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Abstract. When a person recognizes another’s emotion, he or she rec-
ognizes the (facial) features associated with emotional expression. So,
for a machine to recognize facial emotion(s), the features related to emo-
tional expression must be represented and described properly. However,
prior arts based on label supervision not only failed to explicitly capture
features related to emotional expression, but also were not interested
in learning emotional representations. This paper proposes a novel ap-
proach to generate features related to emotional expression through fea-
ture transformation and to use them for emotional representation learn-
ing. Specifically, the contrast between the generated features and overall
facial features is quantified through contrastive representation learning,
and then facial emotions are recognized based on understanding of angle
and intensity that describe the emotional representation in the polar co-
ordinate, i.e., the Arousal-Valence space. Experimental results show that
the proposed method improves the PCC/CCC performance by more than
10% compared to the runner-up method in the wild datasets and is also
qualitatively better in terms of neural activation map. Code is available
at https://github.com/kdhht2334/AVCE_FER.

Keywords: Facial emotion recognition, dimensional model of emotion,
human-computer interaction

1 Introduction

Facial emotion (or expression) is the most distinct attention information among
human non-verbal cues. Facial emotion recognition (FER) has made significant
technological progress in recent years, and it has been gradually extended to var-
ious fields such as robot-assisted therapy [27] and robot navigation [2]. However,
since most FER methods are based on discrete (emotion) labels, they could not
take into account the intensity of emotion or capture the continuous emotional
change.

Therefore, Arousal-Valence (AV)-based FER utilizing continuous labels has
been studied to overcome the above-mentioned limitations of categorical FER.
Here, continuous AV space is based on activation (arousal) and positiveness
(valence) of emotions [18]. Psychological studies [45] showed that human visual
attention is closely related to AV value(s), which suggests that AV-based FER
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can imitate human’s emotion recognition. Comparing with categorical FER, AV-
based FER handling continuous labels can theoretically understand complex
facial expressions and micro-facial expressions, and even detect hidden emotions
[37,44].

However, the existing AV-based FER approaches have not yet technically
dealt with the following concerns.
• What is the key for feature learning of facial emotions? According to Panda et
al. [36] and Wei et al. [52], visual features for standard vision tasks such as clas-
sification and detection cannot be scaled up for FER-related tasks because FER
should consider the pixel-level visual properties (e.g., edge, hue, illumination) as
well as semantic features (e.g., landmarks). Prior arts for representation learn-
ing [14,19] learned facial emotions only through quantitative differences, so they
did not provide an explicit solution for learning semantic features. Therefore,
representation learning that can understand even semantic features is required.
• How can we extract facial emotion-aware features? In general, a human has
a so-called visual perception ability that attends core regions such as eyes and
mouth for FER while suppressing relatively unnecessary parts such as hair and
background [16]. This fact suggests that properly extracting the features of core
and non-core regions is a pre-requisite in representation learning for FER. So,
it is necessary to extract emotion-aware features from the (latent) feature space
that can learn semantic information [3]. However, due to the difficulty of the
problem setting, AV-based FER that considers representation learning and vi-
sual perception ability simultaneously has not yet been reported as in Fig. 1.

Fig. 1. Our emotion-aware repre-
sentation learning is a novel method
that has not been formally ad-
dressed and designed so far

This paper addresses the two concerns
mentioned above. First, we propose a novel
contrastive representation learning (CRL)
mechanism and analyze the (semantic) fea-
ture relationship, i.e., emotional contrast
(cf. Sec. 3.3). The proposed CRL with the
similarity function performs discriminative
learning based on projected features in the
AV space (see the blue dotted box of Fig.
2(b)) [4,12]. This CRL mechanism is suitable
for the FER task, since it is important to dif-
ferentiate the core regions in which emotions
are expressed from the non-core regions in
which emotions are not expressed [53]. Note
that utilizing CRL as a regularization term
can improve the generalization ability of con-
volutional neural networks (CNNs) and have the same effect on continuous label-
based tasks [26]. Therefore, the proposed CRL mechanism for regularization can
also enhance the generalization ability of emotional representations in the AV
space.

