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Abstract. Landmarks often play a key role in face analysis, but many
aspects of identity or expression cannot be represented by sparse land-
marks alone. Thus, in order to reconstruct faces more accurately, land-
marks are often combined with additional signals like depth images or
techniques like differentiable rendering. Can we keep things simple by
just using more landmarks? In answer, we present the first method that
accurately predicts 10× as many landmarks as usual, covering the whole
head, including the eyes and teeth. This is accomplished using synthetic
training data, which guarantees perfect landmark annotations. By fitting
a morphable model to these dense landmarks, we achieve state-of-the-art
results for monocular 3D face reconstruction in the wild. We show that
dense landmarks are an ideal signal for integrating face shape informa-
tion across frames by demonstrating accurate and expressive facial per-
formance capture in both monocular and multi-view scenarios. Finally,
our method is highly efficient: we can predict dense landmarks and fit
our 3D face model at over 150FPS on a single CPU thread. Please see
our website: https://microsoft.github.io/DenseLandmarks/.

Keywords: Dense correspondences, 3D morphable model, face align-
ment, landmarks, synthetic data

1 Introduction

Landmarks are points in correspondence across all faces, like the tip of the nose
or the corner of the eye. They often play a role in face-related computer vision,
e.g., being used to extract facial regions of interest [34], or helping to constrain 3D
model fitting [26, 79]. Unfortunately, many aspects of facial identity or expression
cannot be encoded by a typical sparse set of 68 landmarks alone. For example,
without landmarks on the cheeks, we cannot tell whether or not someone has
high cheek-bones. Likewise, without landmarks around the outer eye region, we
cannot tell if someone is softly closing their eyes, or scrunching up their face.

In order to reconstruct faces more accurately, previous work has therefore
used additional signals beyond color images, such as depth images [64] or optical
flow [13]. However, these signals may not be available or reliable to compute.
Instead, given color images alone, others have approached the problem using
analysis-by-synthesis: minimizing a photometric error [26] between a generative
3D face model and an observed image using differentiable rendering [18, 27].

https://microsoft.github.io/DenseLandmarks/
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Fig. 1. Given a single image (top), we first robustly and accurately predict 703 land-
marks (middle). To aid visualization, we draw lines between landmarks. We then fit
our 3D morphable face model to these landmarks to reconstruct faces in 3D (bottom).

Unfortunately, these approaches are limited by the approximations that must
be made in order for differentiable rendering to be computationally feasible. In
reality, faces are not purely Lambertian [23], and many important illumination
effects are not explained using spherical harmonics alone [18], e.g., ambient oc-
clusion or shadows cast by the nose.

Faced with this complexity, wouldn’t it be great if we could just use more
landmarks? We present the first method that predicts over 700 landmarks both
accurately and robustly. Instead of only the frontal “hockey-mask” portion of
the face, our landmarks cover the entire head, including the ears, eyeballs, and
teeth. As shown in Figure 1, these landmarks provide a rich signal for both facial
identity and expression. Even with as few as 68, it is hard for humans to precisely
annotate landmarks that are not aligned with a salient image feature. That is
why we use synthetic training data which guarantees consistent annotations.
Furthermore, instead of representing each landmark as just a 2D coordinate, we
predict each one as a random variable: a 2D circular Gaussian with position and
uncertainty [38]. This allows our predictor to express uncertainty about certain
landmarks, e.g., occluded landmarks on the back of the head.

Since our dense landmarks represent points of correspondence across all faces,
we can perform 3D face reconstruction by fitting a morphable face model [6] to
them. Although previous approaches have fit models to landmarks in a similar
way [77], we are the first to show that landmarks are the only signal required to
achieve state-of-the-art results for monocular face reconstruction in the wild.

The probabilistic nature of our predictions also makes them ideal for fitting a
3D model over a temporal sequence, or across multiple views. An optimizer can
discount uncertain landmarks and rely on more certain ones. We demonstrate
this with accurate and expressive results for both multi-view and monocular
facial performance capture. Finally, we show that predicting dense landmarks
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Fig. 2. Compared to a typical sparse set of 68 facial landmarks (a), our dense landmarks
(b) cover the entire head in great detail, including ears, eyes, and teeth. These dense
landmarks are better at encoding facial identity and subtle expressions.

and then fitting a model can be highly efficient by demonstrating real-time facial
performance capture at over 150FPS on a single CPU thread.

