
Supplementary Material for
MFIM: Megapixel Facial Identity Manipulation

(a) Face swapping (b) ID mixing

Fig. 1: The architecture of MFIM. Figure 1a shows the process of face swap-
ping. The facial attribute encoder extracts style codes and style maps from source
and target images. These are given to the pretrained StyleGAN generator as in-
puts. Figure 1b shows the process of ID mixing. The ID-style codes are extracted
from two source images, instead of a single source image.

A Architecture

In this section, we describe the architectures of facial attribute encoder, generator
and discriminator.

A.1 Facial Attribute Encoder.

Our facial attribute encoder, which is based on the psp [10] encoder, uses the
same encoder backbone (blue structures denoted as ‘Encoder Blocks’ in Fig-
ure 1a) as the psp encoder. As shown in Figure 1a, the encoder backbone extracts
the hierarchical latent maps from the given image. The M2C and M2M blocks
of our facial attribute encoder extract the style codes and style maps from the
hierarchical latent maps extracted from the backbone, respectively. The details
of encoding process are as follows.
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Table 1: Architecture of M2M block. M2M block has shared convolutional
layers at the top, but separated convolutional layers at the bottom. All con-
volutional layers have kernel size of 3 × 3, stride of 1, and padding size of 1.
Cin and Cout for the convolutional layer denotes the input and output channel
dimensions, respectively. a for the LeakyReLU layer denotes the negative slope.
To encourage the style maps to be similar to the noise inputs which is used in
StyleGAN pretraining, M2M block has an instance normalization [12] layer at
the last which makes the style maps to be normally distributed.

(Input): latent maps (c, h, w)

Conv (Cin = c, Cout = c)
LeakyReLU (a = 0.01)

Conv (Cin = c, Cout = c′)
LeakyReLU (a = 0.01)

Conv (Cin = c′, Cout = c′) Conv (Cin = c′, Cout = c′)
InstanceNorm InstanceNorm

(Output 0): style maps (c′, h, w) (Output 1): style maps (c′, h, w)

Style codes. The architecture of the M2C block is the same as that of the
Map2Style block of the pSp encoder. However, the pSp encoder produces eigh-
teen style codes because it maps the image to W+ space [1], whereas our facial
attribute encoder maps the image to S space [14], so twenty-six style codes,

{ci}25i=0. Then, the style codes go through the following additional steps:

si = αici + µi, (1)

where {αi}25i=0 is a set of learnable parameters and {µi}25i=0 is a set of style codes
that maps an average latent code of W space [5] to S space. αi, ci, and µi have
the same dimensions.

We extract the style codes from the source image, xsrc, and the target image,
xtgt, respectively, and combine them to construct the final style codes. Let us

denote the style codes extracted from xsrc and xtgt, {ssrci }25i=0 and
{
stgti

}25

i=0
,

respectively. We construct the ID-irrelevant style codes,
{
stgti

}b−1

i=0
, by taking a

subset of
{
stgti

}25

i=0
, and the ID style codes {ssrci }25i=b from {ssrci }25i=0, where b is

a hyperparameter for the border index between the ID and ID-irrelevant style
codes. We set b = 8. Then, the final style codes, {si}25i=0, are constructed by com-

bining
{
stgti

}b−1

i=0
and {ssrci }25i=b. Finally, {si}

25
i=0 is used in weight demodulation

operation [6].

Style maps. Our facial attribute encoder introduces an M2M block with the
architecture depicted in Table 1 to extract the style maps from the target image.
As shown in Table 1, the M2M block takes the latent maps as input and produces
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two groups of style maps, which are denoted as Output 0 and Output 1 in
Table 1 respectively, of the same spatial size as the input latent maps.

Our encoder produces a total of four groups of style maps: two groups with a

spatial size of 16×16,
{
m16×16

i

}1

i=0
, and the remaining two groups have a spatial

size of 32×32,
{
m32×32

i

}1

i=0
. All of these style maps have the channel dimensions

of 512. Finally, these style maps are given to the pretrained StyleGAN generator
as noise inputs.

