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Abstract. We propose the chainization algorithm for effective order
learning when only partially ordered data are available. First, we de-
velop a binary comparator to predict missing ordering relations between
instances. Then, by extending the Kahn’s algorithm, we form a chain rep-
resenting a linear ordering of instances. We fine-tune the comparator over
pseudo pairs, which are sampled from the chain, and then re-estimate
the linear ordering alternately. As a result, we obtain a more reliable
comparator and a more meaningful linear ordering. Experimental re-
sults show that the proposed algorithm yields excellent rank estimation
performances under various weak supervision scenarios, including semi-
supervised learning, domain adaptation, and bipartite cases. The source
codes are available at https://github.com/seon92/Chainization

Keywords: Order learning, topological sorting, rank estimation, facial
age estimation, aesthetic assessment, facial expression recognition

1 Introduction

In ordered data, objects are sorted according to their classes representing ranks
or priorities. For instance, in facial age estimation, face photos are sorted accord-
ing to the ages. Also, in a video streaming platform, videos can be sorted accord-
ing to user preferences. For these ordered data, various attempts [5,9,11,12,17,24]
have been made to estimate the ranks of objects. In particular, order learning
algorithms [9, 12, 24] have shown promising rank estimation performances on
diverse ordered data recently.

Order learning is based on the idea that relative assessment is easier than
absolute assessment; telling the older one between two people is easier than esti-
mating their exact ages. Hence, in order learning [9, 12], a pairwise comparator
to predict pairwise ordering relations is trained. Then, the rank of a test object
is estimated by comparing it with the references with known ranks. To obtain a
reliable comparator, they exploit the ordering relation for every pair of training
objects. This complete ordering information, however, is not always available
because it is hard to annotate the exact rank of every object [29].

A partial ordering means that ordering relations are known only for restricted
pairs of objects. As illustrated in Fig. 1, we can consider three cases of partial
orderings according to the types of underlying graphs.

https://github.com/seon92/Chainization
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Fig. 1: Three cases of partial orderings. In each graph, nodes and edges represent
objects and known ordering relations, respectively. A directed edge from node x
to node y means that x 4 y. In (b), θ(x) denotes the rank of x.

• Random edge case: Ordering relations are given for randomly selected
pairs of objects. For example, an extreme scenario that the relations are
known for only 0.01% of all possible pairs is also considered in this paper.
This case is represented by a simple directed graph as in Fig. 1(a).

• Clique-edgeless case: The ground-truth ranks are available for a subset of
training objects. Thus, the ordering relation is known for every pair of objects
in the subset, while no information is available for the other pairs. This case
is represented by a sum of a clique and an edgeless graph as in Fig. 1(b).
Note that typical semi-supervised learning [25,28] and unsupervised domain
adaptation [13,30] scenarios belong to this case.

• Bipartite case: Objects are partitioned into two groups such that every
object in one group has a higher rank than every object in the other group.
Within each group, no ordering information is available. For example, face
photos are simply dichotomized into either young ones or old ones. This case
is represented by a complete bipartite graph in Fig. 1(c).

In these partial ordering cases, order learning yields poor results due to in-
sufficient ordering information for training. To address the lack of supervision,
many researches [13, 25, 28, 30] have been conducted. Nevertheless, to the best
of our knowledge, no algorithm has been proposed for these partially ordered
data. Topological sorting algorithms [7, 8, 19, 20] may be exploited to comple-
ment the incomplete ordering information. From a known partial ordering, these
algorithms estimate a linear ordering, representing the ordering relation for ev-
ery pair of objects. However, they do not consider the quality of the resultant
linear ordering; for example, if it is known that w ≺ y and x ≺ z, they may yield
an arbitrary one of w ≺ x ≺ y ≺ z or x ≺ z ≺ w ≺ y or many other possibilities.
Thus, the obtained linear ordering may be unreliable or even meaningless.

