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Abstract. We present a new on-road driving dataset, called “Look Both
Ways”, which contains synchronized video of both driver faces and the
forward road scene, along with ground truth gaze data registered from
eye tracking glasses worn by the drivers. Our dataset supports the study
of methods for non-intrusively estimating a driver’s focus of attention
while driving - an important application area in road safety. A key chal-
lenge is that this task requires accurate gaze estimation, but supervised
appearance-based gaze estimation methods often do not transfer well to
real driving datasets, and in-domain ground truth to supervise them is
difficult to gather. We therefore propose a method for self-supervision of
driver gaze, by taking advantage of the geometric consistency between
the driver’s gaze direction and the saliency of the scene as observed by
the driver. We formulate a 3D geometric learning framework to enforce
this consistency, allowing the gaze model to supervise the scene saliency
model, and vice versa. We implement a prototype of our method and test
it with our dataset, to show that compared to a supervised approach it
can yield better gaze estimation and scene saliency estimation with no
additional labels.
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1 Introduction

For the past decade, computer vision has played an increasingly important role in
self-driving cars, to help them understand what is happening outside the vehicle
(see e.g. [6, 13, 40]). But the vast majority of vehicles on the road today remain
human-controlled, and will stay that way for the foreseeable future, with partially
automated systems (SAE Levels 2-3 [2]) set to become the norm [1]. Given this
trend, it is important to pay close attention to what is happening inside the
vehicle: to better understand the behaviors of human drivers. As driving becomes
the activity of a cooperative human-AI team, building good representations of
drivers will be critical to help ensure a safe and efficient system.

This work concerns one important aspect of driver behavior: their visual
focus of attention. Attention is a major indicator of the intent and decision-
making of drivers, and humans in general [20]. An ability to precisely estimate a
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Fig. 1. Motivation. Estimating a driver’s focus of attention is important to determine
if they have sufficient situational awareness to drive safely. Here we show the test-time
output of our method, with estimated gaze overlaid on the input face image, 3D gaze
projected into the scene camera view, and saliency prediction from the scene image.

driver’s attention is a stepping stone towards vehicles being able to understand
the situational awareness of a driver and adapt their behavior to provide better
assistance to drivers in need through warnings or interventions. For example, in
Fig. 1, a vehicle which can tell whether the driver has seen the braking vehicle
up ahead may be able to warn them or apply braking earlier, to help prevent a
collision. Knowledge of human visual attention can also be used to help machines
attend to the driving task more efficiently [3]. Due to its importance, a num-
ber of companies exist which specialize in developing driver monitoring systems
centered around estimating aspects of driver state such as eye gaze. However,
commercial systems, which typically (though not exclusively) use near infra-red,
glint- and model-based tracking to achieve high precision, are black-box systems
and require specific camera and lighting setups. For these reasons, research into
open models which relax these constraints, such as appearance-based gaze mod-
els powered by deep learning [18, 49], has continued. One challenge with this
work has been the lack of domain-specific data: while synthetic datasets have
found some success [37, 39, 44], collecting ground truth gaze data across many
subjects and conditions in the target domain of driving is expensive. As a con-
sequence, existing appearance-based 3D gaze estimation models can be highly
fragile when applied to new drivers in real driving scenes. There is a need for
both a more label-efficient method to adapt gaze estimation models to drivers,
and a dataset to support it.

To try to address these needs, we make the following contributions.
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Firstly, we collect a new on-road dataset for visual focus of attention
estimation. The Look Both Ways (LBW) dataset features seven hours of driving
captured from 28 drivers with synchronized and calibrated facial RGB-D video
(looking at the driver), driving scene stereo videos (looking at the road), and
ground-truth gaze from eye-tracking glasses.

Secondly, we present a self-supervised learning method to improve
appearance-based driver gaze estimation without annotations. Our main
insight is that driver attention is highly correlated with 3D scene semantics (or
visual saliency). For example, drivers tend to focus on vanishing points, tan-
gent points on curving roads, pedestrians, relevant traffic signals, or approach-
ing cars [20]. To take advantage of this, we set up our gaze learning framework
to encourage geometric consistency between gaze direction and visual saliency
through 3D reconstruction. Our system takes the driver face and stereo scene
images as input, and outputs 3D gaze direction and an estimate of scene saliency.