In summary, our main contribution is to show that you can achieve more
with less. You don’t need parametric appearance models, illumination models,
or differentiable rendering for accurate 3D face reconstruction. All you need is
a sufficiently large quantity of accurate 2D landmarks and a 3D model to fit to
them. In addition, we show that combining probabilistic landmarks and model
fitting lets us intelligently aggregate face shape information across multiple im-
ages by demonstrating robust and expressive results for both multi-view and
monocular facial performance capture.

2 Related work

Reconstructing faces in 3D from images is a mature field at the intersection of
vision and graphics. We focus our literature review on methods that are closer
to our own, and refer the reader to Morales et al. [47] for an extensive survey.

Regression-based 3D face reconstruction DNN-based regression has been
extensively used as a tool for 3D face reconstruction. Techniques fall into two
broad categories: supervised, and self-supervised. Approaches either use 3D Mor-
phable Models (3DMMs) [7, 28, 41], or eschew linear models and instead learn
a non-linear one as part of the training process [66].

Fully supervised techniques either use parameter values from a 3DMM that
is fit to the data via optimization as labels [14, 68, 73], or known face geometry
is posed by sampling from a 3DMM and rendered to create synthetic datasets
[21, 27, 51, 57]. Self-supervised approaches commonly use landmark reprojection
error and/or perceptual loss via differentiable rendering [17, 23, 27, 31, 32, 45,
52, 55, 62, 63, 66, 67]. Other techniques augment this with 3D or multiview
constraints [20, 44, 58, 61, 74, 75]. While this is similar to our technique, we
only use a DNN to regress landmark positions which are then used to optimize
3DMM parameters, as in the large body of hybrid model-fitting methods [8, 33].
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Optimization-based 3D face reconstruction Traditionally, markerless re-
construction of face geometry is achieved with multi-view stereo [4, 56], followed
by optical flow based alignment, and then optimisation using geometric and tem-
poral priors [5, 9, 50]. While such methods produce detailed results, each step
takes hours to complete. They also suffer from drift and other issues due to their
reliance on optical flow and multi-view stereo [15]. While our method cannot re-
construct faces in such fine detail, it accurately recovers the low-frequency shape
of the face, and aligns it with a common topology. This enriches the raw data
with semantics, making it useful for other tasks.

If only a single image is available, dense photometric [18, 65], depth [64],
or optical flow [13] constraints are commonly used to recover face shape and
motion. However, these methods still rely on sparse landmarks for initializing
the optimization close to the dense constraint’s basin of convergence, and coping
with fast head motion [79]. In contrast, we argue that dense landmarks alone
are sufficient for accurately recovering the overall shape of the face.

Dense landmark prediction While sparse landmark prediction is a mainstay
of the field [12], few methods directly predict dense landmarks or correspon-
dences. This is because annotating a face with dense landmarks is a highly am-
biguous task, so either synthetic data [71], pseudo-labels made with model-fitting
[16, 25, 78], or semi-automatic refinement of training data [36, 37] are used. An-
other issue with predicting dense landmarks is that heatmaps, the de facto tech-
nique for predicting landmarks [11, 12], rise in computational complexity with
the number of landmarks. While a few previous methods have predicted dense
frontal-face landmarks via cascade regression [36] or direct regression [16, 29, 37],
we are the first to accurately and robustly predict over 700 landmarks covering
the whole head, including eyes and teeth.

Some methods choose to predict dense correspondences as an image instead,
where each pixel corresponds to a fixed point in a UV-unwrapping of the face
[1, 25] or body [30, 60]. Such parameterization suffers from several drawbacks.
How does one handle self-occluded portions of the face, e.g., the back of the
head? Furthermore, what occurs at UV-island boundaries? If a pixel is half-nose
and half-cheek, to which does it correspond? Instead, we choose to discretize
the face into dense landmarks. This lets us predict parts of the face that are
self-occluded, or lie outside image bounds. Having a fixed set of correspondences
also benefits the model-fitter, making it more amenable to running in real-time.