A.2 Generator

We use the pretrained generator of StyleGAN [6], so we use the same architecture
with StyleGAN without modification except for the mapping network that maps
a random vector z ∈ Z to an intermediate latent space W. We replace the map-
ping network with the facial attribute encoder which produces the ID-irrelevant
style codes, ID style codes and style maps. These are forwarded appropriately
to each layer of the pretrained StyleGAN generator, as shown in Tables 2 and 3.
Table 2 describes the process of face swapping, which uses a single source image,
xsrc, but Table 3 describes the process of id mixing, which uses the global and
local source images, xgb

src and xlc
src.

A.3 Discriminator

We use the pretrained discriminator of StyleGAN [6], so we use the same archi-
tecture with StyleGAN without modification.

B Hyperparameters

Table 4 shows weights for each loss to train our model. Following StyleGAN [6],
we use R1 regularization [9] every sixteen training steps. Table 5 shows addi-
tional hyperparameters for optimization. For the optimizer, we use the Ranger
optimizer, which is a combination of RAdam [8] and Lookahead [15], following
pSp [10]. We use a learning rate of 1e− 4 and decrease it by 2e− 5 every 40,000
steps after 500,000 steps. We use a batch size of four, which means that we use
four pairs of source and target images for training. However, for one of the four
pairs, we make the source image and the target image the same, so that the
generator performs self-reconstruction on that pair.

C Preprocess and Postprocess

C.1 Data preprocess

We use FFHQ [5], which consists of 70,000 human faces at 1024×1024 resolution,
for the training dataset. It is noteworthy that the most of the previous face-
swapping models [7, 13, 16, 3] extend the training dataset by combining multiple
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Table 2: Inputs that each layer of the pretrained StyleGAN generator

takes for face swapping. The ID-irrelevant style codes,
{
stgti

}7

i=0
, and style

maps,
{
m16×16

i

}1

i=0
and

{
m32×32

i

}1

i=0
are extracted from xtgt, while the ID style

codes, {ssrci }25i=8 are extracted from xsrc.

S layer index Resolution Layer name Style code Style code type Style maps

0 4× 4 Conv stgt0 ID-irrelevant -

1 4× 4 ToRGB stgt1 ID-irrelevant -

2 8× 8 ConvUp stgt2 ID-irrelevant -

3 8× 8 Conv stgt3 ID-irrelevant -

4 8× 8 ToRGB stgt4 ID-irrelevant -

5 16× 16 ConvUp stgt5 ID-irrelevant m16×16
0

6 16× 16 Conv stgt6 ID-irrelevant m16×16
1

7 16× 16 ToRGB stgt7 ID-irrelevant -

8 32× 32 ConvUP ssrc8 ID m32×32
0

9 32× 32 Conv ssrc9 ID m32×32
1

10 32× 32 ToRGB ssrc10 ID -

11 64× 64 ConvUP ssrc11 ID -

12 64× 64 Conv ssrc12 ID -

13 64× 64 ToRGB ssrc13 ID -

14 128× 128 ConvUP ssrc14 ID -

15 128× 128 Conv ssrc15 ID -

16 128× 128 ToRGB ssrc16 ID -

17 256× 256 ConvUP ssrc17 ID -

18 256× 256 Conv ssrc18 ID -

19 256× 256 ToRGB ssrc19 ID -

20 512× 512 ConvUP ssrc20 ID -

21 512× 512 Conv ssrc21 ID -

22 512× 512 ToRGB ssrc22 ID -

23 1024× 1024 ConvUP ssrc23 ID -

24 1024× 1024 Conv ssrc24 ID -

25 1024× 1024 ToRGB ssrc25 ID -
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Table 3: Inputs that each layer of the pretrained StyleGAN generator

takes for ID mixing. The ID-irrelevant style codes,
{
stgti

}7

i=0
, and style maps,{

m16×16
i

}1

i=0
and

{
m32×32

i

}1

i=0
are extracted from xtgt. However, the global ID

style codes, {ssrci }9i=8, are extracted from xgb
src, and the local ID style codes,

{ssrci }25i=10, are extracted from xlc
src.