Second, we propose feature transformations that generate multiple (seman-
tic) “views” of a facial image, i.e., the facial emotion-aware features za and zn
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Fig. 2. (a) Input image encoding process. (b) The overall framework of the proposed
method. Here, the green arrow indicates the testing process

(see the red dotted box of Fig. 2(b)). Here, for transformation that has a sig-
nificant impact on the performance of CRL, SparseMax [28] and SoftMax are
adopted. za from SparseMax indicates facial features that are highly correlated
with facial emotion. On the other hand, since SoftMax is based on weighted
aggregation of features and is detrimental to the disentanglement representation
[59], zn obtained from SoftMax represents an average (facial) feature or a feature
contrasting with za.

Therefore, the main contributions of this paper are summarized as follows:

• We succeeded in incorporating visual perception ability into representation
learning for the first time in AV-based FER task. The proposed method over-
came the limitations of problem setting in AV-based FER. Also, it showed
better performance of more than 10% in the wild dataset than the state-of-
the-art (SOTA) methods.

• The proposed feature transformations enable to focus on semantic regions
that are important for emotional representation. We could observe the vi-
sual perception ability of transformed features focusing on semantic regions
through activation map-based visualization.

2 Related Work

AV-based FER overview. With the advent of large-scale AV datasets [55],
Hasani et al. [14] directly matched predictions using CNNs to continuous la-
bels, i.e., ground-truths (GTs). Kossaifi et al. [23] proposed a factorized CNN
architecture that achieved both computational efficiency and high performance
based on low-rank tensor decomposition. However, the early methods mainly
focused on quantitative differences between facial features. Only a few FER
studies adopted adversarial learning capable of analyzing emotional diversity.
For example, a personalized affective module based on adversarial learning of
auto-encoding structure was proposed [1]. Kim and Song [19] divided image
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groups according to emotional intensity and analyzed complex emotional char-
acteristics by using adversarial learning. Also, Sanchez et al. [42] tried to encode
a contextual representation for understanding the temporal dependency of facial
emotions.

Representative FER approaches. Meanwhile, feature learning and various
form of supervision information have been employed to overcome the limitations
of discrete labels. Yang et al. [54] introduced polar coordinates on Mikel’s Wheel
[29] to analyze emotion polarity, type, intensity, and overcame the limitations
of categorical FER through label distribution learning. However, since [54] uses
simple MSE and KL divergence, it is difficult to analyze the diversity of visual
emotions. Xue et al. [53] proposed a transformer [50] that learns relation-aware
local representations and succeeded in learning diverse local patches of facial
images for categorical FER. D’Apolito et al. [7] predicted and manipulated emo-
tional categories through learnable emotion space instead of using hand-crafted
labels. However, unlike the AV space, the discrete label-based emotion space can-
not inherently handle micro-emotions. On the other hand, the proposed method
that utilizes CRL based on the AV space and feature transformations can train
CNNs similarly to human’s FER mechanism.

Contrastive representation learning. Self-supervised learning (SSL) utilizes
self-supervision which can represent hidden properties of images defined from
pretext tasks. For example, Jigsaw puzzle [34] divided an image into patches
and predicted shuffled patch positions. Gidaris et al. [11] predicted the angle
of an image rotated by geometric transformation. CRL [4] that maximizes the
agreement of self-supervisions generated by data augmentation has recently at-
tracted attention, and CRL has been extended to multiview coding handling
an arbitrary number of views [47]. Note that recent studies [40,41] have applied
contrastive learning to the FER task. However, the categorical FER methods
were verified only on a very limited dataset and cannot be extended to the AV
space, so they are not dealt with in this paper.

3 Method

The goal of this paper is to enable CNNs to understand facial features through
CRL with similarity function and feature transformations. Based on the insight
and rationale derived from the latest CRL mechanism (Sec. 3.3), we propose sim-
ilarity functions to describe emotional representation (Sec. 3.4), feature trans-
formations (Sec. 3.5), and discriminative objective function (Sec. 3.6). The list
below shows the nomenclature of this paper.