Finally, we demonstrate that our self-supervised method can improve per-
formance of a recent appearance-based gaze tracking method in this applied
setting. As a byproduct, our method can also improve the performance of driv-
ing scene saliency. Our dataset and experimental code is available at https:

//github.com/Kasai2020/look_both_ways.

2 Related Work

Appearance-based Gaze Estimation. Methods to non-intrusively estimate
human gaze from facial images have been studied in computer vision for many
decades [14]. Artificial neural networks were first used for appearance-based gaze
estimation in the early 1990s [4], but modern deep learning techniques and the
availability of larger training datasets have significantly improved their perfor-
mance [18, 49, 50]. Researchers have explored techniques to further improve the
data-efficiency, generalization and accuracy of these methods, for example by
injecting more structure into the learned representations [9, 31], leveraging syn-
thetic data in novel ways [37,39,44], and personalizing gaze models to individuals
with minimal supervision [21,30]. Despite this progress, supervised appearance-
based models are still known to experience performance degradation at test-time,
as they may struggle to transfer to new appearances (including occluders such
as glasses), lighting conditions, or head poses outside of the training data. While
exciting progress has been made recently in self-supervised gaze representation
learning [41, 48], these methods do not yet attempt to leverage supervisory sig-
nals that may be freely available from the environment, such as the scene which
the subject is looking at. Our work presents a method, dataset and evidence
for how self-supervision from the environment can be used to boost appearance-
based gaze estimation in an applied setting.

Leveraging the Relationship between Gaze and Saliency. Understand-
ing where people look has long been a topic of interest in human perception
and computer vision [47]. The computational modeling of visual saliency has
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advanced significantly, moving beyond the detection of low-level salient patterns
towards higher-level reasoning [5,10,26,43]. Saliency models can now serve prac-
tical purposes, for example to predict (and therefore influence) website engage-
ment [36,51]. The idea of relating the saliency of the environment to a person’s
attention—which we leverage in this paper—is not new. Early work by Sugano
et al. [38] aggregated on-screen saliency maps corresponding to similar-looking
eye appearances over time to help construct an appearance-based gaze estima-
tor in the lab without ground truth. Recasens et al. showed how saliency can be
used to help an appearance-based gaze estimator for images containing subjects
looking elsewhere within the image [33], and in follow-up work with multi-view
data showed how saliency, appearance-based gaze, and geometric relationships
between camera views can be solved for simultaneously using only gaze as super-
vision [34]. Chang et al. [8] propose the use of saliency information to calibrate
an existing gaze model. Most related to our work, Park et al. [29] demonstrated a
method for end-to-end video-based eye-tracking which showed that the accuracy
of appearance-based gaze models for subjects watching visual stimuli on screen
could be improved with knowledge of saliency. Inspired by this prior work, we
explore whether saliency and gaze can be used to supervise one another outside
of the screen-in-the-lab setting, and in a real, 3D driving environment.

Gaze Estimation for Driving. Driving is a complex task which requires pay-
ing attention to many different static and dynamic areas of the vehicle and
road scene, and therefore involves a range of eye movement strategies [20]. Ve-
hicles which can accurately predict driver gaze can provide assistance which is
more in tune with the needs of the driver. There are numerous datasets for the
study of driver behaviors, including Brain4Cars [16], BDD-A [46], DrEYEve [28],
Drive&Act [24], DMD [27], DADA2000 [11], and INAGT [45]. However, no
dataset exists which combines driver-facing video, scene-facing video and ground
truth gaze. In Section 3, we describe our dataset contribution and how it sup-
ports the exploration of gaze and saliency self-supervision for the important task
of driver gaze estimation.