S layer index Resolution Layer name Style code Style code type Style maps

0 4× 4 Conv stgt0 ID-irrelevant -

1 4× 4 ToRGB stgt1 ID-irrelevant -

2 8× 8 ConvUp stgt2 ID-irrelevant -

3 8× 8 Conv stgt3 ID-irrelevant -

4 8× 8 ToRGB stgt4 ID-irrelevant -

5 16× 16 ConvUp stgt5 ID-irrelevant m16×16
0

6 16× 16 Conv stgt6 ID-irrelevant m16×16
1

7 16× 16 ToRGB stgt7 ID-irrelevant -

8 32× 32 ConvUP ssrc8 Global ID m32×32
0

9 32× 32 Conv ssrc9 Global ID m32×32
1

10 32× 32 ToRGB ssrc10 Local ID -

11 64× 64 ConvUP ssrc11 Local ID -

12 64× 64 Conv ssrc12 Local ID -

13 64× 64 ToRGB ssrc13 Local ID -

14 128× 128 ConvUP ssrc14 Local ID -

15 128× 128 Conv ssrc15 Local ID -

16 128× 128 ToRGB ssrc16 Local ID -

17 256× 256 ConvUP ssrc17 Local ID -

18 256× 256 Conv ssrc18 Local ID -

19 256× 256 ToRGB ssrc19 Local ID -

20 512× 512 ConvUP ssrc20 Local ID -

21 512× 512 Conv ssrc21 Local ID -

22 512× 512 ToRGB ssrc22 Local ID -

23 1024× 1024 ConvUP ssrc23 Local ID -

24 1024× 1024 Conv ssrc24 Local ID -

25 1024× 1024 ToRGB ssrc25 Local ID -
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Table 4: Weights for each loss. Each loss is described in the main manuscript.

λid λrecon λadv λR1 λshape λpose λexp R1 step

2.0 1.0 0.1 10.0 5.0 1.0 1.0 16

Table 5: Hyperparameters for optimization. The details are described in
Section B.

Training steps Optimizer Learning rate Learning rate decay Batch size Self-recon size

700,000 Ranger 0.0001 Step 4 1

datasets, but we only use FFHQ. Therefore, our model can be trained more
efficiently because our model does not require any additional preprocess steps
such as image alignment to combine the multiple datasets.

For training, we basically follow the image preprocess protocol of pSp [10].
However, for Ladv and R1, we use the images with the size of 1024 × 1024.
Furthermore, for 3DMM supervision, we preprocess the images by following the
image preprocess protocol of DECA [2] before forwarding the images to DECA
encoder.

C.2 Postprocess: ROI Only Synthesis

Our model can faithfully reconstruct the background or hair style of xtgt, but
we can further improve our model to reconstruct the high-frequency details of
the background or hair style via ROI only synthesis.

Note that it does not require a segmentation label at all. This process is
depicted in Figure 2. Assuming that the image is aligned, we use a mask, which
has a size of 1024× 1024, with a fixed box at the expected location of the face.
Specifically, we set the size of the box to a width of 512 and a height of 608
and top-left coordinates, (top, left), to (384, 256). The inside of the box has a
value of one, and the outside has a value of zero. Then, we blur the boundary
by downsampling the mask to the size of 16× 16 and upsampling it to the size
of 1024× 1024 again. With this mask, the final output image is generated as

m⊙ xswap + (1−m)⊙ xtgt, (2)

where m is a mask and ⊙ is the element-wise product. Note that it is not used
at the training phase, only at the inference phase. Also, we use it only in the
qualitative results, not in the quantitative results at all.

D Analysis on 3DMM Supervision

We compare our 3DMM supervision method and that of HifiFace [13]. We first
describe each method and then compare them with experimental results.
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Fig. 2: ROI only synthesis. The details are described in Section C.2.