R, C, H Regressor, Compressor and Projection head
z, za, zn Latent feature and transformed features via Sparse(/Soft)Max
PXY Joint probability distribution of random variables X and Y
PXPY Product of marginal probability distributions
N , d Sizes of mini-batch and latent feature
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3.1 Overview

Figure 2 describes the overall framework of the proposed method. First, an en-
coder (E) [25,15] and a compressor (C) encode an input (facial) image and con-
vert into a latent feature (vector), respectively. Then, the latent feature z(∈ Rd)
is converted to x(∈ R2) by a regressor (R), and then conventional supervised
learning (LAV ) is applied for x and its AV label. At the same time, za and
zn(∈ Rd) (or multiple “views”) are generated by an iterative optimization-based
feature transformation [10,28]. Based on a study [4] that mapping transformed
features into objective function space is useful for representation learning, za
and zn are projected to ya and yn(∈ R2) in the AV space through H, respec-
tively. Then, CRL in the AV space (LAV CE) is performed through x, ya, and
yn according to the ‘push and pull’ strategy. The model parameters are updated
from Lmain that is the summation of LAV CE and LAV . In addition, discrimi-
native learning (Ldis) for boosting performance is applied through triplet tuple
(z, za, zn).

3.2 Preliminaries of CRL

Self-supervisions for CRL are designed to represent the hidden properties of an
image (cf. Sec. 2), or to represent multiple views [49]. The latter aims at learning
the contrast of multiple views, i.e., the gap of semantic-level information [47].
In other words, multi-view CRL injects the fact that different views za and zn
are contrastive each other into neural network parameters. As a result, H allows
to focus on ‘mouth and eyebrows’, which are core regions in recognizing facial
emotions (cf. Fig. 4), and helps the learning of R important for LAV (see neural
activation maps in Fig. 6). Multi-view CRL is designed through InfoNCE [35].

L(X,Y ) = sup
f∈F

E(x,y1)∼PXY ,{yj}N
j=2∼PY

log

(
ef(x,y1)

1
N

∑N
j=1 e

f(x,yj)

)
(1)

where x and y are the outcomes of random variables X and Y , respectively.
Note that positive pairs (x,y1) and negative pairs (x,yj>1) are sampled from
PXY and PXPY , respectively. f is a similarity function belonging to a set of
real-valued functions F .

In general, maximizing the divergence between PXY and PXPY in Eq. (1)
encourages the learned representations X and Y to have high contrast. However,
Eq. (1) cannot guarantee the stability of learning [32], and it is insufficient as a
theoretical basis for designing f in the AV space.

3.3 Proposed Method: AVCE

We propose the so-called AVCE suitable for learning the Contrast of Emotions
in AV space while following CRL mechanism of Eq. (1) (cf. Appendix for deriva-
tion). AVCE for learning emotional representations in AV space is defined by
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LAV CE(X,Y ) = sup
f∈F

EPXY
f (x,y)− αEPXPY

f (x,y)− β

2
EPXY

f2 (x,y)

− γ

2
EPXPY

f2 (x,y) s.t. f (x,y) =

(
1− θ (x,y)

π

) (2)

where as many as the number of mini-batches, positive and negative pairs(or
views), i.e., (x,ya) and (x,yn) are sampled from PXY and PXPY , respectively.
α, β, and γ are relative parameters that adjust the influence between pairs.
Comparing with InfoNCE (Eq. (1)), Eq. (2) without exponential or logarithmic
terms guarantees learning stability, so it can converge with small variance thanks
to the relative parameters acting as regularizers. Also, Eq. (2) enables mini-
batch-based empirical estimation through Monte-Carlo estimation, etc. [6].

Note that f of Eq. (2) is designed as the angular similarity based on θ that can

describe an emotional representation in the AV space. Here, θ = cos−1
(

x·y
∥x∥∥y∥

)
and ∥·∥ indicates L2 norm. To show that f is a function quantifying the emo-
tional representation of pairs, we define emotional contrast (EC) and describe
its property.

Definition 1. Emotional contrast is a qualitative indicator that indicates the
difference between emotions observed from two inputs (images) [38].

If the two facial expressions look similar to each other, that is, if EC is small, then
the two predicted emotions must be located close to each other in the AV space,
and vice versa. The evidence that a qualitative indicator EC can be quantified
through f is derived from the following Lemma.