3 Look Both Ways (LBW) Dataset

To build the LBW dataset, we created a setup shown in Fig. 2(a) which captured
two synchronized streams of data at 15Hz (downsampled to 5Hz for processing):

1. 3D gaze data consisting of: (i) face images, Ig, (ii) ground truth 3D gaze
directions g, and (iii) 3D eye centers, {el, er}, with respect to the scene cam-
era. A Kinect Azure RGB-D camera was used to capture the face image and
the 3D location of eyes (“Gaze camera”). Drivers wore Tobii Pro Glasses to
measure driver gaze in a glasses-centric co-ordinate system (“Gaze glasses”),
which could later be transformed into ground truth gaze g.

2. Left and right pairs of stereo scene images, {Ils, Irs}, captured with an addi-
tional pair of Kinect Azure cameras (“Scene stereo”) synchronized with the
gaze camera.
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(a) LBW data capture setup and geometry

(b) Data samples showing a variety of driver appearances and driving conditions.
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(c) Dataset statistics.

Fig. 2. The Look Both Ways (LBW) Dataset. (a) Dataset collection setup. We
used synchronized and calibrated driver-facing monocular and scene-facing stereo cam-
eras, and driver-mounted eye tracking glasses, in order to gather data of driver 3D gaze
registered to real driving scenes. (b) Samples from the dataset. LBW is collected with
28 drivers who drive in various areas including urban, rural, residential, and campus,
under sunny, rainy, cloudy, and snowy weather. The data includes driver face images,
road-facing scene images, and 3D gaze direction from a head-mounted eye tracker. (c)
Dataset statistics. (Left) Log-frequency histogram of ground truth gaze pitch and yaw,
showing a concentration of gaze towards the road ahead. (Center) The distribution of
fixations away from the mean is heavy tailed, corresponding to glances away from the
forward road scene. (Right) Data was gathered from 28 subjects, of which 5 were held
out from all supervised and self-supervised training as a test set.

3.1 Calibration and Pre-processing

The gaze and stereo cameras were rigidly attached to a mechanical frame as
shown in Fig. 2(a), where their relative transformation R and intrinsic param-
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Fig. 3. Ground truth gaze registration. We map the gaze focal point xg from the
gaze glasses camera view (left) to the scene image xs (center) using a homography H
(right) estimated by matching local image features between the two images.

eters K are constant. We calibrated these parameters using COLMAP, an off-
the-shelf structure-from-motion algorithm [35]. Since the cameras face opposite
directions where matches cannot be found, we capture a calibration sequence
by rotating the mechanical frame outside the vehicle in order to acquire feature
correspondences across time.

Localizing the gaze glasses in the coordinate system defined by the scene
cameras is non-trivial as the glasses are in constant motion. One possible ap-
proach is to estimate the 3D rotation and translation of the glasses in the driver-
facing camera by tracking AprilTags [42] which we mounted rigidly to the frame.
However, the result was highly sensitive to the small noisy in the recovered ro-
tation. Instead, similar to [28], we opted to directly register the gaze focal point
projected into the glasses’ own scene-facing video stream, against our own scene-
facing video:

g = R
Xg − e

∥Xg − e∥
, where Xg = d(xs)K

−1x̃s, x̃s ∝ Hx̃g, (1)

where g ∈ S2 is the 3D gaze direction, xg ∈ R2 is the gaze focal point that is
measured by the gaze glasses, e ∈ R3 is the center of eyes in the scene camera
coordinate, xs ∈ R2 is the transferred gaze focal point in the scene image, and
H is the homography that directly maps the gaze glass image to the scene im-
age as shown in Fig. 3. d(xs) is the depth at the gaze focal point xs, x̃ is the
homogeneous representation of x, and R ∈ SO(3) is the rotation matrix that
transforms from the scene image coordinate system to the face image coordinate
system. We approximate this transformation as a homography (i.e., pure rota-
tion) assuming that the distance from the scene to the camera is sufficiently far,
i.e., weak perspective. We estimate this homography by leveraging local image
feature matching [23] with RANSAC [12].

We use RAFT-Stereo [22] to reconstruct scene depth from our stereo image
pair, and we measure the physical baseline distance between the stereo cameras
to reconstruct to metric scale, validating by capturing an object of known size.