In this paper, under the three scenarios in Fig. 1, we aim to obtain a mean-
ingful linear ordering from a given partial ordering and to enhance order learning
performances. To this end, we propose a unified approach called chainization.
First, to obtain a meaningful linear ordering, ordering criteria, such as age in
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face photos, should be recognized from known ordering relations, and unknown
ordering relations should be estimated reliably. Hence, we train a pairwise com-
parator with given ordering relations. Then, using the comparator, we estimate
unknown ordering relations and sort all instances to form a linear ordering. Sec-
ond, we sample pseudo pairs from the obtained linear ordering and fine-tune the
comparator using the pseudo pairs iteratively. The proposed algorithm yields a
more accurate comparator than conventional order learning techniques [9, 12],
since the pseudo pairs make up for insufficient training data. Last, we estimate
the rank of an unseen test object by comparing it with references. Experimental
results demonstrate that the proposed algorithm provides meaningful ordering
results as well as excellent ranking performances under weakly supervised sce-
narios, including semi-supervised learning, unsupervised domain adaptation, and
bipartite cases.

This work has the following major contributions:

• We improve order learning performances on various types of partially ordered
data via the proposed chainization.

• The proposed chainization outperforms conventional techniques in both semi-
supervised learning and unsupervised domain adaptation tests.

• We achieve competitive rank estimation performances even with a restricted
set of training data. Notably, on the Adience dataset [10], we achieve state-
of-the-art age estimation results using less than 0.1% of the training pairs.

2 Related Work

2.1 Order Learning

Lim et al. [12] first proposed the notion of order learning, which learns ordering
relations between objects and determines the rank of an unseen object. It trains
a pairwise comparator to categorize the relation between two objects into one
of three cases: one object is bigger than, similar to, or smaller than the other.
Then, it predicts the rank of a test object by comparing it with references with
known ranks. It yields promising results since relative assessment is easier than
absolute assessment in general. Based on similar motivations, some learning-to-
rank methods [18,26] also model a ranking function to estimate the priorities of
objects via pairwise comparisons. Also, Shin et al. [24] modified the classification
approach in [12] to develop a regression-based order learning algorithm.

However, not every pair of objects are easily comparable. Hence, Lee and
Kim [9] proposed the order-identity decomposition network to decompose object
information into an order-related feature and an identity feature. They showed
that objects with similar identity features can be compared more reliably. These
order learning techniques [9,12,24] assume that the rank of every training object
is known. In contrast, we assume that only pairwise ordering relations between
limited pairs of objects are known. Then, we attempt to discover the ordering
relations across all objects from the given incomplete data. As a result, the
proposed algorithm can reduce the amount of annotated pairs required for order
learning significantly (e.g. by a factor of 1

100 ) .
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2.2 Linear Extension of Partial Order

In order theory [6,23], linear extension of a partial order means finding a linear
order compatible with the partial order. In other words, an ordering relation
between any elements should be determined without conflicting with the partial
order. By generating a directed graph for the partial order, this problem can
be converted to the topological sorting of the vertices in the graph [3]: linear
extension and topological sorting are the same problem.

Various algorithms [7,8,19,20,27] have been proposed for linear extension. In
[7], Kahn proposed a simple algorithm based on the breadth-first search (BFS).
It first constructs a directed graph, in which vertices correspond to objects and
directed edges represent ordering relations. It then repeatedly outputs a vertex
with no incoming edge and deletes its outgoing edges from the graph. However,
the Kahn’s algorithm decides unknown ordering relations arbitrarily. Thus, one
may want to obtain all possible linear orders and then evaluate each of them
to find the best one. By exploiting the backtracking, Knuth [8] developed an
algorithm to generate all possible linear extension results.

Depth-first search (DFS) algorithms also have been proposed. Tarjan [27] and
Reingold et al. [20] use DFS to obtain a spanning forest of the directed graph,
and then output the vertices before any of their descendants in the forest. In [19],
DFS is performed both forward and backward to reduce the time complexity.
These DFS methods [19, 20, 27] also determine unknown ordering relations ran-
domly. In contrast, the proposed algorithm yields a meaningful linear ordering
by estimating the missing ordering relations.

3 Proposed Algorithm

3.1 Preliminary

Mathematically, an order or partial order [23] is a binary relation, denoted by
≤, on a set Θ = {θ1, θ2, . . . , θc} that satisfies the three properties of

• Reflexivity: θi ≤ θi for all i;
• Antisymmetry: θi ≤ θj and θj ≤ θi imply θi = θj ;
• Transitivity: θi ≤ θj and θj ≤ θk imply θi ≤ θk.

Then, Θ is called a partially ordered set. Furthermore, if every pair of elements
is comparable (θi ≤ θj or θj ≤ θi for all i, j), Θ is called a chain or linearly
ordered set. In such a case, the partial order is called a linear order.

