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S-1 Algorithm Details

S-1.1 Networks

The pairwise comparator (in Fig. 3 in the main paper) consists of two com-
ponents: a feature extractor and a classifier. The network structures of these
components are detailed in Table S-1 and Table S-2, where ‘kh×kw-s-c Conv’
denotes the 2D convolution with kernel size kh×kw, stride s, and c output chan-
nels. Similarly, ‘kh×kw-s MaxPool’ represents the 2D max pooling with a kh×kw
kernel at stride s. Also, ‘BN’ means batch normalization [3], and ‘c Dense’ is a
dense layer with c output channels. Note that the feature extractor is imple-
mented based on the VGG16 network, and it takes a 224 × 224 × 3 image as
input.

S-1.2 MAP Estimation

Let us describe the MAP estimation rule for rank estimation in Section 3.5.
Without loss of generality, we assume that the ranks (or classes) are the first m
natural numbers, Θ = {1, 2, . . .m}. We estimate the rank θ(x) of a test instance
x by comparing it with the references yi of known ranks θ(yi) = i, 1 ≤ i ≤ m.
Then, by comparing x with yi, the comparator yields the probability vector
pxyi = (pxyi< , pxyi4 ). Thus, given yi, the probability of θ(x) = r can be written as

Pθ(x)(r | yi) = pxyi< · Pθ(x)(r |x < yi) + pxyi4 · Pθ(x)(r |x 4 yi). (1)

Suppose that x < yi. Then, i ≤ θ(x) ≤ m, where m is the maximum possible
rank. In other words, there are m − i + 1 possible ranks for θ(x), which are
assumed to be equally likely. In other words, we assume that the conditional
probability distribution of Pθ(x)(r |x < yi) is a uniform distribution over [i,m].
However, θ(x) = i belongs to both cases of x < yi and x 4 yi. Therefore, we
assume that the conditional probability Pθ(x)(r |x < yi) is given by

Pθ(x)(r |x < yi) =

{ 1
m−i+0.5 , if r > i,

1
2(m−i+0.5) , if r = i,

0, otherwise.

(2)
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Table S-1: The feature extractor in the pairwise comparator.

Layers Output

3×3-1-64 Conv BN ReLU 224×224×64
3×3-1-64 Conv BN ReLU 224×224×64
3×3-2 MaxPool 112×112×64

3×3-1-128 Conv BN ReLU 112×112×128
3×3-1-128 Conv BN ReLU 112×112×128
3×3-2 MaxPool 56×56×128

3×3-1-256 Conv BN ReLU 56×56×256
3×3-1-256 Conv BN ReLU 56×56×256
3×3-1-256 Conv BN ReLU 56×56×256
3×3-2 MaxPool 28×28×256

3×3-1-512 Conv BN ReLU 28×28×512
3×3-1-512 Conv BN ReLU 28×28×512
3×3-1-512 Conv BN ReLU 28×28×512
3×3-2 MaxPool 14×14×512

3×3-1-512 Conv BN ReLU 14×14×512
3×3-1-512 Conv BN ReLU 14×14×512
3×3-1-512 Conv BN ReLU 14×14×512
14×14-1 MaxPool 1×1×512

512 Dense BN ReLU 512

Table S-2: The classifier in the pairwise comparator.

Layers Output

512 Dense BN ReLU 512
512 Dense BN ReLU 512
Dropout(0.5) 512
2 Dense Softmax 2

We formulate Pθ(x)(r |x 4 yi) in a similar manner. Then, we approximate the
a posteriori probability Pθ(x)(r | y1, . . . , ym) by averaging the single-reference
inferences in Eq. (1);

Pθ(x)(r | y1, . . . ym) = 1
m

∑m
i=1 Pθ(x)(r | yi). (3)

Finally, we obtain the MAP estimate of the rank of x by

θ̂(x) = arg max
r

Pθ(x)(r | y1, . . . ym). (4)

S-1.3 Threshold τ for Pseudo Pair Sampling

Let us describe how to select the threshold τ in the pseudo pair sampling. By
sorting all vertices of V via σ in Eq. (3) in the main paper, we obtain a chain
of vertices. Then, we merge some vertices, which likely come from the same
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underlying class, to obtain a shortened chain (w1, w2, . . . , wc). Here, c denotes
the number of vertices in the shortened chain.

To build the pseudo pair set T , we sample an ordered pair (x, y) from the
shortened chain, where x ∈ wi, y ∈ wj , and j − i > τ . We define the sampling
threshold τ as

τ =
c

m
(5)

where m denotes the number of underlying classes in X . We assume that m is
known a priori.

