
BoundaryFace: A mining framework with noise
label self-correction for Face Recognition

Shijie Wu and Xun Gong�

School of Computing and Artificial Intelligence, Southwest Jiaotong University,
Chengdu, Sichuan, China
xgong@swjtu.edu.cn

Abstract. Face recognition has made tremendous progress in recent
years due to the advances in loss functions and the explosive growth in
training sets size. A properly designed loss is seen as key to extract dis-
criminative features for classification. Several margin-based losses have
been proposed as alternatives of softmax loss in face recognition. How-
ever, two issues remain to consider: 1) They overlook the importance
of hard sample mining for discriminative learning. 2) Label noise ubiq-
uitously exists in large-scale datasets, which can seriously damage the
model’s performance. In this paper, starting from the perspective of deci-
sion boundary, we propose a novel mining framework that focuses on the
relationship between a sample’s ground truth class center and its nearest
negative class center. Specifically, a closed-set noise label self-correction
module is put forward, making this framework work well on datasets
containing a lot of label noise. The proposed method consistently out-
performs SOTA methods in various face recognition benchmarks. Train-
ing code has been released at https://gitee.com/swjtugx/classmate/
tree/master/OurGroup/BoundaryFace.

Keywords: Face Recognition, Noise Label, Hard Sample Mining, Deci-
sion Boundary

1 Introduction

Face recognition is one of the most widely studied topics in the computer vision
community. Large-scale datasets, network architectures, and loss functions have
fueled the success of Deep Convolutional Neural Networks (DCNNs) on face
recognition. Particularly, with an aim to extract discriminative features, the
latest works have proposed some intuitively reasonable loss functions.

For face recognition, the current existing losses can be divided into two ap-
proaches: one deems the face recognition task to be a general classification prob-
lem, and networks are therefore trained using softmax [12,25,26,24,3,1,5,16,31];
the other approaches the problem using metric learning and directly learns an
embedding, such as [21,17,20]. Since metric learning loss usually suffers from
sample batch combination explosion and semi-hard sample mining, the second
problem needs to be addressed by more sophisticated sampling strategies. Loss
functions have therefore attracted increased attention.
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Fig. 1. The motivation of BoundaryFace. Step 1 denotes closed-set noise label self-
correction. Step 2 denotes nearest negative class match. Step 3 denotes hard sample
handle. For a noisy hard sample, we first correct its label, then match the nearest
negative class based on the correct label, and finally emphasize it using the decision
boundary consisting of this sample’s ground truth class center and the nearest negative
class center.

It has been pointed out that the classical classification loss function (i.e.,
Softmax loss) cannot obtain discriminative features. Based on current testing
protocols, the probe commonly has no overlap with the training images, so it
is particularly crucial to extract features with high discriminative ability. To
this end, Center loss [29] and NormFace [25] have been successively proposed
to obtain discriminative features. Wen et al. [29] developed a center loss that
learns each subject’s center. To ensure the training process is consistent with
testing, Wang et al. [25] made the features extracted by the network and the
weight vectors of the last fully connected layer lay on the unit hypersphere.
Recently, some margin-based softmax loss functions [12,26,24,3,13] have also
been proposed to enhance intra-class compactness while enlarging inter-class
discrepancy, resulting in more discriminative features.

The above approaches have achieved relatively satisfactory results. However,
there are two very significant issues that must still be addressed: 1) Previous
research has ignored the importance of hard sample mining for discriminative
learning. As illustrated in [8,2], hard sample mining is a crucial step in improving
performance. Therefore, some mining-based softmax losses have emerged. Very
recently, MV-Arc-Softmax [28], and CurricularFace [9] were proposed. They were
inspired by integrating both margin and mining into one framework. However,
both consider the relationship between the sample ground truth class and all
negative classes, which may complicate the optimization of the decision bound-
ary. 2) Both margin-based softmax loss and mining-based softmax loss ignore
the influence of label noise. Noise in face recognition datasets is composed of
two types: closed-set noise, in which some samples are falsely given the labels of
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other identities within the same dataset, and open-set noise, in which a subset
of samples that do not belong to any of the classes, are mistakenly assigned one
of their labels, or contain some non-faces. Wang et al. [23] noted that noise,
especially closed-set noise, can seriously impact model’s performance. Unfortu-
nately, removing noise is expensive and, in many cases, impracticable. Intuitively,
the mining-based softmax loss functions can negatively impact the model if the
training set is noisy. That is, mining-based softmax is likely to perform less well
than baseline methods on datasets with severe noise problems. Designing a loss
function that can perform hard sample mining and tolerate noise simultaneously
is still an open problem.

