined by grid searching.

The reconstruct loss Lr
G ensures the output image looks similar to the ground

truth. Specifically, we adopt the perceptual loss of Wang et al. [43] to measure
the distance between the driving image Id and the synthesized image Îd:

Lr
G(Id, Îd) =

N∑
i=1

∥∥∥V GGi(Id)− V GGi(Îd)
∥∥∥
1
, (2)

where V GGi(·) is the ith feature layer extracted from a pre-trained VGG-19 net-
work [15] and N = 5. We have tried adding an additional loss using a pre-trained
VGGFace network [29], but no noticeable improvements in identity preservation
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can be observed. The reason is that the 3DMM already disentangles the identity
(shape), expression and head pose, as discussed in [7,17,47].

Similar to [7,31,45], we also adopt a warping loss Lw
G to force the motion

module to learn correct motion fields, which is defined as:

Lw
G =

3∑
i=1

∥∥∥Id − Ĩis

∥∥∥
1
, (3)

where Ĩis = fw(Is,Θi) denotes the warped source image according to the ith

motion field Θi. fw(·, ·) is the warping function, which is implemented using a
bilinear sampler. We downsample Id to match the size of each warped image.

The generator is trained by minimizing an adversarial loss Ladv
G as well, which

is calculated by using the PatchGAN discriminator D [13] and the least-square
GAN objective [21]. According to [21], Ladv

G is defined as:

Ladv
G = (D(Îd, L

72
d )− 1)2, (4)

where L72
d is the top-scale landmark image of the driving image. We also add

a feature matching loss Lfm
G to help stabilize the training process [42]. The

discriminator D is optimized by minimizing:

LD
adv = (D(Id, L

72
d )− 1)2 +D(Îd, L

72
d )2. (5)

During inference, the source actor’s the 3DMM coefficients [hps, es, ss], land-
mark images Ln

s and encodings from EI and Eps in the rendering module can all
be pre-computed and recorded in the offline phase, while the others are computed
online (e.g., the driving actor’s 3DMM coefficients [hpd, ed, sd], motion fields
Θ1−3, etc.). The inference speed is fast enough to support real-time applications
on both PC and mobile devices. Demos are provided in the supplementary video.

4 Evaluation

In this section, we compare Face2Faceρ with the state-of-the-art works and per-
form an ablation study to evaluate some of our key design choices.

4.1 Comparisons

The state-of-the-art one-shot methods which we chose as the baselines are FS-
VID2VID [41], Bi-layer [49], LPD [5], FOMM [33], MRAA [34] and HeadGAN
[7]. For a fair comparison, all methods were implemented using PyTorch [30],
and trained on the VoxCeleb dataset (i.e., randomly sampled 3M pairs for train-
ing and 3k pairs for testing). The authors’ official implementations were used for
Bi-layer, LPD, FOMM, MRAA and FS-VID2VID, while HeadGAN was imple-
mented by ourselves since its source code was not publicly available. All models
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Table 1. Complexity comparisons. The inference time (Inf.) and GPU memory (Mem.)
are measured on an Nvidia GeForce RTX 2080Ti GPU with FP32 and FP16 mode
respectively. The “-” indicates unmeasurable, due to GPU memory limits or not sup-
porting FP16 mode.

Method

256×256 512×512 1024×1024
MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

FS-VID2VID 40.8 42.8/- 2.4/- 163.5 86.8/- 3.4/- 653.9 296.1/- 10.5/-
Bi-layer 3.8 5.6/5.4 0.9/0.9 15.3 12.6/10.0 1.1/1.0 61.2 36.2/25.8 1.9/1.6
LPD 30.3 11.8/10.1 1.3/1.0 121.2 27.9/18.5 1.7/1.3 484.9 95.6/53.9 3.2/2.6

FOMM 53.7 15.4/- 1.4/- 173.5 38.5/- 1.65/- 694.0 138.8/- 3.2/-
MRAA 53.7 15.6/- 1.4/- 173.5 39.1/- 1.65/- 694.0 145.9/- 3.2/-