In practice, an order describes the ranks or priorities of classes in the set
Θ = {θ1, . . . , θc}, where each class represents one or more object instances. For
example, in age estimation, θi may represent i-year-olds, and θ20 < θ42 represents
that 20-year-olds are younger than 42-year-olds. Let θ(·) be the class function,
and let x and y be instances. For example, θ(x) = θ20 means that person x is
20-year-old. To represent the ordering between instances, we use ‘≺,≈,�,4,<’
instead of ‘<,=, >,≤,≥’ to avoid confusion. Specifically, x ≺ y, x ≈ y, and
x 4 y mean that θ(x) < θ(y), θ(x) = θ(y), and θ(x) ≤ θ(y), respectively. Also,



Order Learning Using Partially Ordered Data via Chainization 5

we use the expression ordering to describe instance relations, while using order
exclusively for class relations.

3.2 Problem Definition

Suppose that there are n training instances in X = {x1, x2, . . . , xn}. Let L =
{(x, y) : x 4 y and x, y ∈ X} be the set of increasingly ordered pairs of instances
whose ordering relations are known. In order learning [9, 12, 24], it is assumed
that L is a linear ordering of instances:

(x, y) ∈ L or (y, x) ∈ L for all x, y ∈ X . (1)

Note that both (x, y) and (y, x) belong to L if x ≈ y, and thus |L| ≥
(
n
2

)
. In

other words, order learning assumes that the ground-truth class of every training
instance is known, as well as the linear order on the set of classes. However, such
information may be unavailable. In age estimation, annotating the exact age of
a person is difficult, but telling the older one between two people is relatively
easy [29]. Therefore, only the binary ordering information (i.e. who is older)
between some selected pairs of people may be available. In such a case, we are
given a partial ordering of instances,

P = {(x, y) : It is known that x 4 y} ⊂ L. (2)

We consider the case that the number of ordered pairs in P is considerably
smaller than that in L, |P| � |L|. Then, we formulate the problem as follows.

Problem. Given a partial ordering P of instances, the objective is to obtain its
superset L that is a linear ordering.

In other words, we aim to linearly extend or ‘chainize’ P to L. To this end,
we propose the chainization algorithm. Note that if L is estimated reliably, order
learning performance can be enhanced by using L as auxiliary information for
training. The chainization algorithm also produces a pairwise comparator, using
which we can estimate the rank of an unseen test instance. First, in Section 3.3,
we present the chainization algorithm on the random edge case in Fig. 1(a).
Then, we describe how to apply the chainization to the other cases in Section
3.4. Last, we explain the rank estimation scheme in Section 3.5.

3.3 Chainization – Basics

The chainization algorithm extends a partial ordering P on an instance set X
to a linear ordering L. First, we train a pairwise comparator using available
information. Second, we use the comparator to estimate the ordering between
every pair of instances in X , yielding a linear ordering L. These two steps are
iterated to refine both the comparator and the linear ordering.

Graph representation of partial ordering: We use a directed acyclic graph
G = (V, E) to represent a partial ordering P of instances in X . Initially, we
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Fig. 2: Graph representation of a partial ordering P and its possible linear ex-
tension results.

construct the vertex set V = {v1, v2, . . . , vn} so that each vertex vi corresponds
to an instance xi ∈ X . We also construct the edge set E = {(vi, vj) : (xi, xj) ∈ P}
so that there is a directed edge from vi to vj if xi 4 xj . In the initial graph,
cycles may occur because both (xi, xj) and (xj , xi) may belong to P if xi ≈ xj .
In such a case, we merge all vertices on each cycle into a single vertex and modify
incident edges accordingly. Consequently, each vertex represents a set of one or
more instances, which equal (≈) one another.

Fig. 2 shows an example of the graph representation: the partial ordering P
is defined on a set X of 10 instances, but there are 9 vertices only because ‘C’
and ‘D’ are merged into one vertex.