In this paper, starting from the perspective of decision boundary, we pro-
pose a novel mining framework with tolerating closed-set noise. Fig. 1 illustrates
our motivation using a noisy hard sample processing. Specifically, based on the
premise of closed-set noise label correction, the framework directly emphasizes
hard sample features that are between the ground truth class center and the
nearest negative class center. We find out that if a sample is a closed-set noise,
there is a high probability that the sample is distributed within the nearest
negative class’s decision boundary, and the nearest negative class is likely to be
the ground truth class of the noisy sample. Based on this finding, we propose
a module that automatically discovers closed-set noise during training and dy-
namically corrects its labels. Based on this module, the mining framework can
work well on large-scale datasets under the impact of severe noise. To sum up,
the contributions of this work are:

– We propose a novel mining framework with noise label self-correction, named
BoundaryFace, to explicitly perform hard sample mining as a guidance of
the discriminative feature learning.

– The closed-set noise module can be used in any of the existing margin-based
softmax losses with negligible computational overhead. To the best of our
knowledge, this is the first solution for closed-set noise from the perspective
of the decision boundary.

– We have conducted extensive experiments on popular benchmarks, which
have verified the superiority of our BoundaryFace over the baseline softmax
and the mining-based softmax losses.

2 Related Work

2.1 Margin-based softmax

Most recently, researchers have mainly focused on designing loss functions in
the field of face recognition. Since basic softmax loss cannot guarantee facial
features that are sufficiently discriminative, some margin-based softmax losses
[13,12,26,24,3,33], aiming at enhancing intra-class compactness while enlarging
inter-class discrepancy, have been proposed. Liu et al. [13] brought in multiplica-
tive margin to face recognition in order to produce discriminative feature. Liu
et al. [12] introduced an angular margin (A-Softmax) between ground truth class
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and other classes to encourage larger inter-class discrepancy. Since multiplica-
tive margin could encounter optimization problems, Wang et al. [26] proposed
an additive margin to stabilize optimization procedure. Deng et al. [3] changed
the form of the additive margin, which generated a loss with clear geometric sig-
nificance. Zhang et al. [33] studied on the effect of two crucial hyper-parameters
of traditional margin-based softmax losses, and proposed the AdaCos, by an-
alyzing how they modulated the predicted clasification probability. Even these
margin-based softmax losses have achieved relatively good performance, none of
them takes into account the effects of hard sample mining and label noise.

2.2 Mining-based softmax

There are two well-known hard sample mining methods, i.e., Focal loss [11], On-
line Hard Sample Mining (OHEM) [19]. Wang et al. [28] has shown that naive
combining them to current popular face recognition methods has limited im-
provement. Some recent work, MV-Arc-Softmax [28], and CurricularFace [9] are
inspired by integrating both margin and mining into one framework. MV-Arc-
Softmax explicitly defines mis-classified samples as hard samples and adaptively
strengthens them by increasing the weights of corresponding negative cosine
similarities, eventually producing a larger feature margin between the ground
truth class and the corresponding negative target class. CurricularFace applies
curriculum learning to face recognition, focusing on easy samples in the early
stage and hard samples in the later stage. However, on the one hand, both
take the relationship between the sample ground truth class and all negative
classes into consideration, which may complicate the optimization of the de-
cision boundary; on the other hand, label noise poses some adverse effect on
mining. It is well known that the success of face recognition nowadays benefits
from large-scale training data. Noise is inevitably in these million-scale datasets.
Unfortunately, Building a “clean enough” face dataset, however, is both costly
and difficult. Both MV-Arc-Softmax and CurricularFace assume that the dataset
is clean (i.e., almost noiseless), but this assumption is not true in many cases.
Intuitively, the more noise the dataset contains, the worse performance of the
mining-based softmax loss will be. Unlike open-set noise, closed-set noise can be
part of the clean data as soon as we correct their labels. Overall, our method
differs from the currently popular mining-based softmax in that our method can
conduct hard sample mining along with the closed-set noise well being handled,
while the current methods cannot do so.