Lemma 1. The optimal solution of LAV CE is f∗ (x,y) = r(x,y)−α
βr(x,y)+γ with density

ratio r (x,y) = p(x,y)
p(x)p(y) . Here, f

∗ (x,y) is the optimal similarity that x and y

can represent, and it can be obtained from the trained neural network.

Proof. Please refer to Section A.1 in Appendix of [49].

In Lemma 1, p (x,y) and p (x) p (y) indicate the probability density functions of
PXY and PXPY , respectively. Specifically, as the correlation of the two vectors
becomes larger, the density ratio r gets larger [48]. In other words, EC and r
are inversely proportional, i.e., EC ∝ 1

r . Also, in Lemma 1, if β is sufficiently
larger than α and γ, f depends only on a constant. That is, f ∼= 1

β . So, in order

to have an explicit (linear) relationship between r and the empirical estimate f ,
we set β to be smaller than α and γ. Then, we can approximate f as follows:

f (x,y) ∼=
r (x,y)− α

γ
∝ 1

EC
(3)

According to Eq. (3), the positive pair (x,ya) outputs larger f than the negative
pair (x,yn) (same for r). Since EC ∝ 1

r , EC is also inversely proportional to f
as shown in Eq. (3). Therefore, EC can be quantified with respect to θ of f .
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Fig. 3. A counterexample when quantifying EC using f of Eq. (2) on AffectNet dataset.
Here, f only based on θ cannot properly reflect EC

Remarks. Prior arts such as [19,40] constructed contrastive samples based only
on quantitative emotion labels. However, even facial images annotated with the
same emotion label can express different types of emotions. Therefore, LAV CE

reflecting the visual perception ability to the contrastive loss is effective to eval-
uate the unseen test DB.

3.4 Similarity Function Design

Basic extension. On the other hand, EC cannot be quantified only depending
on θ. Fig. 3 illustrates a counterexample. If EC is defined in terms of GT (ideal
case), EC increases as the two vectors are farther apart in AV space. That
is, EC(x1,x2) is greater than EC(x1,x3). However, if EC is defined only in
terms of θ (cf. Eq. (2)), the opposite result is obtained based on Eq. (3). The
main reason for this counterexample is that the distance between the intensity
components of x1 and x2 is not considered at all. Since intensity is a factor that
generally quantifies the expression level of emotion [46], it is desirable to design f
considering the difference in intensity as well as the directional difference between
the two vectors, i.e., angular similarity. Therefore, we redefine f of Eq. (2) as
follows:

f (x,y) =

(
1− θ (x,y)

π

)
+ µ (1− |∥x∥ − ∥y∥|) (4)

where µ is a balance factor and | · | outputs the absolute value of the input.
Different ways to represent emotional contrast. f1 (x,y) = ∥x∥∥y∥ cos θ
can be an alternative to Eq. (4). However, f in Eq. (4) can consider angle and
intensity independently of each other, whereas the two components are entangled
in f1. Therefore, f is more advantageous than f1 in dealing with multicultural
cases [46] in which the influences of angle and intensity are expressed differently
in the AV space. Meanwhile, facial emotions tend to be grouped mainly by the
valence polarity [54]. So, emotion polarity can be added as follows:

f2 (x,y) = f (x,y) + 1pol (x,y) (5)
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Fig. 4. Conceptual illustration for geometric interpretation of Sp and Sm. The circle-
shaped pictures show the face region that each feature pays attention to. Red arrow and
gray-dotted line indicate difference in semantic and content information, respectively

where 1pol is a kind of penalty function that has 0 if the valence signs of the two
inputs are the same, and −0.5 otherwise. As a result, Eq. (5), which indepen-
dently describes angle, intensity, and polarity, can cover the universal meaning
of emotions [17]. Default setting of the similarity function f is Eq. (4), and the
comparison analysis of f1 and f2 is dealt with in Section 4.5.

3.5 Feature Transformations for Self-supervision

We adopt SparseMax (Sp) and SoftMax (Sm) [28] to generate attentive and
inattentive regions from z on simplex ∆d−1. Sp, which is in charge of a sparse
neural attention mechanism, may be responsible for facial regions related to
emotional expression. Since Sm is suitable for weighted aggregation of features
[59] and is denser than Sp on ∆d−1 [33], it is used as a tool to obtain average
attention information of the face. Unlike feature attention modules, Sp and Sm
can explicitly get features that are relevant or less relevant to facial expressions.
Sp and Sm are defined as follows.