3.2 Final Collection

We collected the data by complying with an Institutional Research Board (IRB)
protocol. Each driver signed a consent form reviewed by the IRB. All drivers
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Dataset Primary Task Driver Scene Scenario Gaze # Subj. Size(h)

Brain4Cars [16] Maneuver Pred. RGB Mono Real No 10 *10
Drive&Act [24] State/Act.Rec. RGB+D, NIR - Sim No 15 12
DMD [27] State/Act.Rec. RGB+D, NIR - Both No 37 41
INAGT [45] HMI Timing RGB Mono Real No 46 38
BDD-A [46] Visual FoA - Mono Sim Yes 1,232 4
DrEYEve [28] Visual FoA - Mono Real Yes 8 6

LBW (Ours) Visual FoA/Gaze RGB+D Stereo Real Yes 28 7

Table 1. Comparison of recent driver-facing datasets. Our dataset is unique
in containing driver-facing imagery (Driver), scene-facing imagery (Scene) along with
ground truth gaze fixations (Gaze). Among other things, LBW therefore supports the
development of self-supervised methods to study and improve estimation of driver focus
of attention (FoA) using scene saliency.

were older than 18 years old and held a US driver’s license. During driving, an
instructor was on board in the passenger seat to provide safety instruction and
directional guidance.

After calibration, we filter the videos to remove missed gaze registrations,
missed driver detections via OpenPose [7], and dropped frames. The final fully-
annotated dataset consists of 6.8 hours of free driving on public roads. We cap-
tured 28 drivers (22 male, 6 female), totalling 123,297 synchronized driver face
and stereo scene images with ground truth 3D gaze. This includes various road
types (e.g. urban, residential and rural) and various weather conditions (sunny,
cloudy, rainy, and snowy) with various lighting conditions (daytime and dusk).

Figures 2(b) and 2(c) illustrate the diversity of our dataset. Driver gaze
is widely spread across yaw and pitch angles. For driving scenarios, the gaze
distribution is slightly biased to the negative yaw angle because the driver seat
is located on the left sides. Each participant collected more than 2,000 clean
data samples. Table 1 compares LBW against recent driving datasets.

4 Self-supervised Gaze

Given a set of images that capture face appearance and the driving scene, we
present a self-supervised learning framework to predict the 3D gaze direction.
We represent a measure of visual saliency as a function of the 3D gaze direction,
which allows us to encourage geometric consistency between the 3D gaze and
visual saliency prediction.

4.1 Gaze-Driven Saliency

From an image of the driver’s face, Ig ∈ [0, 1]Hg×Wg×3, where Hg and Wg are
its height and width, we wish to predict the 3D gaze direction g ∈ S2:

g = fg(Ig;θg), (2)
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Fig. 4. Processed data sample. We represent a measure of visual saliency sg(x) as a
function of the 3D gaze direction g that can be predicted by the face appearance image
Ig. Given the depth estimates from the stereo scene cameras in X, we reconstruct 3D
points and project them to the eye center e to form directions s. The angular difference
between s and the gaze direction g is used to model the projected scene saliency sg.

where fg is a learnable function, parameterized by the weights θg. While fg can
be learned in a supervised fashion, using a number of pairs of 3D gaze direction
and appearance, the learned model may not generalize well unless the training
set is very large and diverse.

Our main insight is that the 3D gaze direction is highly correlated with
the visual semantics (or visual saliency) observed by the scene image Is ∈
[0, 1]Hs×Ws×3 with its height Hs and width Ws. We represent a measure of
visual saliency sg over the scene image as follows:

sg(x) =
exp

(
κgTs(x)

)∑
x∈R(Is)

exp(κgTs(x))
, (3)

where sg(x) ∈ [0, 1] is the visual saliency geometrically derived from the 3D gaze
direction g, the pixel x ∈ [0,Ws) × [0, Hs) lies in the scene image, and κ is a
concentration parameter that determines the variance of salience given the 3D
gaze direction3.

The directional unit vector s(x) ∈ S2 corresponds to scene image point x:

s(x) = R
X− e

∥X− e∥
, X = d(x)K−1x̃, (4)

where X ∈ R3 is the 3D point that is reconstructed from the scene image x given
the intrinsic parameter K and the depth d(x) ∈ R+ as shown in Fig. 2(a). R ∈
SO(3) is the rotation matrix that transforms from the scene image coordinate
system to the face image coordinate system. e ∈ R3 is the 3D location of the
eye center, i.e., s(x) is the direction of the 3D point X corresponding to x seen
from the eye location.