3 The Proposed Approach

3.1 Preliminary Knowledge

Margin-based softmax. The original softmax loss formula is as follows:

L = − log
eWyi

xi+byi

n∑
j=1

eWjxi+bj

(1)
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where xi denotes the feature of the i-th sample belonging to yi class in the
min-batch, Wj denotes the j-th column of the weight matrix W of the last fully
connected layer, and bj and n denote the bias term and the number of identities,
respectively.

To make the training process of the face recognition consistent with the
testing, Wang et al. [25] let the weight vector Wj and the sample features xi

lie on a hypersphere by l2 normalization. And to make the networks converge
better, the sample features are re-scaled to s. Thus, Eq. 1 can be modified as
follows:

L = − log
es(cos θyi )

n∑
j=1

es(cos θj)
(2)

With the above modification, Wj has a clear geometric meaning which is
the class center of j-th class and we can even consider it as a feature of the
central sample of j-th class. θyi

can be seen as the angle between the sample
and its class center, in particular, it is also the geodesic distance between the
sample and its class center from the unit hypersphere perspective. However,
as mentioned before, the original softmax does not yield discriminative features,
and the aforementioned corrections (i.e., Eq. 2) to softmax do not fundamentally
fix this problem, which has been addressed by some variants of softmax based
on margin. They can be formulated in a uniform way:

L = − log
esf(cos θyi )

esf(cos θyi ) +
n∑

j=1,j ̸=yi

es(cos θj)
(3)

E.g, in baseline softmax (e.g., ArcFace), f(cos θyi
) = cos(θyi

+ m). As can be
seen, the currently popular margin-based softmax losses all achieve intra-class
compactness and inter-class discrepancy by squeezing the distance between a
sample and its ground truth class center.

Mining-based softmax. Hard sample mining is to get the network to extra
focus valuable, hard-to-learn samples. There are two main categories in the exist-
ing mining methods that are suitable for face recognition: 1) focusing on samples
with large loss values from the perspective of loss. 2) focusing on samples mis-
classified by the network from the relationship between sample ground truth
class and negative classes. They can be formed by a unified formula as below:

L = −I(p(xi)) log
esf(cos θyi )

esf(cos θyi ) +
n∑

j=1,j ̸=yi

esg(t,cos θj)
(4)

where p(xi) = esf(cos θyi
)

esf(cos θyi
)+

n∑
j=1,j ̸=yi

esg(t,cos θj)
is the predicted ground truth prob-

ability and I(p(xi)) is an indicator function. For type 1, such as Focal loss,
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Fig. 2. Left: Each row represents one person. The red box includes a closed-set noise
sample. Right: The distribution of the samples in the left figure is shown from the
perspective of the decision boundary. The dashed arrows represent the optimized di-
rection of the samples.