After constructing the graphG, the linear extension of P to L can be regarded
as finding a vertex sorting function

σ : V → {1, 2, . . . , |V|} (3)

satisfying the constraint

σ(vi) < σ(vj) for all (vi, vj) ∈ E . (4)

Note that σ(·) is a sorting index. For example, σ(vi) = 1 means that vi is the
first in the sorted list of all vertices. If σ is obtained, a linear ordering L can be
easily derived from the σ;

L = {(xi, xj) : σ(vi) ≤ σ(vj) and xi, xj ∈ X} (5)

where vi and vj are the vertices containing xi and xj , respectively. It is guaran-
teed that L ⊃ P due to the constraint in (4), but a linearly extended ordering L
is not unique in general. As in Fig. 2, there are many possible linear orderings
extended from the same partial ordering P. Among them, we aim to determine
a desirable linear ordering, which sorts all instances in X in a meaningful way.

Comparator: To obtain such an ordering, we develop a pairwise comparator
in Fig. 3, which classifies the ordering between instances x and y into two cases:
x 4 y or x < y. The Siamese feature extractor [2] maps x and y to feature vectors,
respectively, and then the classifier yields a softmax probability pxy = (pxy4 , pxy< ).
We first train the comparator using the known ordered pairs in P. Specifically,
we optimize it to minimize the loss

` = [x 6≈ y]`ce(p
xy, qxy) + [x ≈ y]D(pxy‖qxy) (6)
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Fig. 3: An overview of the pairwise comparator, where c© denotes concatenation.

Algorithm 1 Chainization

Input: Directed acyclic graph G = (V, E) for P
1: Train a comparator on P for warm-up epochs;
2: repeat
3: Q ← ∅; t← 1;
4: Add all vertices v ∈ V with δ(v) = 0 to Q;
5: while Q 6= ∅ do
6: Remove the optimal v∗ in (8) from Q;
7: σ(v∗)← t; t← t+ 1;
8: for all adjacent vertex w of v∗ in G do
9: Remove edge (v∗, w) from E ;

10: if δ(w) = 0 then
11: Add w to Q;
12: end if
13: end for
14: end while
15: Obtain a chain from the sorting function σ;
16: Shorten it to yield the linear ordering L in (9);
17: Build a set T of pseudo pairs;
18: Fine-tune the comparator on P ∪ T ;
19: until predefined number of epochs;

Output: Linear ordering L, comparator

where [·] is the indicator function. If x ≺ y or x � y, we use the cross-entropy loss
`ce with the ground-truth one-hot vector qxy = (qxy4 , qxy< ). However, if x ≈ y, we

set qxy4 = qxy< = 0.5 and use the KL-divergence D, instead of the cross-entropy.
This is because the cross-entropy loss with qxy = (0.5, 0.5) produces near zero
gradients for most pxy, delaying the training unnecessarily.

Chainization: To determine the sorting function σ in (3), equivalently to find
the linear ordering L in (5), we propose the chainization algorithm in Algo-
rithm 1, which is based on the Kahn’s topological sorting algorithm [7]. How-
ever, whereas the Kahn’s algorithm obtains an arbitrary linear extension of P,
the proposed algorithm yields a meaningful linear ordering by estimating missing
ordering information, not included in P, using the pairwise comparator.

As in [7], we iteratively select a vertex v from the graph G and append it to
the sorted list. In other words, at iteration t, we select v and set σ(v) = t. First,
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Fig. 4: An overview of the chainization.

we form a set Q to include all vertices v with indegree δ(v) = 0. Note that at
least one such vertex with no incoming edge exists, because the graph G for P is
acyclic by construction. Also, such vertices precede the others in G. Second, we
select an optimal vertex v∗ from Q, which is most likely to contain the smallest
instances (e.g. the youngest people in age estimation). To this end, we define the
probability that a vertex v precedes another vertex w as

p(v, w) = 1
kl

∑k
i=1

∑l
j=1 p

xiyj

4 (7)

where v = {x1, . . . , xk} and w = {y1, . . . , yl}. We also define the priority score π
of each vertex v ∈ Q as π(v) =

∑
w∈Q:w 6=v p(v, w). We then choose the highest

priority vertex
v∗ = arg maxv∈Q π(v) (8)

and set σ(v∗) = t. Then, we remove all outgoing edges of v∗ from E . We repeat
this process until Q = ∅ and thus σ(v) is determined for all v ∈ V.

Pseudo pair sampling: The sorting function σ lists all vertices in V in-
creasingly, which can be represented by a chain as illustrated in Fig. 4. Let
(w1, w2, . . . , w|V|) denote this chain, where wi = vj if σ(vj) = i. The chain may
represent linearly ordered classes. However, in general, |V| is much larger than
the number of actual classes, since the graph representation is performed without
full annotations of instance equalities (≈).