Figures 2(a) and 4 illustrate the geometry of gaze-driven visual saliency sg(x).
The saliency at a pixel location x can be measured by the angle between the
gaze direction g and the corresponding direction s that can be obtained by 3D

3 We use a von Mises-Fisher density function where κ is equivalent to the standard
deviation of a Gaussian density function.
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reconstruction of x, i.e., scene stereo reconstruction with the depth d(x). To
obtain eye locations e in 3D, we run OpenPose [7] to detect the eyes in the RGB
image and read off depth at those pixels.

4.2 Losses and Network Design

In the previous section we described the computation of scene saliency from reg-
istered gaze. Visual saliency can also be predicted from the scene image directly
using a saliency model:

ss(x) = fs(x, Is;θs), (5)

where ss(x) ∈ [0, 1] is the scene saliency at the pixel location x, and fs is a
learnable function that predicts the saliency from a scene image, parametrized
by the weights θs.

Ideally, the visual saliency derived by the gaze sg(x) agrees with the visual
scene saliency predicted from the scene image ss(x). We leverage this relationship
to allow self-supervision of gaze estimation, by encouraging consistency between
sg(x) and ss(x) through a loss term:

Lself(θg,θs) =
∑

{Ig,Is}∈D

 ∑
x∈R(Is)

(fs(x, Is;θs)− sg(x))
2

 , (6)

where D is the set of pairs of face and scene images, andR(Is) = [0,Ws)×[0, Hs).
No ground truth is needed to measure Lself , so a large number of unlabeled data
instances may be used.

Optimizing for this self-supervised loss alone may lead to a trivial solution,
such as a constant gaze prediction outside the field of view of the scene image.
We therefore constrain fg and fs with a small set of ground truth gaze data:

Lg(θg) =
∑

{ĝ,Ig}∈Dg

(
1− fg(Ig;θg)

Tĝ
)2

, (7)

Ls(θs) =
∑

{ŝ,Is}∈Ds

LKL + λcLNCC, (8)

where Dg is the set of the ground truth pairs of the eye appearance and the 3D
gaze direction where ĝ is the ground truth 3D gaze direction, and Ds is the set
of the ground truth pairs of the scene image and visual saliency. LKL and LNCC

measure the Kullback-Leibler (KL) divergence and normalized cross-correlation
between the visual saliency prediction fs and the ground truth saliency, as used
in [10]:

LKL =
∑
x

ŝ(x) log

(
ŝ(x)

fs(x)

)
, LNCC = −

∑
x ŝ(x)fs(x)√∑

x fs(x)
2
√∑

x ŝ(x)
2
, (9)

where fs(x, Is;θs) is denoted fs(x) and
∑

x∈R(Is)
by

∑
x. λc is the weight to

balance between KL divergence and normalized correlation, set to 0.1.
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Fig. 5. Model overview. (a) Network design. We jointly learn the gaze estimator
fg and saliency predictor fs by enforcing the geometric consistency between them.
The estimate gaze g is transformed to the visual saliency map sg(x) through Equa-
tion (3). This visual saliency map is supervised by the scene saliency prediction s(x),
i.e., minimizing Lself . For the labeled data, the supervised losses Lg and Ls are used. (b)
Effect of self-supervision. We use the geometric relationship between the gaze and scene
saliency to self-supervise the gaze direction. (Left) Supervised gaze direction where the
predicted gaze is deviated from the ground truth. (Middle) The self-supervision en-
forces the geometric consistency between the gaze and scene saliency, which improves
the gaze prediction and the saliency prediction. (Right) Ground truth scene saliency.

Our overall loss is then:

L(θg,θs) = Lself(θg,θs) + λgLg(θg) + λsLs(θs), (10)

where Lself is the self-supervised loss that ensures consistency between estimated
gaze and estimated saliency without requiring ground truth data, and Lg and
Ls are the supervised losses that prevent deviation from the ground truth. The
hyperparameters λg and λs control the balance between supervised and self-
supervised losses.