I(p(xi)) = (1− p(xi))
λ, f(cos θyi

) = cos θyi
and g(t, cos θj) = cos θj , λ is a mod-

ulating factor. For type 2, MV-Arc-Softmax and CurricularFace handle hard
samples with varying g(t, cos θj). Let N = f(cos θyi

) − cos θj , thus, MV-Arc-
Softmax is described as:

g(t, cos θj) =

{
cos θj , N ≥ 0

cos θj + t, N < 0
(5)

and CurricularFace formula is defined as follows:

g(t, cos θj) =

{
cos θj , N ≥ 0

cos θj(t+ cos θj), N < 0
(6)

From the above formula, we can see that if a sample is a easy sample, then its
negative cosine similarity will not change. Otherwise, its negative cosine similar-
ity will be amplified. Specially, in MV-Arc-Softmax, cos θj + t > cos θj always
holds true since t is a fixed hyper parameter and is always greater than 0. That
is, the model always focuses on hard samples. In contrast, t is calculated based
on the Exponential Moving Average (EMA) in CurricularFace, which is gradu-
ally changing along with iterations. Moreover, the cos θj can reflect the difficulty
of the samples, and these two changes allow the network to learn easy samples
in the early stage and hard samples in the later stage.

3.2 Label self-correction

In this section, we discuss the mining framework’s noise tolerance module. Unlike
open-set noise, a closed-set noise sample is transformed into a clean sample if its
label can be corrected appropriately. The existing mining-based softmax losses,
as their prerequisite, assume that the training set is a clean dataset. Suppose
the labels of most closed-set noise in a real noisy dataset are corrected; in that
case, poor results from hard sample mining methods on noisy datasets can be
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Fig. 3. Left: Blue, orange, and green represent three individuals. The samples in the
ellipse are the hard samples. The solid arrows represent distance maximization, and
the dashed arrows represent distance minimization. Right: The sample distribution of
two persons in the left from the perspective of decision boundary.

adequately mitigated. More specifically, we find that when trained moderately,
networks have an essential ability for classification; and that closed-set noise is
likely to be distributed within the nearest negative class’s decision boundary.
Additionally, the negative class has a high probability of being the ground truth
class of this sample. As shown in Fig. 2, the red box includes a closed-set noise
sample, which is labeled as class 1, but the ground truth label is class 2. The
closed-set noise will be distributed within the decision boundary of class 2. At
the same time, we dynamically change that sample’s label so that the sample
is optimized in the correct direction. That is, before the label of this closed-set
noise is corrected, it is optimized in the direction of C1 (i.e., the ”before” arrow);
after correction, it is optimized in the direction of C2 (i.e., the ”after” arrow).
The label self-correction formula, named BoundaryF1, is defined as follows:

L = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
n∑

j=1,j ̸=yi

es cos θj
(7)

where if max{cos(θk +m) for all k ̸= yi}− cos θyi > 0 : yi = k. It means that,
before each computing of Eq. 7, we decide whether to correct the label based on
whether the sample is distributed within the decision boundary of the nearest
negative class. Noted that, as a demonstration, apply this method to ArcFace.
It can be applied to other margin-based losses could also be used.

3.3 BoundaryFace

Unlike the mining-based softmax’s semantic for assigning hard samples, we only
consider samples located in the margin region between the ground truth class and
the nearest negative class. In other words, as each sample in the high-dimensional
feature space has a nearest negative class center, if the sample feature is in the
margin region between its ground truth class center and the nearest negative
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class center, then we label it as a hard sample. As shown in Fig. 3 (left), the
nearest negative class for each class’s sample may be different (e.g., the nearest
negative classes of two samples belonging to the C1 class are C2 and C3, respec-
tively). In Fig. 3, the right image presents the two classes of the left subfigure
from the perspective of the decision boundary. Since samples x1 and x2 are in
the margin region between their ground truth class and the nearest negative
class, we treat them as hard samples. An additional regularization term f is
added to allow the network to strengthen them directly. Additionally, to ensure
its effectiveness on noisy datasets, we embed the closed-set noise label correc-
tion module into the mining framework. As shown in Fig. 4, after the network
has obtained discriminative power, for each forward propagation; and based on
the normalization of feature xi and the weight matrix W , we obtain the cosine
similarity cos θj of sample feature xi to each class center Wj . Next, we calculate
the position of feature xi at the decision boundary based on cos θj . Assuming
that the nearest negative class of the sample is yn. If it is distributed within
the nearest negative class’s decision boundary, we dynamically correct its label
yi to yn; otherwise proceed to the next step. We then calculate cos(θyi