Sp(z) := argmax
p∈∆d−1

⟨z,p⟩ − 1

2
∥p∥2 = argmin

p∈∆d−1

∥p− z∥2 (6)

Sm(z) := argmax
p∈∆d−1

⟨z,p⟩+H(p) =
ez∑
i e

zi
(7)

where ∆d−1 =
{
p ∈ Rd

+ | ∥p∥1 = 1
}
, H (p) = −

∑
i pilnpi, i.e., the negative

Shannon entropy. Eqs. (6) and (7) that return za and zn respectively are con-
tinuous and differentiable. Since the output of Sp corresponds to Euclidean pro-
jection onto the simplex, it is sparse. On the other hand, since exp(·) > 0, the
output of Sm is dense. It is noteworthy that za and zn are geometrically located
on the edge and inside of ∆2, respectively as in Fig. 4. ∆2, where a vector in
which emotions are strongly expressed is located outside, has a similar struc-
tural characteristics to the AV space. Even if dimension d increases (d > 3), the
high-dimensional za and zn on∆d−1 can be projected while maintaining the rela-
tionship between Sp and Sm. So,∆d−1 can be considered as the high-dimensional
emotional space. Note that the projection head (H) for feature transformations
plays a role of reducing the dimension from ∆d−1 to AV space while maintaining
the emotional characteristics between za and zn.
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Implementation. We generate za and zn in each forward pass through an iter-
ative optimization process based on the CVXPY library [10]. Specifically, ECOS
(embedded conic solver) takes about 1.3 seconds per mini-batch on Xeon(R) E5-
1650 CPU to generate za and zn (cf. Appendix for forward/backward passes).

3.6 Discriminative Learning

In order to effectively realize the push and pull strategy of CRL, the emotion
representation levels of two self-supervisions za and zn should be differentiated
from each other. At the same time, self-supervisions should preserve the content
information of z to some extent. So, we construct the triplet tuple Z = (z, za, zn),
and define a discriminative objective function based on the triplet loss [43] as
follows:

Ldis(Z) =
∑

(v,va,vn)∈V

[
δ1 − ∥va − vn∥2

]
+︸ ︷︷ ︸

Push term

+(∥v̄a∥ − δ2) + (∥v̄n∥ − δ2)︸ ︷︷ ︸
Hold terms

(8)

where δ1 indicates the margin of [·]+, and δ2 is a holding factor. Another projec-
tion head (H1) projects z into v on metric space V: v = H1 (z). v̄∗ = v∗

∥v∗∥ −
v

∥v∥
indicates the (unit) vector difference. The first term of Eq. (8) is designed in
such a way that va and vn push each other within δ1 so that LAV CE can learn
semantically discriminated views. The remaining terms properly hold the differ-
ence between v and va (or vn) so that the content information is preserved as
shown in Fig. 4. Here, these terms were designed with inspiration from a pre-
vious study [51] where a powerful transformation (or augmentation) would be
possible if content preserving semantic transformations were allowed.

Algorithm 1 Training Procedure of AVCE

Require: Input image img, learning rate ϵ1, ϵ2, ground-truth gt, parameters of E, C,
R, H, H1 (θe, θc, θr, θh, θh1).

Ensure: Initialize (θe, θc, θr, θh, θh1) to Normal distribution.
while not converge (θe, θc, θr, θh, θh1) do

(Forward pass 1)
z = (C ◦ E)(img) ▷ Input image encoding
x = R(z)
za, zn = Sp(z),Sm(z) ▷ Feature transformations
ya,yn = H(za),H(zn)
Lmain ← LAV (x,gt) + LAV CE(x,ya,yn)
(Backward pass 1)
(θe, θc, θr, θh)← (θe, θc, θr, θh)− ϵ1∇(θe,θc,θr,θh)Lmain

(Forward pass 2)
Ldis ← Triplet(H1(z, za, zn)) ▷ Eq. (8)
(Backward pass 2)
(θe, θc, θh1)← (θe, θc, θh1)− ϵ2∇(θe,θc,θh1)Ldis

end while
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Training procedure. The proposed method performs two forward/backward
passes every iteration. Algorithm 1 describes the details of the objective func-
tions calculated at each step and the neural networks to be trained. In the first
pass, the encoding process of an input image and the feature transformation pro-
cess are performed. Then, GT-based supervised learning (LAV ) and contrastive
learning (LAV CE) based on self-supervisions ya and yn are performed, respec-
tively. These two loss functions are merged into Lmain to update the trainable
parameters (θe, θc, θr, θh). In the second pass, discriminative learning (Ldis) with
triplet tuple Z as input is performed and parameters (θe, θc, θh1) are updated.