Note that the chainization algorithm sorts all instances in X and samples
pseudo pairs iteratively. In the clique-edgeless case, we use different τ at different
iterations t. This is because no ordering information within Xe is known. Hence,
at early iterations t ≤ 2, we do not shorten the chain. Then, we use the sampling
threshold τ , given by

τ =
|Xe|
2t

, (6)

so that the threshold decreases as the iteration t goes on. Similarly, in the bi-
partite case, we set the sampling threshold τi for Xi, i = 0, 1, as

τi =
|Xi|
2t

. (7)

S-1.4 Implementation Details

To initialize the feature extractor, we adopt the parameters pre-trained on the
ILSVRC2012 dataset. We initialize the other layers using the Glorot normal
method. We update the network parameters using the Adam optimizer with a
minibatch size of 16. We start with a learning rate of 10−4 and shrink it by
a factor of 0.8 every 10,000 steps. Training images are augmented by random
horizontal flipping and random cropping. Also, during the chainization process,
the comparator is fine-tuned on the augmented training set P ∪ T until it con-
verges. We then update the linear ordering L and the pseudo pair set T . For
rank estimation, we use randomly selected training instances as the references.
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S-2 More Experimental Results

S-2.1 Analysis

Ablation study: We analyze the efficacy of the proposed chainization algorithm
on MORPH II at γ = 0.1%. Table S-3 compares the linear extension (ρ) and
age estimation (MAE) results by varying the configurations of the chainization
algorithm. In method I, we assess the proposed algorithm without fine-tuning
the comparator using pseudo pairs. Note that both ρ and MAE degrade. Method
II performs the chainization without the iterative refinement of the comparator,
and method III does it without the chain shortening. Both methods worsen the
performances, indicating that the iterative refinement and the shortening are
essential components.

Table S-3: Ablation study on the MORPH II dataset.

Method Pseudo Pairs Iteration Chain Shortening ρ MAE

I 0.923 3.66
II X X 0.929 3.44
III X X 0.930 3.43
IV (Proposed) X X X 0.936 3.35

Iterative refinement of linear ordering: We analyze the efficacy of the it-
erative refinement in the chainization. Fig. S-1 plots how the linear ordering
performances on MORPH II improve as the iterative fine-tuning goes on. At ev-
ery γ, the performances are greatly improved at the first iteration. During this
period, the comparator is firstly fine-tuned on the augmented training set P ∪T
including pseudo pairs. This confirms the effectiveness of the pseudo pairs. In
general, the performances converge after four iterations.
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Fig. S-1: Linear extension results on MORPH II according to iterations.

Fig S-2 shows the performances on MORPH II in the bipartite case, by
plotting the results for X0 and X1 separately. They exhibit similar convergence
trends to Fig. S-1.
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Fig. S-2: Linear extension results in the bipartite case on MORPH II according
to iterations.

Linear extension and rank estimation according to γ: We analyze linear
extension and rank (age group) estimation results on the Adience dataset ac-
cording to γ. Fig. S-3 plots how Spearman’s ρ and the rank estimation accuracy
improve as γ increases. At γ = 0.2%, the proposed algorithm achieves a high ρ of
0.99, indicating that L is estimated almost perfectly. Hence, the rank estimation
accuracy also saturates when γ > 0.2%. In other words, it is required to annotate
only 0.2% of all pairs for the proposed algorithm to perform as effectively as the
original order learning with the full annotations does.

(a) (b)

Fig. S-3: (a) Linear extension and (b) rank estimation performances at different
γ’s. Note that the x-axis is in a logarithmic scale.

Impacts of τ on linear extension: We analyze the impacts of the sampling
threshold τ on linear extension of a partial ordering. Table S-4 compares the
linear extension results on MORPH II at different τ settings, where γ = 0.1%.
In this test, we multiply the default τ in Eq. (5) by three factors. Both smaller
(×0.5) and larger (×2,×4) factors degrade the performances. Therefore, τ in
Eq. (5) is used as the default setting in this work.

S-2.2 More Results in Random Edge Case

Fig. S-4 compares the rank estimation performances at various γ on the Aes-
thetics dataset. Compared to OL [6], the proposed algorithm achieves higher
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Table S-4: Linear extension results on MORPH II at different τ settings.

τ PE (↓) ρ (↑)

×0.5 0.111 0.923
×1 (Proposed) 0.100 0.936
×2 0.110 0.925
×4 0.115 0.922

accuracies at all γ’s without exception. Notably, at γ = 1%, the proposed algo-
rithm yields 69.2% accuracy, which is comparable to 69.9% accuracy of OL at
γ = 100%. This indicates that the proposed algorithm can reduce the amount
of annotated pairs required for order learning significantly.
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Fig. S-4: Comparison of the proposed chainization with OL [6] on Aesthetics.
The x-axis is in a logarithmic scale.