3 Method

In recent years, methods for 3D face reconstruction have become more and
more complicated, involving differentiable rendering and complex neural net-
work training strategies. We show instead that success can be found by keeping
things simple. Our approach consists of two stages: First we predict probabilistic
dense 2D landmarks L using a traditional convolutional neural network (CNN).
Then, we fit a 3D face model, parameterized by Φ, to the 2D landmarks by
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Fig. 3. Given an image, we first predict probabilistic dense landmarks L, each with
position µ and certainty σ. Then, we fit our 3D face model to L, minimizing an energy
E by optimizing model parameters Φ.

Fig. 4. Examples of our synthetic training data. Without the perfectly consistent anno-
tations provided by synthetic data, dense landmark prediction would not be possible.

minimizing an energy function E(Φ;L). Images themselves are not part of this
optimization; the only data used are 2D landmarks.

The main difference between our work and previous approaches is the number
and quality of landmarks. No one before has predicted so many 2D landmarks,
so accurately. This lets us achieve accurate 3D face reconstruction results by
fitting a 3D model to these landmarks alone.

3.1 Landmark prediction

Synthetic training data. Our results are only possible because we use syn-
thetic training data. While a human can consistently label face images with
e.g., 68 landmarks, it would be almost impossible for them to annotate an image
with dense landmarks. How would it be possible to consistently annotate oc-
cluded landmarks on the back of the head, or multiple landmarks over a largely
featureless patch of skin e.g., the forehead? In previous work, pseudo-labelled real
images with dense correspondences are obtained by fitting a 3DMM to images
[1], but the resulting label consistency heavily depends on the quality of the 3D
fitting. Using synthetic data has the advantage of guaranteeing perfectly consis-
tent labels. We rendered a training dataset of 100k images using the method of
Wood et al. [71] with some minor modifications: we include expression-dependent
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Fig. 5. When parts of the face are occluded by e.g. hair or clothing, the corresponding
landmarks are predicted with high uncertainty (red), compared to those visible (green).

wrinkle texture maps for more realistic skin appearance, and additional clothing,
accessory, and hair assets. See Figure 4 for some examples.

Probabilistic landmark regression. We predict each landmark as a random
variable with the probability density function of a circular 2D Gaussian. So
Li = {µi, σi}, where µi = [xi, yi] is the expected position of that landmark,
and σi (the standard deviation) is a measure of uncertainty. Our training data
includes labels for landmark positions µ′

i = [x′
i, y

′
i], but not for σ. The network

learns to output σ in an unsupervised fashion to show that it is certain about
some landmarks, e.g., visible landmarks on the front of the face, and uncertain
about others, e.g., landmarks hidden behind hair (see Figure 5). This is achieved
by training the network with a Gaussian negative log likelihood (GNLL) loss [38]:

Loss(L) =

|L|∑
i=1

λi

(
log
(
σ2
i

)
︸ ︷︷ ︸

Lossσ

+
∥µi − µ′

i∥2

2σ2
i︸ ︷︷ ︸

Lossµ

)
(1)

Lossσ penalizes the network for being too uncertain, and Lossµ penalizes the
network for being inaccurate. λi is a per-landmark weight that focuses the loss
on certain parts of the face. This is the only loss used during training.

The probabilistic nature of our landmark predictions is important for accu-
racy. A network trained with the GNLL loss is more accurate than a network
trained with L2 loss on positions only. Perhaps this is the result of the CNN
being able to discount challenging landmarks (e.g., fully occluded ones), and
spend more capacity on making precise predictions about visible landmarks.

Landmarks are commonly predicted via heatmaps [11]. However, generating
heatmaps is computationally expensive [42]; it would not be feasible to output
over 700 heatmaps in real-time. Heatmaps also prevent us predicting landmarks
outside image bounds. Instead, we keep things simple, and directly regress po-
sition and uncertainty using a traditional CNN. We are able to take any off-
the-shelf architecture, and alter the final fully-connected layer to output three
values per-landmark: two for position and one for uncertainty. Since this final
layer represents a small percentage of total CNN compute, our method scales
well with landmark quantity.

Training details. Landmark coordinates are normalized from [0, S] to [−1, 1],
for a square image of size S×S. Rather than directly outputting σ, we predict
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Fig. 6. We implemented two versions of our approach: one for processing multi-view
recordings offline (a), and one for real-time facial performance capture (b).

log σ, and take its exponential to ensure σ is positive. Using PyTorch [48], we
train ResNet [35] and MobileNet V2 [54] models from the timm [70] library us-
ing AdamW [46] with automatically determined learning rate [22]. We use data
augmentation to help our synthetic data cross the domain gap [71].