+ m).
After that, we simultaneously calculate two lines: one is the traditional pipeline;
and the other primarily determines whether the sample is hard or not. These
two lines contribute to each of the final loss function’s two parts. Since our idea
is based on the perspective of the decision boundary, we named our approach
BoundaryFace. The final loss function is defined as follows:

L = − 1

N

N∑
i=1

(log
esT (cos θyi )

e
sT (cos(θyi

))

+
n∑

j=1,j ̸=yi

es cos θj
− λf) (8)

T (cos θyi
) = cos(θyi

+m),

f = max{0,max{cos θj | for all j ̸= yi} − T (cos θyi
)}

where if max{cos(θk + m) for all k ̸= yi} − cos θyi
> 0 : yi = k. λ is a

balance factor. As with BoundaryF1, before each computing of final loss, we
decide whether to correct the label based on whether the sample is distributed
within the decision boundary of the nearest negative class.

Optimization In this part, we show that out BoundaryFace is trainable and can
be easily optimized by the classical stochastic gradient descent (SGD). Assuming
xi denotes the deep feature of i-th sample which belongs to the yi class, L1 =

− log( efyi∑
k

efk
), L2 = λmax{0,max{cos θk| for all k ̸= yi} − cos(θyi

+ m)}, the

input of the L1 is the logit fk, where k denotes the k-th class.

In the forward propagation, when k = yi, fk = s cos(θyi +m), when k ̸= yi,
fk = s cos(θk). Regardless of the relationship of k and yi, there are two cases
for L2, if xi is a easy sample, L2 = 0. Otherwise, it will be constituted as
L2 = λ(max{cos θk| for all k ̸= yi}−cos(θyi

+m)). In the backward propagation
process, the gradients w.r.t. xi and wk can be computed as follows:
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Fig. 4. Overview of BoundaryFace. The part included in the upper dashed box rep-
resents the closed-set noise processing. The part included in the lower dashed box
represents the judgment of whether it is a hard sample or not.

               
 

 

  

  

  

  

  
       

            

                  

    

  
  
  
 
  
 

               
 

 

  

  

  

  

  
       

            

                                    

    

  
  
  
 
  
 

Fig. 5. Convergence process of BoundaryFace.

when k = yi

∂L

∂xi
=


∂L1

∂fyi
(s

sin(θyi+m)

sin θyi
)

wyi

||wyi
||X, easy

( ∂L1

∂fyi
s+ ∂L2

∂ cos(θyi+m) )
sin(θyi+m)

sin θyi

wyi

||wyi
||X, hard

(9)

∂L

∂wk
=


∂L1

∂fyi
(s

sin(θyi+m)

sin θyi
) xi

||xi||W, easy

( ∂L1

∂fyi
s+ ∂L2

∂ cos(θyi+m) )
sin(θyi+m)

sin θyi

xi

||xi||W, hard
(10)

when k ̸= yi

∂L

∂xi
=

{
∂L1

∂fk
s wk

||wk||X, easy

(∂L1

∂fk
s+ ∂L2

∂ cos θk
) wk

||wk||X, hard
(11)

∂L

∂wk
=

{
∂L1

∂fk
s xi

||xi||W, easy

(∂L1

∂fk
s+ ∂L2

∂ cos θk
) xi

||xi||W, hard
(12)
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Algorithm 1: BoundaryFace

Input : The feature of i-th sample xi with its label yi, last fully-connected
layer parameters W , cosine similarity cos θj of two vectors,
embedding network parameters Θ, and margin m

iteration number k ← 0, parameter m← 0.5, λ← π;
while not converged do

for all j ̸= yi,
if max{cos(θj +m)} > cos θyi then

yi = j;
else

yi = yi;
end
if cos(θyi +m) > max{cos θj} then

f = 0;
else

f = max{cos θj} − cos(θyi +m);
end
Compute the loss L by Eq. 3.3;
Compute the gradients of xi and Wj by Eq. 9,10,11,12;
Update the parameters W and Θ;
k ← k + 1;

end
Output: W , Θ

where, both X and W are symmetric matrices.