Our overall model is illustrated in Fig. 5(a). The gaze estimator fg takes as
input a face appearance image and outputs the gaze direction g. With the recon-
structed depth image d(x), we transform the gaze direction to the scene image
to form the visual saliency map sg(x). This saliency map is self-supervised by
the saliency prediction of the scene image (and vice versa) via fs by minimizing
Lself . When labeled data is available, we minimize the supervised losses Lg and
Ls for the gaze and saliency, respectively. Fig. 5(b) illustrates the positive effect
of self-supervision on both gaze and saliency estimation.
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4.3 Implementation Details

Any end-to-end trainable gaze estimator fg or saliency predictor fs can be used
in our framework, but we opt for simple but strong models which have pre-trained
weights available. For gaze estimation we use the ETH XGaze model [49] based
on a ResNet-50 [15], and for saliency estimation we use Unisal [10] (MNetV2-
RNN-Decoder). Our framework is implemented in PyTorch [32], using the Adam
optimizer [19] with a fixed 0.5× 10−9 learning rate and a batch size of 6. For λg

and λs a value of 2.0 was used. We will release all code, models and data.

5 Experiments

We split our data into three: supervised training, self-supervised training, and
held-out testing. The supervised split includes the ground truth labels of gaze
directions and saliency maps. The self-supervised split does not: self-supervised
learning uses geometric consistency as described in the previous section to learn
from this data without annotations. Three data split configurations are tested:
{supervised, self-supervised, test} = {5%, 75%, 20%}, {20%, 60%, 20%}, {40%,
40%, 20%}, {60%, 20%, 20%}, using the same test split each time. Splits are by
subject, to be able to assess generalization to new subjects.

5.1 Evaluation Metrics

We measure the mean absolute error (MAE) with its standard deviation for the
gaze and saliency predictions:

MAEg =
1

N

∑
i

cos−1
(
gT
i ĝi

)
, (11)

MAEs =
1

N

∑
i

 ∑
x∈R(Is)

|si(x)− ŝi(x)|

 , (12)

where gi and si(x) are the ith predictions for gaze and saliency, and N is the
number of test data samples.

5.2 Baselines

Gaze.We evaluate our self-supervised gaze estimation by comparing with strong
recent appearance-based gaze estimation baselines. We note that our goal is not
necessarily to target state-of-the-art accuracy, but rather to demonstrate the use
of our dataset to explore saliency-based self-supervision to boost performance of
a simple but strong baseline on real data.

(1) Gaze360 [18]: we use the static model, pre-trained on a large-scale in-
the-wild gaze dataset captured from 238 subjects in indoor and outdoor envi-
ronments. This is an example of an off-the-shelf gaze estimator for “in-the-wild”
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{5/75/20} {20/60/20} {40/40/20} {60/20/20}

Method Self Test Self Test Self Test Self Test

Gaze360 [18] 18.7 20.3 21.4 20.3 23.0 20.3 17.2 20.3
ETH XGaze [49] 11.6 15.6 11.9 15.6 12.6 15.6 15.4 15.6
Mean 9.5 9.2 9.5 9.2 9.0 9.2 8.7 9.2
Supervised-only 9.7 7.8 6.9 6.8 8.1 7.4 7.0 6.7
Ours 8.2 7.8 6.9 6.5 7.4 7.2 6.2 6.7

Table 2. Gaze performance. We compare appearance based gaze estimation in
MAEg (degrees, lower is better). Our method yields small but consistent improvement
over baselines. “Self” and “Test” correspond to performance on the Self-Supervised
and Testing splits. We test on four sets of splits with varying levels of supervised and
self-supervised training: {Supervised %, Self-supervised %, Test %}.