We hence merge vertices in the chain, which likely come from the same un-
derlying class. Specifically, we merge the adjacent vertices wi and wi+1 with
the lowest probability p(wi, wi+1) in (7) into one vertex. This is because a low
p(wi, wi+1) implies that the instances in wi are not clearly smaller (≺) than
those in wi+1, and all those instances may belong to the same class. However,
for any x ∈ wi and y ∈ wi+1, if x ≺ y is known in the partial ordering P, the
merging is not allowed and the pair with the second lowest probability is merged.
This is performed iteratively, until the number of vertices reaches a predefined
threshold or no vertices can be merged, to yield a shortened chain.

The linear ordering L can be derived from the shortened chain by

L = {(x, y) : x ∈ wi, y ∈ wj and i ≤ j}. (9)

Notice that L is obtained using the output of the comparator in (7), which is
trained on the partial ordering P. The additional information in L, in turn, can
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be used to fine-tune the comparator. To this end, as shown in Fig. 4, we form
a set T of pseudo training pairs. First, we sample an ordered pair (x, y), where
x ∈ wi, y ∈ wj , and j − i > τ , and add it to T . It is called a pseudo pair, since
the ordering x ≺ y is an estimated result using the comparator, instead of a
ground-truth in the training set P. In general, a larger threshold τ yields a more
reliable T . However, at a large τ , sampled pairs may be less informative, for
their relations are relatively easy to predict. The impacts of τ will be analyzed
in the supplemental document. Second, we also sample every possible pair (x, y)
from each vertex w and add both (x, y) and (y, x) to T to indicate that x ≈ y.

Next, we fine-tune the comparator using the augmented training set P ∪ T .
The comparator is, in turn, used to update the linear ordering L and the pseudo
pair set T . This is repeated as described in Algorithm 1.

3.4 Chainization – Applications

Clique-edgeless case: Let us consider the clique-edgeless case in which training
instances in X are partitioned into two subsets Xc and Xe, and the ground-truth
ranks are available only for the instances in Xc. Thus, the instances in Xc form
a clique, whereas those in Xe form an edgeless subgraph in G, as shown in
Fig. 1(b). Note that the clique-edgeless case can represent the semi-supervised
learning scenario [25, 28] if |Xc| � |Xe|. Also, it can represent the unsupervised
domain adaptation scenario [13, 30] when Xc and Xe are different source and
target datasets, respectively.

The proposed chainization can be applied to this clique-edgeless case as well.
We first train the comparator using the known ordering relations on Xc. Then, we
sort all instances via the chainization. However, at early iterations, the instances
in Xe may not be ordered reliably, since no supervision is provided for them.
Hence, we do not shorten the chain at early iterations. Also, to form a pseudo
pair set T , we use a gradually decreasing threshold τ , so that we can sample more
reliable pairs at early iterations and more informative pairs at later iterations.
The supplemental document describes the scheduling of τ in detail.

Bipartite case: Training instances in X are partitioned into two subsets X0 and
X1, and the only annotations are that every instance in X0 is no larger than (4)
every instance in X1. This special partial ordering P is represented by a complete
bipartite graph G in Fig. 1(c). Even in this challenging case, the chainization
algorithm can sort all instances in X meaningfully and yield a chain by adopting
the same strategy used in the clique-edgeless case.

3.5 Rank Estimation

Based on order learning [12], we can estimate the rank of an unseen instance x by
comparing it with multiple references with known ranks. For the rank estimation,
Lee and Kim [9] developed the MAP estimator. However, their algorithm adopts
a ternary classifier as the comparator and yields a probability vector of pxy =
(pxy≺ , p

xy
≈ , p

xy
� ) by comparing x with reference y. In contrast, we do not compute
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the probability pxy≈ of the equal case explicitly, since it requires a threshold to
define the equality between instances [12]. Thus, we modify the MAP estimation
rule accordingly, which is detailed in the supplemental document.

4 Experiments

We conduct various experiments on facial age estimation [10, 21], aesthetic as-
sessment [22] and facial expression recognition [1] datasets to assess the proposed
algorithm under the three different scenarios: random edge case, clique-edgeless
case, and bipartite case. Due to the space limitation, implementation details and
more results are available in the supplemental document.