Further, in Fig. 5, we give the loss curves of baseline and BoundaryFace on
the clean dataset and the dataset containing 20% closed-set noise, respectively.
It can be seen that our method converges faster than baseline. The training
procedure is summarized in Algorithm 1.

yi
W

jW

yi
W

yi nearestW −

Fig. 6. The difference between BoundaryFace and SOTA methods in emphasizing the
region where the hard samples are located.
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3.4 Discussions with SOTA Loss Functions

Comparison with baseline softmax. The baseline softmax (i.e., ArcFace,
CosFace) introduces a margin from the perspective of positive cosine similarity,
and they treat all samples equally. Our approach mining hard sample by intro-
ducing a regularization term to make the network pay extra attention to the
hard samples.

Comparison with MV-Arc-Softmax and CurricularFace.MV-Arc-Softmax
and CurricularFace assign the same semantics to hard samples, only differing in
the following handling stage. As shown in Fig. 6 (right), both treat mis-classified
samples as hard samples and focus on the relationship between the ground truth
class of the sample and all negative classes. Instead, in Fig. 6 (left), our approach
regards these samples located in the margin region as hard samples and focuses
only on the relationship between the ground truth class of the sample and the
nearest negative class. Moreover, the labels of both blue and orange samples are
yi, but the orange sample ground truth class is j-th class. Obviously, if there is
closed-set noise in the dataset, SOTA methods not only emphasize hard samples
but also reinforce closed-set noise.

4 Experiments

4.1 Implementation Details

Datasets. CASIA-WebFace [30] which contains about 0.5M of 10K individuals,
is the training set that is widely used for face recognition, and since it has been
cleaned very well, we take it as a clean dataset. In order to simulate the situation
where the dataset contains much of noise, based on the CASIA-WebFace, we ar-
tificially synthesize noisy datasets which contain a different ratio of noise. In de-
tail, for closed-set noise, we randomly flip the sample labels of CASIA-WebFace;
for open-set noise, we choose MegaFace [10] as our open-set noise source and
randomly replace the samples of CASIA-WebFace. Finally, we use the clean
CASIA-WebFace and noisy synthetic datasets as our training set, respectively.
We extensively test our method on several popular benchmarks, including LFW
[7], AgeDB [14], CFP-FP [18], CALFW [35], CPLFW [34], SLLFW [4], RFW
[27]. RFW consists of four subsets: Asian, Caucasian, Indian, and African. Note
that in the tables that follow, CA denotes CALFW, CP denotes CPLFW, and
Cau denotes Caucasian.

Training Setting. We follow [3] to crop the 112×112 faces with five landmarks
[32] [22]. For a fair comparison, all methods should be the same to test different
loss functions. To achieve a good balance between computation and accuracy,
we use the ResNet50 [6] as the backbone. The output of backbone gets a 512-
dimension feature. Our framework is implemented in Pytorch [15]. We train
modules on 1 NVIDIA TitanX GPU with batch size of 64. The models are
trained with SGD algorithm, with momentum 0.9 and weight decay 5e -4. The
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Table 1. Verification performance (%) of our BoundaryFace with different hyper-
parameter λ.

Method SLLFW CFP-FP

λ = 2 98.05 94.8
λ = 2.5 97.9 94.71
λ = π 98.12 95.03
λ = 3.5 97.8 94.9

Table 2. Verification performance (%) of ArcFace with different hyper-parameter m
on datasets which contain different noise mixing ratios (%).

m closed-set ratio open-set ratio LFW AgeDB

0.3 10% 30% 99.07 91.82
0.5 10% 30% 98.22 89.02

0.3 30% 10% 98.42 88.5
0.5 30% 10% 98.73 89.93

learning rate starts from 0.1 and is divided by 10 at 6, 12, 19 epochs. The training
process is finished at 30 epochs. We set scale s = 32 and margin m = 0.3 or m =
0.5. Moreover, to make the network with sufficient discrimination ability, we first
pre-train the network for 7 epochs using margin-based loss. The margin-based
loss can also be seen as a degenerate version of our BoundaryFace.