3.2 3D model fitting

Given probabilistic dense 2D landmarks L, our goal is to find optimal model
parameters Φ∗ that minimize the following energy:

E(Φ;L) = Elandmarks︸ ︷︷ ︸
Data term

+Eidentity + Eexpression + Ejoints + Etemporal + Eintersect︸ ︷︷ ︸
Regularizers

Elandmarks is the only term that encourages the 3D model to explain the observed
2D landmarks. The other terms use prior knowledge to regularize the fit.

Part of the beauty of our approach is how naturally it scales to multiple
images and cameras. In this section we present the general form of our method,
suitable for F frames over C cameras, i.e., multi-view performance capture.

3D face model. We use the face model described in [71], comprising N =
7,667 vertices and K=4 skeletal joints (the head, neck, and two eyes). Vertex po-
sitions are determined by the mesh-generating functionM(β,ψ,θ) :R|β|+|ψ|+|θ|→
R3N which takes parameters β ∈ R|β| for identity, ψ ∈ R|ψ| for expression, and
θ ∈ R3K+3 for skeletal pose (including root joint translation).

M(β,ψ,θ) = L(T (β,ψ),θ,J (β);W)

where L(V,θ,J;W) is a standard linear blend skinning (LBS) function [40] that
rotates vertex positions V ∈ R3N about joint locations J ∈ R3K by local joint
rotations in θ, with per-vertex weights W ∈ RK×N . The face mesh and joint
locations in the bind pose are determined by T (β,ψ) : R|β|+|ψ| → R3N and
J (β) :R|β| → R3K respectively. See Wood et al. [71] for more details.

Cameras are described by a world-to-camera rigid transform X ∈ R3×4 =
[R|T] comprising rotation and translation, and a pinhole camera projection ma-
trix Π ∈ R3×3. Thus, the image-space projection of the jth landmark in the ith

camera is xi,j = ΠiXiMj . In the monocular case, X can be ignored.
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to remain outside
these convex shapes.

Eintersect encourages
these skin vertices

Without Eintersect With Eintersect

Fig. 7. We encourage the optimizer to avoid face mesh self-intersections by penalizing
skin vertices that enter the convex hulls of the eyeballs or teeth parts.

Parameters Φ are optimized to minimize E. The main parameters of inter-
est control the face, but we also optimize camera parameters if they are unknown.

Φ = {β,ΨF×|ψ|,ΘF×|θ|︸ ︷︷ ︸
Face

; RC×3,TC×3, fC︸ ︷︷ ︸
Camera(s)

}

Facial identity β is shared over a sequence of F frames, but expression Ψ and
pose Θ vary per frame. For each of our C cameras we have six degrees of freedom
for rotation R and translation T, and a single focal length parameter f . In the
monocular case, we only optimize focal length.

Elandmarks encourages the 3D model to explain the predicted 2D landmarks:

Elandmarks =

F,C,|L|∑
i,j,k

∥xijk − µijk∥2

2σ2
ijk

(2)

where, for the kth landmark seen by the jth camera in the ith frame, [µijk, σijk]
is the 2D location and uncertainty predicted by our dense landmark CNN, and
xijk = ΠjXjM(β,ψi,θi)k is the 2D projection of that landmark on our 3D
model. The similarity of Equation 2 to Lossµ in Equation 1 is no accident:
treating landmarks as 2D random variables during both prediction and model-
fitting allows our approach to elegantly handle uncertainty, taking advantage of
landmarks the CNN is confident in, and discounting those it is uncertain about.

Eidentity penalizes unlikely face shape by maximizing the relative log-likeli-
hood of shape parameters β under a multivariate Gaussian Mixture Model
(GMM) of G components fit to a library of 3D head scans [71]. Eidentity =

− log (p(β)) where p(β) =
∑G

i=1 γi N (β|νi, Σi). νi and Σi are the mean and
covariance matrix of the ith component, and γi is the weight of that component.

Eexpression = ∥ψ∥2 and Ejoints = ∥θi:i∈[2,K]∥2 encourage the optimizer to
explain the data with as little expression and joint rotation as possible. We do
not penalize global translation or rotation by ignoring the root joint θ1.