4.1 Datasets

MORPH II [21]: It provides 55,134 facial images labeled with the exact ages
in range [16, 77]. For evaluation, we select 5,492 images of the Caucasian race
and divide them randomly into two subsets: 80% for training and 20% for test.

Adience [10]: It contains 26,580 images annotated with one of the eight age
group labels: ‘0–2,’ ‘4–6,’ ‘8–13,’ ‘15–20,’ ‘25–32,’ ‘38–43,’ ‘48–53,’ and ‘60–100.’
For evaluation, we adopt the standard 5-fold cross validation [5, 10,11].

Aesthetics [22]: It provides 15,687 image URLs on Flickr, where 13,929 images
are available but the others are lost. Each image is annotated with a 5-scale
aesthetic score. We use the 5-fold cross validation for evaluation.

FER+ [1]: It contains 32,298 grayscale images for facial expression recognition.
Each image is categorized by 10 annotators into one of eight emotion classes,
and the ground-truth class is determined by the majority rule.

4.2 Metrics

Linear extension: To measure the quality of linear extension of P to L, we
use two metrics: Spearman’s ρ [4] and pairwise error (PE). The Spearman’s ρ
computes the correlation coefficient between two instance rankings, which cor-
respond to an estimated linear ordering L̂ and its ground-truth L, respectively.
PE is defined as PE = 1− 1/|L̂|

∑
(x,y)∈L̂[(x, y) ∈ L], which measures the ratio

of disordered pairs in L̂.

Rank estimation: We assess rank estimation results by the mean absolute
error (MAE) and the classification accuracy. MAE is the average absolute error
between estimated and ground-truth ranks. For the classification accuracy, the
closest rank to the MAP estimation result is regarded as the estimated rank. Note
that rank estimation can be regarded as finding a meaningful linear ordering of
unseen test instances.
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Table 1: Linear extension results on MORPH II, Adience, and Aesthetics.
MORPH II Adience Aesthetics

γ = 0.05% γ = 0.1% γ = 0.15% γ = 0.01% γ = 0.02% γ = 0.03% γ = 0.01% γ = 0.02% γ = 0.03%

PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑) PE (↓) ρ (↑)

Lower Bounds [7] 0.419 0.205 0.321 0.483 0.238 0.698 0.407 0.057 0.353 0.225 0.281 0.439 0.270 0.057 0.274 0.106 0.290 0.119
DRA [26] 0.126 0.892 0.108 0.924 0.099 0.927 0.115 0.814 0.113 0.823 0.095 0.851 0.080 0.679 0.071 0.802 0.066 0.836
OL [12] 0.128 0.897 0.108 0.923 0.096 0.930 0.120 0.809 0.113 0.821 0.100 0.847 0.083 0.665 0.069 0.805 0.067 0.822

Proposed 0.114 0.918 0.100 0.936 0.089 0.949 0.061 0.908 0.033 0.948 0.027 0.959 0.063 0.838 0.052 0.853 0.034 0.872

4.3 Random Edge Case

First, we evaluate the linear extension and rank estimation performances in the

random edge case. Let γ = 100× |P||L| denote the percentage of available known

pairs in a partial ordering P over all pairs in the linear ordering L. Hence, at a
lower γ, the linear extension of P to L is more difficult.

Linear extension: Table 1 summarizes the linear extension results on three
datasets: MORPH II, Adience, and Aesthetics. Note that there is no conventional
technique to extend a partial ordering to a meaningful linear ordering. Hence, for
comparison, we provide the results of the Kahn’s topological sorting algorithm
[7] and conventional comparison-based relative rank estimators, DRA [26] and
OL [12], which also can be trained on a partial ordering P. The Kahn’s algorithm
yields one of the possible linear orderings arbitrarily, so it performs poorly in
terms of both PE and Spearman’s ρ. Nevertheless, its results can be regarded
as the performance lower bounds. Both DRA and OL do not provide a method
to extend P to L. Hence, instances are sorted by their estimated ranks.

First, even at γ = 0.05% on MORPH II, the proposed algorithm achieves
a high ρ of 0.918 using only 0.05% of ordered pairs in L as supervision. This
indicates that the proposed algorithm predicts the other missing 99.95% pairs in
L reliably. Second, Adience has eight age group classes, whereas MORPH II has
more than 60 age classes. Hence, the linear ordering L of the Adience data can be
more easily estimated: even when γ is as low as 0.01%, the proposed algorithm
obtains a high ρ of 0.908 and a low PE of 0.061. Third, due to subjectivity and
ambiguity of aesthetic criteria, Aesthetics is more challenging than Adience is.
So, it yields relatively low scores at the same γ.

