Towards Racially Unbiased Skin Tone

Estimation via Scene Disambiguation
Supplementary Material

In the following we provide additional information on the benchmark and
training datasets (Sec. 1), training details (Sec. 2), additional qualitative and
quantitative results (Sec. 3), and details about the geometric and appearance
model (Sec. 4).

1 Datasets

Benchmark. In Fig. 2 we show examples of full scene images from the evaluation
dataset, along with ground-truth diffuse albedo. Note that the evaluations are
performed in UV space (Fig. 1, left), not on the rendered albedo images.

The benchmark was rendered with the Unreal Engine 4.27 pathtracer (ray-
tracing), using 155 head scans purchased from Triplegangers, and 50 HDRI
panorama scenes from PolyHaven (omni-directional spherical images). The only
light source of the scene is the HDRI panorama; additional global illumination,
auto-exposure compensation and ground reflection were turned off. From each
of these 50 environment maps we rendered 18 scene images, rotating the map
100° per rendering. Scene images with extremely low/high light intensity, which
cause the face detector to fail, were removed.

The textures provided by Triplegangers contained tiny markers on the face for
better alignment, which we manually removed. Each scene contains three head
scans that share the same illumination. After classifying each scan according to
its ITA value, we selected three heads for each scene as follows. We first uniformly
sample a skin category from three possible groups, where each group contains
two consecutive ITA skin types (I-II, ITII-IV, V-VI). We take this approach since
type I contains very few samples (note that the population having type I skin
is in general very low, as can be seen in the ITA graphs from [l]). We next
randomly select a head scan from the designated skin category. This ensures an
overall balance of skin tones in the benchmark.

To measure ITA we compute per-pixel ITA values over a mask that covers
mainly the cheek region, as this is the most consistent area of the UV map
in terms of skin color. Note that a similar protocol is usually employed in the
field of dermatology [1], where measures are taken also on the cheek area. A
visualization of this mask can be found in Fig 1, right.

The testing dataset contains 721 images and 2163 facial crops under different
illumination conditions, with ground-truth UV maps. We also build a smaller
validation set consisting of 234 images and 702 crops, which we use for ablation
studies.



Synthetic training set. Fig. 4 shows examples of the synthetic dataset used for
training the TRUST network. The synthetic training set was built by rendering
50K images using Unreal Engine 4.27 pathtracer (ray-tracing), with 1170 scans
and 182 identities purchased from Renderpeople, as well as 273 HDRI panorama
scenes from PolyHaven. Note that these scenes are different from the ones used in
the benchmark dataset. As with the benchmark dataset, the only light source of
the scene is the HDRI panorama; additional global illumination, auto-exposure
compensation and ground reflection were turned off.

To generate each synthetic image we first randomly select the number of
subjects in the scene (one to six), then uniformly sample an ethnicity for each
subject (ethnicity labels were provided by Renderpeople), and finally randomly
choose a scan according to the selected ethnicity. The scans are randomly po-
sitioned in the scene. Since our scene backgrounds are panoramas, we are able
to render the images with any random section of each scene (we used a virtual
camera with a focal length of 50mm, FOV 40 degrees).

We obtain pseudo ground-truth albedo by using the unlit version of the scan
textures, as provided by Renderpeople. We obtain pseudo ground-truth for the
environmental lighting as follows. First we insert a matte gray light probe in
each of the 273 scenes, and render the light probe from six orthogonal views.
We next optimize for the spherical harmonic coefficients that best explain the
renders given the known shape and color, using an L.1 photometric loss. We use
the Adam optimizer [2] for 3000 iterations and a learning rate of le-4.

2 Training details

As explained in Sec. 5.2, we use a semi-supervised training strategy that com-
bines a synthetic dataset with known ground-truth, with an in-the-wild dataset
for generalization. This process is illustrated in Fig. 3. At train time the input
batch contains M x N facial crops extracted from M scenes. Half of the scenes
come from the synthetic dataset, while the other half comes from an in-the-
wild dataset. In particular, we use for the latter the subset of the Openlmages
dataset [3] that was labeled ‘human face’, ‘woman’ or ‘man’, and was not labeled
as ‘depiction’ (i.e. drawings, etc).