Etemporal =
∑F,C,|L|

i=2,j,k ∥xi,j,k − xi−1,j,k∥2 reduces jitter by encouraging face
mesh vertices x to remain still between neighboring frames i− 1 and i.
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Eintersect encourages the optimizer to find solutions without intersections
between the skin and eyeballs or teeth (Figure 7). Please refer to the supple-
mentary material for further details.

3.3 Implementation

We implemented two versions of our system: one for processing multi-camera
recordings offline, and one for real-time facial performance capture.

Our offline system produces the best quality results without constraints on
compute. We predict 703 landmarks with a ResNet 101 [35]. To extract a facial
Region-of-Interest (ROI) from an image we run a full-head probabilistic land-
mark CNN on multi-scale sliding windows, and select the window with the lowest
uncertainty. When fitting our 3DMM, we use PyTorch [48] to minimize E(Φ)
with L-BFGS [43], optimizing all parameters across all frames simultaneously.

For our real-time system, we trained a lightweight dense landmark model
with MobileNet V2 architecture [54]. To compensate for a reduction in network
capacity, we predict 320 landmarks rather than 703, and modify the ROI strat-
egy: aligning the face so it appears upright with the eyes a fixed distance apart.
This makes the CNN’s job easier for frontal faces at the expense of profile ones.

Real-time model fitting. We use the Levenberg-Marquardt algorithm to op-
timize our model-fitting energy. Camera and identity parameters are only fit
occasionally. For the majority of frames we fit pose and expression parameters
only. We rewrite the energy E in terms of the vector of residuals, r, as E(Φ) =
∥r(Φ)∥2 =

∑
i ri(Φ)2. Then at each iteration k of our optimization, we can com-

pute r(Φk) and the Jacobian, J(Φk) =
∂r(Φ)
∂Φ |Φ=Φk , and use these to solve the

symmetric, positive-semi-definite linear system, (JTJ +λdiag(JTJ))δk = −JT r
via Cholesky decomposition. We then apply the update rule, Φk+1 = Φk + δk.

In practice we do not actually form the residual vector r nor the Jacobian
matrix J . Instead, for performance reasons, we directly compute the quantities
JTJ and JT r as we visit each term ri(Φk) of the energy. Most of the computa-
tional cost is incurred in evaluating these products for the landmark data term,
as expected. However, the Jacobian of landmark term residuals is not fully dense.
Each individual landmark depends on its own subset of expression parameters,
and is invariant to other expression parameters. We performed a static analy-
sis of the sparsity of each landmark term with respect to parameters, ∂ri/∂Φj ,
and we use this set of i, j indices to reduce the cost of our outer products from
O(|Φ|2) to O(m2

i ), where mi is the sparsified dimensionality of ∂ri/∂Φ. We fur-
ther enhance the sparsity by ignoring any components of the Jacobian with an
absolute value below a certain empirically-determined threshold.

By exploiting sparsity in this way, the landmark term residuals and their
derivatives become very cheap to evaluate. This formulation avoids the corre-
spondence problem usually seen with depth images [59], which requires a more
expensive optimization. In addition, adding more landmarks does not signifi-
cantly increase the cost of optimization. It therefore becomes possible to imple-
ment a very detailed and well-regularized fitter with a relatively small compute
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Common Challenging Private
Method NME NME FR10%

LAB [72] 2.98 5.19 0.83
AWING [69] 2.72 4.52 0.33
ODN [76] 3.56 6.67 -
3FabRec [10] 3.36 5.74 0.17
Wood et al. [71] 3.09 4.86 0.50
LUVLi [39] 2.76 5.16 -

ours (L2) 3.30 5.12 0.33

ours (GNLL) 3.03 4.80 0.17

Fig. 8. Left: results on 300W dataset, lower is better. Note competitive performance
of our model (despite being evaluated across-dataset) and importance of GNLL loss.
Right: sample predictions (top row) with label-translated results (bottom row).

burden, simply by adding a sufficient number of landmarks. The cost of the
Cholesky solve for the update δk is independent of the number of landmarks.