Rank estimation: Fig. 5 compares the rank estimation (age group classifica-
tion) accuracies of the proposed algorithm and the conventional order learn-
ing algorithm OL [12] on the Adience test set. To estimate the rank of an in-
stance, OL requires reference instances with known ranks because it performs
comparison-based rank estimation. Thus, for each rank, an instance is randomly
selected from the training set as a reference. The proposed algorithm also uses
the same references for the rank estimation. At all γ’s, the proposed algorithm
outperforms OL. Especially, at a low γ = 0.005%, OL fails to obtain a reliable
comparator due to the lack of training pairs, resulting in a poor accuracy of
31.8%. In contrast, the proposed algorithm achieves a much higher accuracy of
56.7% by optimizing the comparator over pseudo pairs.
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Fig. 5: Comparison of the proposed
chainization with OL [12] on Adience.
The x-axis is in a logarithmic scale.

Table 2: Comparison of rank estima-
tion results on Adience.

Algorithm Accuracy (%) MAE

OR-CNN [16] 56.7 ± 6.0 0.54 ± 0.08
CNNPOR [14] 57.4 ± 5.8 0.55 ± 0.08
GP-DNNOR [15] 57.4 ± 5.5 0.54 ± 0.07
SORD [5] 59.6 ± 3.6 0.49 ± 0.05
POE [11] 60.5 ± 4.4 0.47 ± 0.06

Proposed (γ = 100%) 61.7 ± 4.3 0.46 ± 0.05
Proposed (γ = 0.08%) 60.5 ± 4.2 0.48 ± 0.05
Proposed (γ = 0.03%) 59.7 ± 4.0 0.49 ± 0.05
Proposed (γ = 0.02%) 58.8 ± 4.2 0.51 ± 0.06
Proposed (γ = 0.01%) 58.3 ± 4.5 0.53 ± 0.06

Table 2 compares the proposed algorithm with conventional ordinal regres-
sors [5, 11, 14–16] on the Adience test set. We provide the results of the pro-
posed algorithm at γ = 100% as the performance upper bounds, which achieve
the best scores among all methods. Here, the comparator is trained using the
ground-truth linear ordering L of the training set. With weaker supervision, the
performances are lowered but still competitive. For example, using only 0.03%
of the ordering relations in L, the proposed algorithm performs better than the
others, except for POE [11]. Moreover, at γ = 0.08%, the proposed algorithm
reaches the performances of POE. This confirms that the comparator is effec-
tively fine-tuned with the partial data augmented by pseudo pairs.

4.4 Clique-Edgeless Case

To assess the proposed algorithm in the clique-edgeless case, we employ typical
semi-supervised learning and unsupervised domain adaptation protocols.

First, in the semi-supervised learning test, we compare the proposed algo-
rithm with the state-of-the-art ordinal regressors, POE [11] and SORD [5], at
various supervision levels s, which means that the ground-truth ranks are known
for s% of the training instances. However, the ordinal regressors assume that the
ground-truth rank of every training instance is given. Hence, we utilize recent
semi-supervised learning algorithms, FlexMatch [28] and FixMatch [25], together
with the ordinal regressors so that they can use unlabeled instances for training.
Fig. 6 compares the results. The performances of SORD are severely degraded at
low levels of s. Its performances do not improve even when it is combined with
FlexMatch and FixMatch. Compared to SORD, POE and its combined versions
with FlexMatch and FixMatch provide better results. However, the proposed
algorithm achieves the best accuracies at all levels of s with large margins. No-
tably, the proposed algorithm at s = 30% shows competitive results to the fully
supervised POE. This indicates that the chainization can effectively reduce the
amount of supervision required for obtaining a good rank estimator.

Next, we compare the proposed algorithm under the domain adaptation pro-
tocol. We use Adience and MORPH II as the source and target domains, respec-
tively. Table 3 compares the sorting and rank estimation results. To compute ρ
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Fig. 6: Semi-supervised learning perfor-
mances on Adience.