4.2 Hyper-parameters

Parameter λ. Since the hyper-parameter λ plays an essential role in the pro-
posed BoundaryFace, we mainly explore its possible best value in this section.
In Tab. 1, we list the performance of our proposed BoundaryFace with λ varies
in the range [2, 3.5]. We can see that our BoundaryFace is insensitive to the
hyper-parameter λ. And, according to this study, we empirically set λ = π.

Parameter m. Margin m is essential in both margin-based softmax loss and
mining-based softmax loss. For clean datasets, we follow [3] to set margin m =
0.5. In Tab. 2, we list the performance of different m for ArcFace on datasets
with different noise ratios. It can be concluded that if most of the noise in the
training set are open-set noise, we set m = 0.3; otherwise, we set m = 0.5.

4.3 Comparisons with SOTA Methods

Results on a dataset that is clean or contains only closed-set noise.
In this section, we first train our BoundaryFace on the clean dataset as well
as datasets containing only closed-set noise. We use BoundaryF1 (Eq. 7) as
a reference to illustrate the effects of hard sample mining. Tab. 3 provides the
quantitative results. It can be seen that our BoundaryFace outperforms the base-
line and achieves comparable results when compared to the SOTA competitors
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Table 3. Verification performance (%) of different loss functions when the training set
contains different ratios of closed-set noise. Ratio 0% means that the training set is the
original CASIA-WebFace (i.e., clean dataset).

ratio Method LFW AgeDB CFP CA CP SLLFW Asian Cau Indian African

0%

ArcFace 99.38 94.05 94.61 93.43 89.45 97.78 86.5 93.38 89.9 86.72
MV-Arc-Softmax 99.4 94.17 94.96 93.38 89.48 97.88 86.23 93.27 90.12 87.03
CurricularFace 99.42 94.37 94.94 93.52 89.7 98.08 86.43 94.05 90.55 88.07
BoundaryF1 99.41 94.05 95.01 93.27 89.8 97.75 85.72 92.98 89.98 86.43

BoundaryFace 99.42 94.4 95.03 93.28 89.4 98.12 86.5 93.75 90.5 87.3

10%

ArcFace 99.33 93.81 94.34 93.11 89.1 97.67 85.87 92.98 90.15 86.52
MV-Arc-Softmax 99.43 93.9 94.27 93.15 89.47 97.82 85.7 93.17 90.45 87.28
CurricularFace 99.33 93.92 93.97 93.12 88.78 97.52 85.43 92.98 89.53 86.53
BoundaryF1 99.4 94.02 94.3 93.18 89.32 97.85 86.5 93.32 90.33 86.95

BoundaryFace 99.35 94.28 94.79 93.5 89.43 98.15 86.55 93.53 90.33 87.37

20%

ArcFace 99.3 93 93.49 92.78 88.12 97.57 84.85 91.92 88.82 85.08
MV-Arc-Softmax 99.12 93.12 93.26 93.12 88.3 97.37 85.15 92.18 89.08 85.32
CurricularFace 99.13 91.88 92.56 92.28 87.17 96.62 84.13 91.13 87.7 83.6
BoundaryF1 99.32 94.02 94.5 93.18 89.03 97.63 86 93.28 89.88 86.48