HeadGAN 69.9 16.0/10.1 1.1/0.9 279.8 57.4/35.2 1.4/1.2 1119.4 224.3/147.2 3.1/2.3
Face2Faceρ 1.9 5.3/4.8 0.9/0.9 9.2 10.9/9.5 1.0/0.9 37.0 27.1/18.9 1.4/1.2

Method

1440×1440 1536×1536 2048×2048
MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

FS-VID2VID - -/- -/- - -/- -/- - -/- -/-
Bi-layer 120.3 73.1/55.7 2.9/2.2 138.0 77.2/58.6 3.2/2.4 245.5 125.6/100.3 4.5/3.4
LPD 960.1 185.8/106.9 5.1/4.0 1091.2 198.9/114.3 5.6/4.3 1939.2 322.2/185.1 7.8/6.0

FOMM 1372.3 291.8/- 5.1/- 1561.4 310.4/- 5.7/- 2776.8 541.8/- 7.9/-
MRAA 1372.3 304.2/- 5.1/- 1561.4 327.6/- 5.8/- 2776.8 564.9/- 8.0/-

HeadGAN 2213.6 485.6/275.3 5.2/3.8 2518.6 518.4/295.6 5.8/4.2 4478.5 858.4/490.4 7.9/5.7
Face2Faceρ 71.8 52.1/32.5 1.8/1.6 82.8 56.7/34.8 2.0/1.8 146.2 95.8/60.2 2.7/2.4

are trained using their recommended training configurations in the papers. No-
tice that we omitted the side-by-side comparisons with some earlier works, e.g.,
X2Face [45] and FSTH [50], because their performances have been extensively
compared and proved to be below our baselines [5,7,33,49]. Besides, a small-scale
qualitative comparison with other state-of-the-art methods and also a many-shot
method [36] are provided in the supplementary document.

Computational complexity. We first evaluate the time and spatial com-
plexity of each reenactment backbone in the inference phase. The time complex-
ity is measured by the inference time and the number of multiply-accumulate op-
erations (MACs), while the spatial complexity is measured by the run-time GPU
memory overhead. The results shown in Tab. 1 demonstrate that Face2Faceρ is
overwhelmingly superior in terms of computational complexity. Setting the speed
requirement for real-time applications to 25 fps and considering the additional
time (i.e., around 3-6 ms) required for some necessary auxiliary modules, only
Bi-layer and LPD can handle 512×512 resolution images, and only Bi-layer still
survives when the resolution increases to 1024 × 1024. In contrast, the resolu-
tion limit for Face2Faceρ is 1440× 1440. We provide more high-resolution (i.e.,
1440×1440) results synthesized by Face2Faceρ in the supplementary document.

Notice that there are currently no available high-resolution datasets that
are suitable for the face reenactment task. So the high-resolution version of
Face2Faceρ was trained using the upscaled images from VoxCeleb (i.e., 512 ×
512), which inevitably limits the performance of Face2Faceρ on some true high-
definition images. However, compared with the faked 1440 × 1440 results pro-
duced by simply upscaling the outputs of a 512×512 model, the results generated
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Fig. 5. Qualitative comparisons with the baselines, on the task of reenactment.

by a 1440×1440 model clearly have better visual quality (see supplementary doc-
ument). Therefore, despite the absence of high-resolution datasets, supporting
high-resolution images is still beneficial.