Table 3: Domain adaptation results
from Adience to MORPH II.
Algorithm ρ MAE Accuracy (%)

POE [11] 0.614 0.66 43.4
SORD [5] 0.560 0.85 37.5
OL [12] 0.630 0.68 43.8

Proposed 0.798 0.54 51.5

of POE and SORD, instances are sorted by their estimated ranks. Although the
source and target datasets contain images of different characteristics, the pro-
posed algorithm performs reliably and provides better results than the conven-
tional algorithms in [5,11,12]. Notably, compared to OL, the proposed algorithm
improves the performances meaningfully via the chainization.

4.5 Bipartite Case

In the bipartite case, all instances in X are partitioned into two subsets X0

and X1 so that every instance in X0 is smaller than every instance in X1. In
other words, every ordering relation across the two subsets is known. Hence, to
evaluate the quality of linear extension, we measure the ρ and PE scores for X0

and X1 separately and report the average scores over the subsets.
Table 4 lists the performances on MORPH II and Adience. The Kahn’s algo-

rithm [7] yields almost zero ρ’s, since no ordering information within X0 or X1

is available in P. In contrast, the proposed algorithm sorts the instances in X
meaningfully, outperforming DRA and OL by large margins. The ρ coefficient
for Adience is relatively low since its subset X1 has a severe class imbalance.
Also, we compare the rank estimation results of OL and the proposed algorithm
in terms of MAE. In this test, we use randomly selected references for each rank.
Due to the extremely limited information for training, OL yields poor results.
In contrast, the proposed algorithm provides decent MAE results, 5.9 for the 62
ranks in MORPH II and 0.8 for the 8 ranks in Adience.

Fig. 7 shows the linear extension results on MORPH II in more detail. After
sorting the instances in X based on L̂, we compute the moving average age of
100 consecutive instances from the youngest to the oldest. Although no ordering
information within X0 or X1 is available, the proposed algorithm estimates such
information quite reliably and yields generally increasing curves.

Last, we assess the performances on the FER+ dataset [1]. There is no ex-
plicit order between the emotion classes in FER+, so we consider the two classes
of ‘sadness’ and ‘happiness’ and assume that ‘sadness’ precedes (<) ‘happiness.’
In other words, ‘sadness’ is assumed to be the opposite feeling of ‘happiness’ on
the same axis. Then, the instances belonging to ‘sadness’ and ‘happiness’ are
assigned to X0 and X1, respectively. Even in this challenging case, the chainiza-
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Table 4: Linear extension results in
the bipartite case.

MORPH II Adience

MAE(↓) PE (↓) ρ (↑) MAE(↓) PE (↓) ρ (↑)

Lower Bounds [7] - 0.484 0.003 - 0.341 0.007
DRA [26] - 0.334 0.405 - 0.270 0.228
OL [12] 8.696 0.450 0.068 1.682 0.307 0.128

Proposed 5.903 0.246 0.638 0.807 0.192 0.452 (a) 𝒳0 (b) 𝒳1

Fig. 7: Sorting X0 and X1 of MORPH II.

𝒳1𝒳0

Sadness Happiness

Fig. 8: Sorting of the instances in ‘sadness’ and ‘happiness’ classes in the FER+
dataset. More examples are shown in the supplemental document.

tion can sort all the instances in a meaningful order. Fig. 8 shows examples of
the sorted instances. The instances in the ‘sadness’ class are sorted meaningfully
from ‘weeping’ to ‘wailing,’ and those in the ‘happiness’ class are from ‘smiling
tightly’ to ‘laughing.’ The proposed algorithm discovers these subclasses with-
out any intra-class supervision; it discovers them based on the inter-class order
assumption only. The proposed algorithm determines that the wailing instance
is happier than the weeping one. One possible explanation for this counter-
intuitive ordering is that wailing entails emitting a cry by opening one’s mouth
wide, similar to when one laughs.

5 Conclusions

We proposed the chainization algorithm to improve order learning performances
on partially ordered data. First, we estimate unknown ordering relations of in-
stances using a comparator trained on the partial ordering. Then, based on the
estimated relations, we obtain a linear ordering and then sample pseudo pairs.
We then fine-tune the comparator using the pseudo pairs iteratively. As a re-
sult, we obtain a more accurate comparator than conventional order learning.
Extensive experiments on various datasets showed that the proposed algorithm
provides meaningful sorting results and excellent rank estimation performances
under diverse weak supervision scenarios.
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