4 Experiments

4.1 Datasets

We adopted open datasets only for research purposes, and informed consent
was obtained if necessary. AFEW-VA [24] derived from the AFEW dataset [9]
consists of about 600 short video clips annotated with AV labels frame by frame.
Like [19], evaluation was performed through cross validation at a ratio of 5:1.
Aff-wild [55] consists of about 300 video clips obtained from various subjects
watching movies and TV shows. Since the test data of the Aff-wild was not
disclosed, this paper adopted the sampled train set for evaluation purpose in the
same way as previous works [14,19]. Aff-wild2 [22] is a dataset in which about 80
training videos and about 70 evaluation videos are added to Aff-wild to account
for spontaneous facial expressions. AffectNet [31] consists of about 440K static
images annotated with AV and discrete emotion labels, and landmarks.

4.2 Configurations

All networks were implemented in PyTorch, and the following experiments were
performed on Intel Xeon CPU and RTX 3090 GPU. Each experiment was re-
peated five times. Encoder (E) was designed with parameter-reduced AlexNet
[25] and ResNet18 [15] from scratch. Compressor (C) is composed of average
pooling and FC layer. H(/H1) and R are composed of FC layers and batch nor-
malization (cf. Appendix for the network details). Adam optimizer [20] with a
learning rate (LR) of 1e-4 was used to optimize E, C, and R. SGD [39] with
LR 1e-2 was used to optimize H and H1. AFEW-VA and AffectNet were trained
for 50K iterations, and Aff-wild(/2) was trained for 100K iterations. Here, LR
was reduced by 0.8 times at the initial 5K iterations, and decreased by 0.8 times
every 20K iterations. The mini-batch sizes of AlexNet (AL) and ResNet18 (R18)
were set to 256 and 128, respectively.
Hyperparameters. For face detection, the latest version of deep face detector
[57] was used, and the detected facial regions were resized to 224×224 through
random cropping (center cropping when testing). The dimensions of z and v
were set to 32 and 8, respectively. In Eq. (2), α, β, and γ were set to 0.5, 0.005,
and 0.5 according to Lemma 1. Angular similarity of Eq. (2) was clipped to lie
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in the range (0, 1]. In Eq. (4), the balance factor µ was set to 0.75. In Eq. (8),
the margin δ1 of the hinge function [·]+ and holding factor δ2 were set to 1.0 and
0.8, respectively.
Evaluation metrics. Root mean-squared error (RMSE) and sign agreement
(SAGR) were used to measure the point-wise difference and overall emotional
degree. In addition, Pearson correlation coefficient (PCC) and concordance cor-
relation coefficient (CCC) were employed to measure the emotion tendency.
For details on the above metrics, refer to the Appendix. Since the objective
of emotional learning is to simultaneously achieve the minimization of RMSE
and the maximization of PCC/CCC [19,23], LAV is designed as follows: LAV =

LRMSE + (LPCC+LCCC)
2 . Here, LC(/P )CC = 1− C(/P )CCa+C(/P )CCv

2 .