For the synthetic half of the batch we apply an L1 loss between predicted and
ground-truth albedo (Lgp), and an L1 loss between predicted and ground-truth
spherical harmonics (Lgg).

Additionally, for both synthetic and real data we employ (1) the photometric
loss Lppo and (2) the scene consistency loss Ls.. The scene consistency loss is ap-
plied over the N facial crops coming from the individual scene images (depicted
with a same color in Fig. 3). Given the spherical harmonics parameters for each
of the N crops, L. requires these to be close to each other. This is implemented
by randomly permuting the SH of the crops from a same scene, and applying an
L1 loss between original and permuted (see Fig.2 in main paper, right).

Note that we apply the photometric loss also on synthetic data because both
the ground-truth light and the ground-truth albedo are only approximations, and
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because the renderings were done with path tracing, which spherical harmonics
can only approximate in a smooth way.

3 Additional results

This section shows additional qualitative and quantitative results.

First, Table 1 is an extension of Table 2 from the main paper that includes
per-skin-type values. We include additional qualitative results that support this
table in Figs. 5 and 6.

The effectiveness of the scene consistency loss L. is illustrated by ablating
it as illustrated in Fig. 5. The results show that our full model is able to pre-
dict more faithful skin tone than the version without L,.. This aligns with our
quantitative evaluation results, where the bias score is improved by the use of
L.

In Fig. 6 we show the effectiveness of conditional albedo estimation. When the
scene contains low light intensity, the model without light conditioning does not
have enough information to disambiguate, hence predicting darker skin tones.

We also include an additional ablation in Table 2 that shows (1) the perfor-
mance of our method when trained on synthetic data alone (“only w/syn”), but
with all the proposed losses, and (2) a fully supervised version of our method
(“full-sup”), where only L is employed. Training the albedo encoder solely
with the albedo supervision loss (Table 2, “full-sup”) quickly leads to overfitting
(indeed, after one epoch) that does not generalize to unseen data. Training the
full model solely with synthetic data but with all the proposed losses (“only
w/syn”) leads also to poor generalization, mostly due to the lack of real-world
data. These results support the need for combining a supervised approach with
the proposed self-supervised losses, in order to achieve good generalization.

To evaluate the robustness of our method in terms of head rotations, we
further conduct a controlled experiment on images of the same subject with yaw
rotations ranging from -45 to +45 degrees. These rotations were applied to every
sample in the benchmark test set. Fig. 7 shows that the estimated albedo per
subject is relatively consistent with all head rotations, and that the skin tones
are well reconstructed. Additional qualitative results are shown in Fig. 9, Fig. 10
and Fig. 11.

Limitations. We illustrate in Fig. 8 some of the limitations of our method:

1. Our model is trained with a limited number of scenes. Because of this, it will
not perform well under very extreme lighting cases (e.g. a very dark scene),
as shown in Fig. 8, first column.

2. When the scene background does not provide much information, the learned
scene light prior cannot properly work, as shown in Fig. 8, second column.

3. Our assumptions fail when the local lighting on the face is different from
the global scene lighting, e.g. a flash light or local shadows cast by a hat or
nearby objects. This can be seen in Fig. 8, third and fourth columns.



Table 1: Ablation study (main paper) with additional per-skin-type results, con-
ducted on the validation set of the FAIR benchmark. We show average ITA score
per skin type in degrees (I: very light, VI: very dark), average ITA error over all
skin types, bias score and total score.

ITA per skin type |
I oI 1o v v VI

faceSH + self |37.30 28.44 19.60 10.97 10.17 38.51| 24.16 11.45| 35.62
faceSH + semi[14.16 8.77 9.49 12.96 14.14 28.69| 14.70 6.61 | 21.31
fuseSH 14.60 7.78 6.95 10.19 12.49 39.31| 15.22 11.08 | 26.31
fuseSH + sc  [19.80 14.29 12.01 13.10 14.33 21.40| 15.82 3.50 | 19.32
fuseSH + cond|14.53 10.92 8.34 10.47 12.47 28.21| 14.16 6.56 | 20.72
Ours 14.34 12.19 10.75 13.64 15.01 19.16| 14.18 2.63 | 16.82

Method ITA Avg | |Bias ||Score |

Table 2: Additional ablation study, to investigate the effects of supervised train-
ing, conducted on the validation set of the FAIR benchmark. We show average
ITA score per skin type in degrees (I: very light, VI: very dark), average ITA
error over all skin types, bias score and total score.