Table 6: Quantitative comparison between Llm and Lparam. The metrics
are the same with those in the main manuscript. Also, the configuration (B) is
the same with that in the main manuscript. Llm and Lparam are the 3DMM
supervision methods of HifiFace [13] and ours, respectively.

Configuration Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
B. 96.066 0.887 0.424 0.053 3.839
B + Llm. 96.016 0.892 0.418 0.046 3.683
B + Lparam. 96.153 0.842 0.426 0.060 4.173

D.1 Method

For the 3DMM supervision, our model utilizes the 3DMM parameter reconstruc-
tion loss which is formulated as

Lparam = λshapeLshape + λposeLpose + λexpLexp, (3)

where Lshape, Lpose, and Lexp are described in the main manuscript, and λshape,
λpose, and λexp are weights for each loss.

On the other hand, HifiFace utilizes the landmark reconstruction loss. Note
that 3DMM can reconstruct a 3D face using 3DMM parameters and extract
landmark keypoints corresponding to the 3D face. Using this capability, Hifi-

Face encourages the landmark keypoints of the generated image, {qgenk }K
k=1

to

be equal to its ground-truth landmark keypoints,
{
qgtk

}K

k=1
. Here, when using

DECA [2], K = 68, and the ground-truth landmark keypoints are extracted from
the reconstructed 3D face using the shape parameter of the source image and
the pose, expression, and cam parameters of the target image. We apply this
method to our model to formulate the landmark reconstruction loss as

Llm =
1

K

K∑
k=1

|| {qgenk } −
{
qgtk

}
||1. (4)
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Table 7: Full ablation study of MFIM. This table is the same with the table
of the ablation study in the main manuscript, but the configuration (F) is newly
added.

Configuration Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
A. Baseline MFIM 70.160 0.383 1.116 0.145 7.899
B. + style maps 91.430 0.823 0.398 0.051 3.795
C. + Lshape 86.476 0.635 0.864 0.085 5.091
D. + Lpose 86.777 0.634 0.860 0.078 4.797
E. + Lexp 91.469 0.782 0.400 0.057 4.095
F. + Llm 92.018 0.778 0.387 0.041 3.876

D.2 Comparison between Llm and Lparam

In Table 6, we compare Llm and Lparam on CelebA-HQ [4]. Here, unlike the
quantitative experiment on CelebA-HQ in the main manuscript, we use 30,000
face-swapped images instead of 300,000. Specifically, we randomly assign an
image to each image in CelebA-HQ and make 30,000 pairs of the source image
and target image.

The configuration (B) in Table 6 is the same with that in the main manuscript.
Then, we construct the configurations (B+Llm) and (B+Lparam) by adding Llm

and Lparm to the configuration (B), respectively. The configuration (B+Lparam)
is the same with the configuration (E), our proposed model, in the main manuscript.

As shown in Table 6, adding Llm to the configuration (B) does not improve
the shape score while Lparam improves the shape score. However, we can see that
Llm improves the pose score by comparing the configurations (B) and (B+Llm).
We think that this may be because the pose, which is the more global attribute
than the shape and expression, has a greater effect on the landmark regression
than the shape or expression. For this reason, the most effective way to decrease
Llm can be to match the pose of the generated image to that of the target image.
As a result, the model focuses on matching poses, and may not be sufficiently
motivated to improve the shape score.

In contrast, we use a separate loss for each attribute. In particular, to decrease
Lshape, the face shape of the generated image should be the same as that of
the source image. Due to this difference, Lparam can improve the shape score,
while Llm cannot. Although the pose score is somewhat degraded after applying
Lparam, transforming the face shape rather than preserving the pose is one of
our important goals. Furthermore, the configuration (B+Lparam) still shows the
visually plausible results in terms of the pose. Therefore, we propose Lparam as
our 3DMM supervision method.