Table 1. Comparison results on the AFEW-VA dataset. Red and blue indicate the
first and second-ranked values, respectively. For all comparison methods, the numerical
values specified in the paper were used as they are

Case Methods
RMSE (↓) SAGR (↑) PCC (↑) CCC (↑)
(V) (A) (V) (A) (V) (A) (V) (A)

Static

Kossaifi et al. [24] 0.27 0.23 - - 0.41 0.45 - -
Mitenkova et al. [30] 0.40 0.41 - - 0.33 0.42 0.33 0.40
Kossaifi et al. [23] 0.24 0.24 0.64 0.77 0.55 0.57 0.55 0.52
CAF (R18) [19] 0.17 0.18 0.68 0.87 0.67 0.60 0.59 0.54
CAF (AL) [19] 0.20 0.20 0.66 0.83 0.67 0.63 0.58 0.57
AVCE (R18) (Ours) 0.156 0.144 0.783 0.876 0.651 0.727 0.619 0.707
AVCE (AL) (Ours) 0.162 0.170 0.790 0.834 0.730 0.686 0.629 0.622

Temporal
Kollias et al. [21] - - - - 0.51 0.58 0.52 0.56
Kossaifi et al. [23]-scratch 0.28 0.19 0.53 0.75 0.12 0.23 0.11 0.15
Kossaifi et al. [23]-trans. 0.20 0.21 0.67 0.79 0.64 0.62 0.57 0.56

4.3 Quantitative Analysis

This section demonstrated the superiority of AVCE by comparing with the latest
AV-based FER methods [19,14,23,42] which were verified in the wild datasets.
Table 1 showed that AVCE outperforms other methods for AFEW-VA. This
is because AVCE can discern even the subtle differences between positive and
negative emotions. For example, AVCE (AL) showed about 0.13 higher SAGR
(V) and about 0.05 higher CCC (V) than CAF (AL) [19], i.e., the runner-up
method.

Next, AVCE showed a noticeable improvement in terms of PCC/CCC com-
pared to CAF for Aff-wild. In Table 2, AVCE (AL) showed about 0.16 (16%)
higher PCC (V) and about 0.14 (14%) higher CCC (V) than CAF (AL). Mean-
while, RMSE, which indicates the precision of prediction, was generally supe-
rior in R18, and PCC/CCC, which indicates the tendency of emotional change,
showed superiority in AL. This tendency demonstrates that CNNs can improve
precision in most over-parameterized settings, but CNNs are seldom generalized.
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Table 2. Comparison results on the Aff-wild dataset. ∗ was evaluated on Aff-wild’s
test set using ResNet50 backbone

Methods
RMSE (↓) SAGR (↑) PCC (↑) CCC (↑)
(V) (A) (V) (A) (V) (A) (V) (A)

Hasani et al. [13] 0.27 0.36 0.57 0.74 0.44 0.26 0.36 0.19
Hasani et al. [14] 0.26 0.31 0.77 0.75 0.42 0.40 0.37 0.31
Deng et al. [8]∗ - - - - - - 0.58 0.52
CAF (R18) [19] 0.22 0.20 0.70 0.76 0.57 0.57 0.55 0.56
CAF (AL) [19] 0.24 0.21 0.68 0.78 0.55 0.57 0.54 0.56
AVCE (R18) (Ours) 0.148 0.152 0.798 0.781 0.600 0.621 0.552 0.583
AVCE (AL) (Ours) 0.154 0.154 0.849 0.795 0.713 0.632 0.682 0.594

Fig. 5. Analysis of frame unit emotional fluctuations and corresponding mean neural
activation maps on Aff-wild dataset. Baseline [31] and CAF [19] are reproduced for a
fair experimental setup. Best viewed in color

Note that even in the Aff-wild2 dataset with various backgrounds and subjects
added, AVCE (R18) showed 0.031 higher mean CCC than Sanchez et al. [42],
that is the latest SOTA (see Table 3). Finally, AVCE shows superiority in both
performance and network size on the AffectNet dataset. Please refer to the Ap-
pendix for the AffectNet results, additional backbone results, etc.

4.4 Qualitative Analysis

This section visualizes the performance of AVCE through neural activation map
[58]. The activation map is computed from the feature maps and the weight ma-
trices of the last layer of R(or H). Since it is important to consider both arousal
and valence to capture emotional attention [18], we observed facial regions asso-
ciated with emotional expression by averaging the two maps. Various examples
of each of A and V are provided in the Appendix.

Figure 5 analyzes frame-by-frame emotional fluctuation by adopting CAF
and baseline [31]. Overall, AVCE can successfully capture not only positive peaks



Contrast of Emotions in the AV space 13

Fig. 6. Influence analysis of self-supervision through mean neural activation map on
AffectNet. Best viewed in color

but also negative changes. Seeing the 1562-th frame of the left (valence), the ac-
tivation map of AVCE correctly captured the eye and lip regions and showed
significant valence fluctuations. However, this variation showed the opposite di-
rection to the GT. This indicates that it is sometimes difficult to grasp the global
semantic context of the video clip only with a single frame.