i II?A pleﬂ skl?\;ype\i Vi Avg ITA ||Bias ||Score |
full-sup (only w/ syn, La)|45.81 37.09 27.37 22.91 20.56 29.43|  30.53 9.44 | 39.96
Ours (only w/ syn) 12.60 11.95 12.02 13.34 20.67 48.95 19.92 14.60 | 34.53
Ours 14.34 12.19 10.75 13.64 15.01 19.16] 14.18 2.63 | 16.82

Method

4 Geometry and appearance model

This section describes in more detail the geometry and diffuse albedo model used
in this work.

Geometry prior. We reconstruct geometry using the FLAME [4] statistical
model, which parameterizes a head mesh using identity 3 € RI8!, pose § € R3++3
(with k& = 4 joints for neck, jaw, and eyeballs), and expression v € RI¥I latent
vectors. The model is defined as

M(6707¢) :W(TP(6707¢)7J(ﬁ)707W)7 (1)

with the blend skinning function W(T,J, 8, W) that rotates the vertices in T €
R3" around joints J € R3*_ linearly smoothed by blendweights WW € R¥*". The
joint locations J are defined as a function of the identity 8, and

Tp(B,0,%) =T + Bs(B;S) + Bp(0; P) + Bu(; &), (2)

4

where T denotes the mean template in “zero pose”, with shape blendshapes
Bs(B;S) : RIBl — R3™ pose correctives Bp(0;P) : R3*+3 — R3™ and expres-
sion blendshapes Bg(v; ) : RI¥l — R3”_ using the learned identity, pose, and
expression bases (i.e. linear subspaces) S, P and &.
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Diffuse albedo model. We train the diffuse albedo model using Principal
Component Analysis. Given albedo parameters a € Rl®!, and the learned albedo
bases Bap, we reconstruct a UV map by

Ala) = A+ Banpa (3)

where A is the mean albedo from the training set, A(c) is a vectorized repre-
sentation of the image, which is then transformed to a d x d UV map.



Fig. 1: Left: ground-truth UV map from the benchmark. Right: masked values
used for ITA calculation.
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Fig. 2: Benchmark examples. Left: input image, right: albedo.



M different scenes, Lyp, is applied on all the images
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Fig. 3: Composition of a mini-batch during one train iteration. TRUST is trained
with a combined dataset of synthetic and real images, and optimized with su-
pervised and self-supervised loss terms.
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Fig.4: Synthetic training set examples. Left: input image, right: albedo.
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Fig. 5: Qualitative results illustrating the ablation of the scene consistency loss.
We show two pairs of comparisons using the benchmark data (validation). Each
pair shows our full model (left) and fuse-cond model (right), where no scene
consistency was used. Images from top to bottom: Input cropped face image,
predicted texture reconstruction (albedo + shading), ground-truth albedo (ren-
dering), predicted albedo (rendering), predicted albedo (UV map).
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Fig.6: Qualitative results illustrating the ablation of conditional albedo esti-
mation. We show two pairs of comparisons using the benchmark data (valida-
tion). Each pair shows our full model (left) and fuse-sc model (right), where no
conditioning was used. Images from top to bottom: Input cropped face image,
predicted texture reconstruction (albedo + shading), ground-truth albedo (ren-
dering), predicted albedo (rendering), predicted albedo (UV map).
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Fig. 7: Qualitative results illustrating the robustness of TRUST on estimating
consistent albedo under different yaw rotations of the same subject.
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Fig. 8: Limitation examples. Left: samples from our proposed benchmark: (1) ex-
treme low light, (2) example where the scene background does not provide light-
ing information. Right: real images: our assumption breaks under local shadows.
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Fig.9: Qualitative examples of face crops from BFW dataset. Top: input face
crop, bottom: our predicted albedo (rendering).

Fig. 10: Qualitative examples from the benchmark. From top to bottom: Input
face crop, ground-truth albedo (rendering), our predicted albedo (rendering),
our predicted albedo (UV map).
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Fig. 11: Qualitative examples from real world images, downloaded from https:
//www .pexels.com/. From top to bottom: input scene image, input face crop,
our predicted albedo (rendering), our predicted albedo (UV map).
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