Reenactment. Next, we compare the quality of reenactment results. Since
no ground truth is available for this task, we use FID [10] to measure image
realism and use CSIM [6] to measure the identity gaps. We also adopt Average
Rotation Distance (ARD) and Action Units Hamming distance (AU-H) used in
[7] to evaluate the accuracy of the pose and expression transfer respectively. The
statistics shown in Tab. 2 demonstrate that Face2Faceρ achieves state-of-the-art
quality in each measurement. Fig. 5 highlights some results where the source
and the driving images have relatively large head pose differences, i.e., the head
pose changes are from 30◦–45◦ in either roll, pitch or yaw. Notice that the most
recent works [7,43] that focus on pose editing typically only allow pose changes
up to around 30◦, so such range of pose variance can already be considered as
large in one-shot face reenactment. From the results, we can see that methods
HeadGAN and Face2Faceρ are clearly better than their counterparts. Methods
with low CSIM scores (i.e., FS-VID2VID and Bi-layer) cannot correctly preserve
the source actor’s identity, while methods with high FID scores (i.e., Bi-layer and
LPD) tend to generate blurry results. Besides, unnatural deformations can be
observed in the results of two warping-based methods (i.e., MRAA and FOMM)
when head pose deformations are large (e.g., last two rows of Fig. 5). Further-
more, since they both follow a relative motion transfer scheme, which cannot
correctly transfer head pose when there are large pose gaps between the initial
driving face and source face (e.g., first two rows of Fig. 5). Most importantly, the
results demonstrate that Bi-layer sacrifices too much quality for fast inference
speed, whereas Face2Faceρ achieves even faster inference speed without compro-
mising quality. Notice that the CSIM/FID of FOMM and MRAA in Tab. 2 are
inconsistent with their visual quality in Fig. 5, because Fig. 5 only highlights the
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Fig. 6. Qualitative comparisons with the baselines, on the task of reconstruction.

Table 2. Quantitative comparisons with
the baselines.

Method
Reenactment Reconstruction

FID↓ CSIM↑ ARD↓ AU-H↓ LPIPS↓ AKD↓
FS-VID2VID 57.3 0.571 3.43 0.29 0.167 3.20

Bi-layer 101.8 0.534 3.32 0.26 0.171 2.56
LPD 81.9 0.675 4.89 0.23 0.165 2.79

FOMM 46.8 0.736 7.61 0.27 0.160 2.44
MRAA 49.4 0.741 7.73 0.28 0.155 2.45

HeadGAN 48.1 0.690 3.06 0.23 0.137 1.49
Face2Faceρ 44.5 0.729 2.82 0.22 0.123 1.48

Table 3. Quantitative comparisons with
the ablation study cases.

Method
Reenactment Reconstruction

FID↓ CSIM↑ ARD↓ AU-H↓ LPIPS↓ AKD↓
r1+p0+m0 72.5 0.599 3.13 0.25 0.169 1.64
r2+m0 51.7 0.692 3.83 0.26 0.164 1.74

r0+p1+m0 50.9 0.702 3.53 0.26 0.158 1.68
r0+p2+m0 43.4 0.722 2.85 0.23 0.123 1.45
r0+p3+m0 45.1 0.713 2.81 0.24 0.127 1.44
r0+p0+m1 45.3 0.715 3.17 0.32 0.131 1.48
Face2Faceρ 44.5 0.729 2.82 0.22 0.123 1.48

cases of large head pose transformations while these scores are averaged over all
3k test pairs. The dynamic results shown in the supplementary video are better
in line with these statistics. Besides, the video also demonstrates that our method
presents good temporal coherency though we do not explicitly enforce it in the
training process (i.e., as did in [41]). This is achieved by a simple but effective
strategy, i.e., applying bilateral filtering on the fitted 3DMM coefficients.

Reconstruction (self-reenactment). Finally, we compare the results in
the self-reenactment task (see Fig. 6), where the source and driving images are of
the same actor. Since the driving image can also be viewed as the ground truth in
this scenario, the reconstruction quality can be directly measured by comparing
the similarity between the driving image and the synthesized image. In our
experiments, the AlexNet-based LPIPS metric [53] and the average keypoint
distance (AKD) [33] were adopted for such purpose. Statistics are also shown in
Tab. 2, which demonstrate Face2Faceρ achieves the best scores in this task.

4.2 Ablation study

In this section, we evaluate how some key choices would affect the performance
of Face2Faceρ. For clarity purposes, we denote the proposed rendering module,
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Fig. 7. Qualitative comparisons with the ablation study cases.