{5/75/20} {20/60/20} {40/40/20} {60/20/20}

Method Self Test Self Test Self Test Self Test

Unisal [10] 1.57 1.60 1.57 1.60 1.56 1.60 1.58 1.60
Supervised-only 1.14 1.16 1.06 1.07 1.00 1.03 0.97 1.03
Ours 1.12 1.14 1.05 1.06 0.99 1.03 0.96 1.03

Table 3. Saliency performance. We compare saliency prediction in MAEs (lower is
better). Our method again yields small but consistent improvement over baselines.
“Self” and “Test” correspond to performance on the Self-Supervised and Testing
splits.We test on four sets of splits with varying levels of supervised and self-supervised
training: {Supervised %, Self-supervised %, Test %}.

use. (2) ETH XGaze [49]: this is a ResNet-50 based model trained on the ETH
XGaze dataset, a multi-view high-resolution gaze dataset captured in a con-
trolled environment. We use the pre-trained model to evaluate on our dataset.
(3) Mean: We compute the mean gaze over the entire LBW dataset and use
it as a predictor. (4) Supervised-only: We re-train the ETH XGaze model
(ResNet-50) on our LBW training dataset with the ground truth labels.

Saliency. (1) Unisal [10]: We use the saliency model pre-trained on multi-
ple large-scale saliency datasets including DHF1K [43], Hollywood-2 and UCF-
Sports [25] and SALICON [17] to evaluate on our dataset. (2) Supervised-only:
We re-train Unisal on our LBW training dataset with ground truth labels.
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5.3 Quantitative Evaluation

Tables 2 and 3 summarize the quantitative results of our experiments on gaze
and saliency estimation, comparing our self-supervised learning method against
the baselines described.

Gaze. The Gaze360 and ETH XGaze baselines produce relatively higher gaze
estimation error for all splits because of the train-test domain gap. One signifi-
cant source of difference is that all of our quantitative evaluation data features
drivers wearing gaze tracking glasses, which can sometimes partially occlude the
eye region and cause spurious estimations. The appearance of LBW face data
is closer to the higher-resolution ETH XGaze dataset, which may explain the
improvement over Gaze360. The mean gaze predictor is a competitive baseline
because the attention of the driver is highly biased to the center (forward road-
way and vanishing point). The supervised-only method improves performance as
it allows domain adaptation using limited labeled data. Our method, which adds
in geometric self-supervision, produces consistent performance improvements of
up to 10% against the supervised-only method. Interestingly, its performance
on the test splits is on par with the supervised-only method, indicating that it
would still benefit from further adaptation. We argue that this is possible with
our self-supervised learning method as no ground truth data is needed.

Saliency. A similar observation can be made for the saliency predictors as
summarized in Table 3. Although Unisal is a competitive saliency predictor, the
supervised-only method outperforms the baseline by adapting the model to the
driving domain with limited labeled data. Our self-supervised learning method
matches or improves on the supervised learning method consistently across splits.

5.4 Qualitative Evaluation

We show further qualitative output from our model in Fig. 6(a) over a range of
drivers in the test split. It correctly predicts gaze direction in the presence of low
lighting as the scene saliency provides an informative signal to refine the gaze.
On the other hand, the scene saliency can sometimes mislead gaze estimation as
it is biased towards the vanishing point in the scene, as shown in Fig. 6(b).

6 Discussion

We have presented a new dataset called Look Both Ways, which facilitates study
into the problem of estimating a driver’s focus of attention while on the road. We
introduced a new approach for geometric self-supervision of 3D gaze from facial
images and visual scene saliency, to take advantage of the natural relationship
between the two. Using the LBW dataset, we showed that our end-to-end trained
system can improve upon purely supervised methods for gaze estimation and
saliency estimation, by virtue of being able to take advantage of unlabelled face
and scene depth image pairs.
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(a) Qualitative results for gaze and saliency using self-supervision

(b) Sample failure cases

Fig. 6. Qualitative Results. We visualize some further outputs of our model trained
with self-supervised gaze and saliency. Successful results shown in (a) show the model
working well in a variety of scenes and lighting conditions. Failure cases shown in (b)
show how self-supervised learning can mislead the gaze estimation as the scene saliency
prediction is highly biased to the vanishing point.

We believe that our dataset will be helpful for the community to further
study driver attention in vehicles. Although we acknowledge that 3D gaze tech-
nology can potentially be used for surveillance applications, we hope to inspire
an application that positively influences our thinking about the use of gaze es-
timation in vehicles, as a means to support improved assistance for drivers on
the road.
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