BoundaryFace 99.38 94.22 93.89 93.4 88.45 97.9 86.23 93.22 90 87.27

on the clean dataset; our method demonstrates excellent superiority over base-
line and SOTA methods on closed-set noise datasets. Furthermore, we can easily
draw the following conclusions: 1) As the closed-set noise ratio increases, the per-
formance of every compared baseline method drops quickly; this phenomenon
did not occur when using our method. 2) Mining-based softmax has the oppo-
site effect when encountering closed-set noisy data, and the better the method
performs on the clean dataset, the worse the results tend to be. In addition, in
Fig. 7, given 20% closed-set noise, we present the detection of closed-set noise
by BoundaryFace during training and compare it with ArcFace. After closed-set
noise is detected, our BoundaryFace dynamically corrects its labels. Correct la-
bels result in a shift in the direction of the closed-set noise being optimized from
wrong to right, and also lead to more accurate class centers. Furthermore, more
accurate class centers in turn allow our method to detect more closed-set noise
at each iteration, eventually reaching saturation.

Results on noisy synthetic datasets. The real training set contains not only
closed-set noise but also open-set noise. As described in this section, we train
our BoundaryFace on noisy datasets with different mixing ratios and compare
it with the SOTA competitors. In particular, we set the margin m = 0.5 for the
training set containing closed-set noise ratio of 30% and open-set noise ratio of
10%, and we set the margin m = 0.3 for the other two mixing ratios. As reported
in Tab. 4, our method outperforms the SOTA methods on all synthetic datasets.
Even on the dataset containing 30% open-set noise, our method still performs
better than baseline and SOTA competitors.

5 Conclusions

In this paper, we propose a novel mining framework (i.e., BoundaryFace) with
tolerating closed-set noise for face recognition. BoundaryFace largely alleviates
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Fig. 7. Comparison of closed-set noise detected by BoundaryFace and ArcFace, respec-
tively. The dash dot line indicates the total number of closed-set noise in the training
set.

Table 4. Verification performance (%) of different loss functions when the training set
contains different mixing noise ratios. C denotes closed-set noise ratio(%). O denotes
open-set noise ratio(%).

C O Method LFW AgeDB CFP CA CP SLLFW Asian Cau Indian African

20 20

ArcFace 98.87 89.55 89.56 90.43 84.4 94.87 80.97 88.37 85.83 79.72
MV-Arc-Softmax 98.93 89.95 89.61 91.67 84.9 95.67 82.25 88.98 86.22 80.6
CurricularFace 98.33 88.07 88.29 90.18 83.65 93.87 80.3 87.78 84.43 77.35
BoundaryF1 99.12 92.5 89.66 92.27 84.43 96.75 84.42 91.4 88.33 84.55

BoundaryFace 99.2 92.68 93.28 92.32 87.2 96.97 84.78 91.88 88.8 84.48

10 30

ArcFace 99.07 91.82 91.34 91.7 85.6 96.45 83.35 90 87.33 81.83
MV-Arc-Softmax 98.92 91.23 91.27 91.9 85.63 96.17 83.98 90.15 87.57 82.33
CurricularFace 98.88 91.58 91.71 91.83 85.97 96.17 82.98 89.97 86.97 82.13
BoundaryF1 99 92.23 92.07 92.05 86.62 96.42 83.97 90.47 87.83 82.98

BoundaryFace 99.17 92.32 92.4 91.95 86.22 96.55 84.15 91.05 88.17 83.28

30 10

ArcFace 98.73 89.93 89.21 91.02 82.93 95.15 81.25 88.33 85.87 80.03
MV-Arc-Softmax 98.78 89.73 88.54 91.22 82.57 95.22 81.52 88.47 85.83 80.12
CurricularFace 98.18 87.65 88.1 90.12 82.82 93.13 79.7 86.65 84.1 77.22
BoundaryF1 99.1 92.3 90.34 92.28 85.28 96.7 83.52 90.9 87.53 83.12

BoundaryFace 99.1 93.38 88.24 92.5 82.22 96.88 83.77 91.18 88.18 83.67

the poor performance of mining-based softmax on datasets with severe noise
problem. BoundaryFace is easy to implement and converges robustly. Moreover,
we investigate the effects of noise samples that might be optimized as hard
samples. Extensive experiments on popular benchmarks have demonstrated the
generalization and effectiveness of our method when compared to the SOTA.
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