Table S-5 compares the proposed algorithm with conventional ordinal re-
gressors [2, 5, 7, 8, 8, 9] on Aesthetics. We provide the results of the proposed
algorithm at γ = 100% as the performance upper bounds. Due to the subjectiv-
ity and ambiguity of aesthetic criteria, the pairwise comparison is challenging in
the Aesthetics dataset. Nevertheless, the proposed algorithm yields comparable
performances to the conventional regressors, even when γ ≤ 0.03%.

Table S-5: Comparison of rank estimation results on Aesthetics.
Algorithm Accuracy (%) MAE

RED-SVM [7] 64.59 0.330
OR-CNN [9] 68.96 0.326
CNNm [8] 69.45 0.376
CNNPOR [8] 70.05 0.316
SORD [2] 72.03 0.290
POE [5] 72.44 0.287

Proposed (γ = 100%) 70.54 0.312
Proposed (γ = 0.03%) 67.34 0.329
Proposed (γ = 0.02%) 66.52 0.335
Proposed (γ = 0.01%) 66.05 0.344
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S-2.3 More Results in Clique-Edgeless Case

We provide more rank estimation results in the clique-edgeless case, which in-
cludes typical semi-supervised learning and unsupervised domain adaptation sce-
narios. First, Fig. S-5 shows the semi-supervised learning results on Aesthetics.
In this test, we compare the proposed algorithm with the state-of-the-art ordi-
nal regression technique POE [5] at various supervision levels s. Also, we use
two semi-supervised learning algorithms FlexMatch [17] and FixMatch [14] for
POE to exploit unlabeled instances for training. When s ≤ 50%, the proposed
algorithm achieves the best accuracies by employing pseudo pairs as auxiliary
information for training. This demonstrates that a reliable rank estimator can
be obtained via the chainization when annotations are available only for a subset
of training data.
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Fig. S-5: Semi-supervised learning performances on Aesthetics at various super-
vision levels s.

Next, Table S-6 compares the proposed algorithm with conventional unsu-
pervised domain adaptation techniques, SAFN and HAFN [16]. Adience and
MORPH II are used as the source and target domains, respectively. Note that
SAFN and HAFN are optimized for object classification data, whose classes are
clearly distinct from one another. However, in ordered data, inter-class differ-
ences are relatively small, so the domain adaptation is more challenging. Thus,
the conventional algorithms yield poor results. In contrast, the proposed algo-
rithm provides decent performances.

Table S-6: Domain adaptation results from Adience to MORPH II.

Algorithm ρ MAE Accuracy (%)

SAFN [16] 0.525 0.93 34.0
HAFN [16] 0.493 1.05 32.1

Proposed 0.798 0.54 51.5
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S-2.4 More Results in Bipartite Case

Feature space visualization: In Fig. S-6, we visualize the feature spaces of
MORPH II in the bipartite case after the chainization, together with bipartite
subset and age labels, respectively, using t-SNE. It is observed that the proposed
chainization algorithm sorts the features well according to ages, even though no
supervision is provided within X0 and X1.

Fig. S-6: t-SNE visualization of the feature space of MORPH II in the bipartite
case with (a) bipartite subset labels and (b) age labels.
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More examples: We provide more sorting results in the bipartite case similarly
to Fig. 8 in the main paper. In this test, we use the FER+ and RAF-DB [4]
datasets. RAF-DB is a dataset for facial expression recognition, including 15,339
images in seven emotion classes.

Fig. S-7 and Fig. S-8 show examples of linear ordering on RAF-DB, while
Fig. S-9 and Fig. S-10 do so on FER+.

(a) Happiness

(b) Neutral

Fig. S-7: Sorting of the instances in two selected classes ‘happiness’ – ‘neutral’
in the RAF-DB dataset.
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(a) Neutral

(b) Sadness

Fig. S-8: Sorting of the instances in two selected classes ‘neutral’ – ‘sadness’ in
the RAF-DB dataset.
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(a) Sadness

(b) Happiness

Fig. S-9: Sorting of the instances in two selected classes ‘sadness’ – ‘happiness’
in the FER+ dataset.
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(a) Neutral

(b) Anger

Fig. S-10: Sorting of the instances in two selected classes ‘neutral’ – ‘anger’ in
the FER+ dataset.
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S-3 Ethics and Bias Statement

Recently, ethical concerns about the fairness of deep-learning-based systems have
been raised [1,10,13]. Especially, due to the intrinsic imbalance of facial datasets
[9, 12,18], most deep learning methods on facial analysis [11,15] have unwanted
gender or racial bias. The proposed algorithm is not free from this bias either
when it is trained on such datasets. Hence, the bias should be resolved before
any practical usage. Also, even though the proposed algorithm discovers some
subclasses from the sorting results of instances, these results should never be
misinterpreted in such a way as to encourage any kind of discrimination. We
recommend using the proposed algorithm for research only.
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