D.3 Combination of Llm and Lparam

Based on the results in Table 6, we further improve our model by combining
Lparam and Llm as shown in Table 7. For the results in Table 7, we use 300,000
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Fig. 3: Ablation study of MFIM. The configuration (A) transfers the ID
attributes (e.g., eyes and face shape) of the source image while maintaining the
overall structure and pose of the target image, but cannot reconstruct the details
of the target image. The configuration (B) reconstructs the details of the target
image better than the configuration (A), but the face shape of the source image is
not sufficiently transferred. Finally, the configuration (E+) sufficiently transfers
the face shape of the source image while preserving the ID-irrelevant attributes
(e.g., pose and expression) of the target image. Furthermore, ROI only synthesis
(Section C.2) allows our model to preserve the high-frequency details on hair or
background of the target image.



10

Fig. 4: Qualitative comparison on ID mixing. MegaFS has a trouble in ID
mixing because it cannot transfer the face shape of the global source image. In
contrast, our model can create a new identity by blending the global (e.g., face
shape) and local (e.g., eyes) ID attributes captured from the global and local
source images, respectively.

face-swapped images, which is the same setting with that of the quantitative
experiment on CelebA-HQ in the main manuscript.

In Table 7, we construct the configuration (F) by adding Llm with the weight
for this loss of 1,000 (i.e., λlm = 1000) to the configuration (E). Here, we use
only some of the landmark keypoints instead of the full landkark keypoints to
encourage our model to further focus on matching the pose. Specifically, we
use {qgenk }

k∈{9,31,37,46,49,55} and
{
qgtk

}
k∈{9,31,37,46,49,55} . As shown in Table 7,

the configuration (F) achieves the better pose and pose-HN scores than the
configuration (E) without deterioration on the shape and expression scores. As
a result, the configuration (F) achieves the better shape, expression, and pose
scores than the configuration (B) at the same time. However, Llm is not our
contribution and the configuration (E) also shows the visually plausible results
in terms of pose, so we propose the configuration (E) as our final model.

Figure 3 shows the qualitative results for several configurations. We construct
the configuration (E+) by adding ROI only synthesis (Section C.2) to the con-
figuration (E). As shown in Figure 3, the configuration (E+) transfers the ID
attributes (e.g., eyes and face shape) of the source image actively while preserv-
ing the ID-irrelevant attributes (e.g., pose and expression) of the target image.
In Figure 3, the differences between the configurations (A) and (B) show the
effectiveness of the style maps, and the differences between the configurations
(B) and (E+) show the effectiveness of the 3DMM supervision.

E Comparison with MegaFS on ID Mixing

One of the state-of-the-art models, MegaFS [16], has a potential to perform ID
mixing because it also exploits the StyleGAN [6] architecture. However, MegaFS
is not good at transforming the face shape as demonstrated in the manuscript.
As a result, in Fig. 4, MegaFS fails to performing ID mixing because it cannot
transfer the round face shape of the global source image to the target image.
It only transfers the eyes of the local source image to the target image. For
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this reason, the generated image by MegaFS does not seem an ID-mixed image.
In contrast, our model, MFIM, can transfer the round face shape of the global
source image and the eyes of the local source image at the same time. As a result,
the generated image by MFIM seems an ID-mixed image.

F Additional Samples

Figure 5 shows the qualitative results of face swapping on FaceForensics++ [11].
Figures 6, 7, 8, and 9 show the qualitative results of face swapping on CelebA-
HQ [4]. Figure 10 shows the qualitative results of ID mixing on CelebA-HQ.
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Fig. 5: Qualitative results of face swapping on FaceForensics++. The
leftmost image is the source image, and the uppermost images are the target
frames captured uniformly from the video. The rest of the images are the gen-
erated frames.
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Fig. 6: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 7: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 8: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 9: Qualitative results of large-gap face swapping on CelebA-HQ.
Our model faithfully performs face swapping even with a large gap between the
source and target images (e.g., gender and age).
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Fig. 10: Qualitative results of ID mixing on CelebA-HQ. Our model can
create a new identity by blending the global (e.g., face shape) and local (e.g.,
eyes) ID attributes captured from the global and local source images, respec-
tively.
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