4 Evaluation

4.1 Landmark accuracy

Wemeasure the accuracy of a ResNet 101 dense landmark model on the 300W [53]
dataset. For benchmark purposes only, we employ label translation [71] to deal
with systematic inconsistencies between our 703 predicted dense landmarks and
the 68 sparse landmarks labelled as ground truth (see Figure 8). While previ-
ous work [71] used label translation to evaluate a synthetically-trained sparse
landmark predictor, we use it to evaluate a dense landmark predictor.

We use the standard normalized mean error (NME) and failure rate (FR10%)
error metrics [53]. Our model’s results in Figure 8 are competitive with the state
of the art, despite being trained with synthetic data alone. Note: these results
provide a conservative estimate of our method’s accuracy as the translation
network may introduce error, especially for rarely seen expressions.

Ablation study We measured the importance of predicting each landmark
as a random variable rather than as a 2D coordinate. We trained two landmark
prediction models, one with our proposed GNLL loss (Equation 1), and one with
a simpler L2 loss on landmark coordinate only. Results in Figure 8 confirm that
including uncertainty in landmark regression results in better accuracy.

Qualitative comparisons are shown in Figure 9 between our real-time
dense landmark model (MobileNet V2) and MediaPipe Attention Mesh [29],
a publicly available dense landmark method designed for mobile devices. Our
method is more robust, perhaps due to the consistency and diversity of our
synthetic training data. See the supplementary material for additional qualitative
results, including landmark predictions on the Challenging subset of 300W.
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MediaPipe [29] ours MediaPipe [29] ours

Fig. 9. We compare our real-time landmark CNN (MobileNet V2) with MediaPipe
Attention Mesh [29], a publicly available method for dense landmark prediction. Our
approach is more robust to challenging expressions and illumination.

4.2 3D face reconstruction

Quantitatively, we compare our offline approach with recent methods on two
benchmarks: the NoW Challenge [55] and the MICC dataset [2].

The NoW Challenge [55] provides a standard evaluation protocol for mea-
suring the accuracy and robustness of 3D face reconstruction in the wild. It
consists of 2054 face images of 100 subjects along with a 3D head scan for each
subject which serves as ground truth. We undertake the challenge in two ways:
single view, where we fit our face model to each image separately, and multi-view,
where we fit a per-subject face model to all image of a particular subject. As
shown in Figure 10, we achieve state of the art results.

The MICC dataset [2] consists of 3D face scans and videos of 53 subjects.
The videos were recorded in three environments: a “cooperative” laboratory
environment, an indoor environment, and an outdoor environment. We follow
Deng et al. [17], and evaluate our method in two ways: single view, where we
estimate one face shape per frame in a video, and average the resulting face
meshes, and multi-view, where we fit a single face model to all frames in a video
jointly. As shown in Table 1, we achieve state of the art results.

Note that many previous methods are incapable of aggregating face shape
information across multiple views. The fact ours can benefit from multiple views
highlights the flexibility of our hybrid model-fitting approach.

Ablation studies We conducted an experiment to measure the importance of
landmark quantity for 3D face reconstruction. We trained three landmark CNNs,
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Method Error (mm)
Single view Median Mean Std

Deng et al. [17] 1.11 1.41 1.21
RingNet [55] 1.21 1.53 1.31
3DFAv2 [31] 1.23 1.57 1.39
DECA [24] 1.09 1.38 1.18
Dib et al. [19] 1.26 1.57 1.31
ours 1.02 1.28 1.08

Multi-view

Bai et al. [3] 1.08 1.35 1.15
ours 0.81 1.01 0.84

Fig. 10. Results for the NoW Challenge [55]. We outperform the state of the art on
both single- and multi-view 3D face reconstruction.

Table 1. Results on the MICC dataset [2], following the single and multi-frame eval-
uation protocol of Deng et al. [17]. We achieve state-of-the-art results.

Method Error (mm), mean
Single view Coop. Indoor Outdoor

Tran et al. [68] 1.97 2.03 1.93
Genova et al. [27] 1.78 1.78 1.76
Deng et al. [17] 1.66 1.66 1.69
ours 1.64 1.62 1.61

Method Error (mm), mean
Multi-view Coop. Indoor Outdoor

Piotraschke and Blanz [49] 1.68 1.67 1.72
Deng et al. [17] 1.60 1.61 1.63
ours 1.43 1.42 1.42

predicting 703, 320, and 68 landmarks respectively, and used these on the NoW
Challenge (validation set). As shown in Figure 11, fitting with more landmarks
results in more accurate 3D face reconstruction.