In addition, we compared the activation maps of R and H to indirectly verify
the effect of Sp, which is difficult to visualize. In Fig. 6, AVCE (H), which is
trained to encourage the function of Sp, captured emotion-related regions well
showing sparser results than AVCE (R). Through the examples in Fig. 6, we can
find that the proposed method captures core regions (e.g. eyes and mouth) for
FER better than other methods.

Table 3. Results on the validation set of
Aff-wild2

Methods CCC (V) CCC (A) Mean

ConvGRU [5] 0.398 0.503 0.450
Self-Attention [50] 0.419 0.505 0.462
Sanchez et al. [42] 0.438 0.498 0.468
AVCE (R18) 0.484 0.513 0.499
AVCE (AL) 0.496 0.500 0.498

Table 4. Ablation study on Aff-wild

CRL formula f f1 f2
CCC (↑)
(V) (A)

InfoNCE [35]
✓ 0.637 0.546

✓ 0.651 0.550

Barlow-Twins [56]
✓ 0.653 0.566

✓ 0.656 0.554

AVCE (AL) w/o Ldis ✓ 0.642 0.548

AVCE (AL)
✓ 0.682 0.594

✓ 0.640 0.577
✓ 0.691 0.581

4.5 Ablation Study

Table 4 further analyzed the superiority of AVCE through representative CRL
formulas and similarity functions of Section 3.4. InfoNCE (Eq. (1)) showed worse
CCC (V) by 0.045 than AVCE (AL). This gap is lower than when Ldis was
not used. Even a cutting-edge Barlow-Twins [56] showed 0.029 worse CCC (V)
than AVCE. This proves the strength of AVCE, which reflects the structural
property of the AV space well. On the other hand, f1 based on dot product
showed 0.042 lower CCC (V) than f . f2, which gives a penalty on the valence
axis, showed 0.009 high CCC (V) in AVCE, but decreased 0.013 in the arousal
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axis. In addition, the mining method [6] used as post-processing for negative
pair sampling of AVCE shows an improvement of about 0.02 in terms of CCC
(A). For details of the inference speed and the impact of AVCE, refer to the
Appendix.
Voting results of user study. Finally, we conducted a user study to validate
the emotion-aware ability of feature transformations. For this experiment, we
prepared 32 pairs of examples generated by neural activation maps based on
the same input image (cf. Figs. 3 and 4 in Appendix). For each example, 12
subjects were instructed to rank the images in the order of the best captures of
emotional expression. As a result, AVCE, CAF, and baseline [31] showed top-1
accuracy of 67.96%, 25.78%, and 6.26%, respectively. Therefore, the superiority
of the proposed method was proven through this user study once again.

5 Discussion of Limitations

Network design. One may argue about the use of spatio-temporal network
such as [42]. However, all methods showing excellent performance are based on
static images (cf. Table 1). This shows that emotional expression-aware self-
supervision, that is, attentive region of AVCE, is a more important clue for
AV-based FER than quantitative differences in temporal features so far.
Data imbalance. Since the datasets used in the experiments are biased towards
positive emotions, training neural networks with only GT causes a bias towards
positive emotions. In the future, study on weighted resampling or distribution
shift that can explicitly deal with this data imbalance issue should be done.
Other risk factors. AV-based FER should be robust against both internal
factors (e.g. skin color, face angle) and external factors (e.g. illumination and
background) of a subject. This paper used datasets containing internal factors
of various properties for learning, but did not directly focus on external factors.
In the future, illumination and backgrounds-aware attention ability should be
additionally considered in AVCE.

6 Conclusion

For the first time in the AV-based FER field, we presented a self-supervised
method to learn emotion-aware facial features. Thanks to the features obtained
from the novel iterative process, the proposed AVCE can understand the emo-
tions from various perspectives. Experiments show that AVCE can detect core
regions of wild facial emotions and regress continuous emotional changes without
temporal learning.
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