3DMM head pose encoding network and motion module as r0, p0 and m0 respec-
tively. Then, the alternatives to be studied can be defined as follows. 1) r1: r0
without skip connections, 2) r2: r0 without head pose injection, 3) p1: 2D land-
marks for pose encoding, 4) p2: 3D landmarks for pose encoding, 5) p3: depth
map for pose encoding, 6) m1: single-scale motion estimation network used in
[32,33], with the number of channels reduced to match the complexity of m0.

The results of different combinations are shown in Tab. 3, Fig. 7 and the
supplementary video. We can see that r1 and r2 tend to have problems in large
head pose changes, expressions generated by m1 are often inconsistent with the
driving actor (see the eyes and mouths in the 2nd and 3rd rows of Fig. 7)), and
the performance of head pose encoding p0 is almost equal to p2 and p3, despite
p2 and p3 consume more computational time (i.e., 2-5 ms). Notice that using 2D
landmarks for pose encoding p1 actually does not help in handling large poses.
Besides, we also conduct another ablation study to assess the significance of each
loss term in the supplementary document.

4.3 Limitation

While our framework is generally robust, it shares some common limitations with
other state-of-the-art one-shot methods. As illustrated in Fig. 8, some visible
artifacts may appear in the background regions when the head transformations
are large, and abnormal objects (e.g., hands or microphone) in the foreground
may lead to blurry results.

5 Mobile device deployment

We use MNN [14] to deploy Face2Faceρ on mobile devices (see the supplementary
video for a mobile demo). The 3DMM fitting and landmark image generation
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Fig. 8. Example limitations. Left: large pose modification sometimes cause visible ar-
tifacts in the background. Right: abnormal objects (e.g., hands or microphone) in the
foreground may lead to blurry results.

Table 4. Running time for different resolution images on Mobile CPU (Kryo 680, 4
threads) and GPU (Adreno 660, FP16).

Step 256×256 CPU/GPU (ms) 384×384 CPU/GPU (ms) 512×512 CPU/GPU (ms)

3DMM fitting 6.9 7.0 7.1
Landmark image generation 0.1 0.1 0.2

Motion field estimation 5.6/4.1 11.2/5.7 16.3/8.9
Feature warping 1.5/0.5 4.0/0.6 8.9/0.7

Decoding 25.1/12.7 59.9/27.5 110.7/49.4
GPU-CPU communication -/3.8 -/16.7 -/29.1

Total 39.2/28.1 82.2/57.6 143.2/95.4

run on the CPU, while all other steps run on the CPU or the GPU. The running
time for each step is listed in Tab. 4. As can be seen, Face2Faceρ only requires a
Mobile CPU to achieve real-time performance for images of 256×256 resolution.
Theoretically, Face2Faceρ supports higher resolution images when running on the
GPU, but the expensive GPU-CPU communication operations limit its ability.

6 Conclusion

In this paper, we present Face2Faceρ, the first real-time high-resolution one-shot
face reenactment framework that consists of two fast and efficient networks: a u-
shaped rendering network and a hierarchical coarse-to-fine motion network. Ex-
perimental results demonstrate that Face2Faceρ achieves state-of-the-art quality,
while significantly reducing the computational complexity. Specifically, it can run
in real-time for generating face images of 1440× 1440 resolution with a desktop
GPU and 256× 256 resolution with a mobile CPU.

Besides, our method supports using a single photo to generate an inauthentic
video, so it has the potential to be used for illegal activities. A prime example
of this is the growing misuse of DeepFakes [25,39]. However, as more and more
people can access such techniques, the threat has also become more well-aware.
Accordingly, image forensic techniques [22,40] have been proposed. As there is
no guarantee to detect all fake images by these methods, it is strictly prohibited
to use our method to generate and publish unauthorized videos.

Acknowledgments. We thank Weitong Yao for his help in presenting our
supplementary video.
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