In addition, we investigated the importance of using landmark uncertainty
σ in model fitting. We fit our model to 703 landmark predictions on the NoW
validation set, but using fixed rather than predicted σ. Figure 11 (bottom row
of table) shows that fitting without σ leads to worse results.

Qualitative comparisons between our work and several publicly available
methods [17, 24, 31, 55, 58] can be found in Figure 13.

4.3 Facial performance capture

Multi-view Good synthetic training data requires a database of facial expres-
sion parameters from which to sample. We acquired such a database by conduct-
ing markerless facial performance capture for 108 subjects. We recorded each
subject in our 17-camera studio, and processed each recording with our offline
multi-view model fitter. For a 520 frame sequence it takes 3 minutes to predict
dense landmarks for all images, and a further 9 minutes to optimize face model
parameters. See Figure 12 for some of the 125,000 frames of expression data
captured with our system. As the system which is used to create the database
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Fit with: 68 ldmks. 320 ldmks. 703 ldmks. Number of Error (mm)
Landmarks Median Mean Std

68 1.10 1.38 1.16
320 1.00 1.24 1.02
703 0.95 1.17 0.97

703 (without σ) 1.02 1.26 1.03

Fig. 11. Ablation studies on the NoW [55] validation set confirm that denser is better:
model fitting with more landmarks leads to more accurate results. In addition, we see
that fitting without using σ leads to worse results.

Fig. 12. We demonstrate the robustness and reliability of our method by using it to
collect a massive database of 125,000 facial expressions, fully automatically.

is then subsequently re-trained with it, we produced several databases in this
manner until no further improvement was seen. We do not reconstruct faces in
fine detail like previous multi-view stereo approaches [5, 9, 50]. However, while
previous work can track a detailed 3D mesh over a performance, our approach
reconstructs the performance with richer semantics: identity and expression pa-
rameters for our generative model. In many cases it is sufficient to reconstruct
the low-frequency shape of the face accurately, without fine details.

Real-time monocular See the last two columns of Figure 13 for a comparison
between our offline and real-time systems for monocular 3D model-fitting. While
our offline system produces the best possible results by using a large CNN and
optimizing over all frames simultaneously, our real-time system can still produce
accurate and expressive results fitting frame-to-frame. Please refer to the supple-
mentary material for more results. Running on a single CPU thread (i5-11600K),
our real-time system spends 6.5ms processing a frame (150FPS), of which 4.1ms
is spent predicting dense landmarks and 2.3ms is spent fitting our face model.

5 Limitations and future work

Our method depends entirely on accurate landmarks. As shown in Figure 14,
if landmarks are poorly predicted, the resulting model fit suffers. We plan to
address this by improving our synthetic training data. Additionally, since our
model does not include tongue articulation we cannot recover tongue movement.
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RingNet Deng et al. 3DFAv2 MGCNet DECA ours ours
[55] [17] [31] [58] [24] (offline) (real-time)

Fig. 13. Compared to previous recent monocular 3D face reconstruction methods,
ours better captures gaze, expressions like winks and sneers, and subtleties of facial
identity. In addition, our method can run in real time with only a minor loss of fidelity.

Fig. 14. Bad landmarks result in bad fits, and we are incapable of tracking the tongue.

Heatmaps have dominated landmark prediction for some time [11, 12]. We
were pleasantly surprised to find that directly regressing 2D landmark coordi-
nates with unspecialized architectures works well and eliminates the need for
computationally-costly heatmap generation. In addition, we were surprised that
predicting σ helps accuracy. We look forward to further investigating direct
probabilistic landmark regression as an alternative to heatmaps in future work.

In conclusion, we have demonstrated that dense landmarks are an ideal signal
for 3D face reconstruction. Quantitative and qualitative evaluations have shown
that our approach outperforms those previous by a significant margin, and excels
at multi-view and monocular facial performance capture. Finally, our approach
is highly efficient, and runs at over 150FPS on a single CPU thread.

Acknowledgements Thanks to Chirag Raman and Jamie Shotton for their
contributions, and Jiaolong Yang and Timo Bolkart for help with evaluation.
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