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Fig. 1: Cumulative plots for the (a) NoW [13] and (b) NoW-Metric (w/o scale)
challenges. We refer to the main paper for the detailed statistics.

Abstract. In this supplemental document, we demonstrate the robust-
ness of our proposed method in additional qualitative and quantitative
experiments. The cumulative error plots from the NoW challenge pre-
sented in the main paper are also included in this document. Moreover,
we present a justification of our architecture selection which is tailored
for our unified dataset. Further, we discuss an alternative model-free es-
timation approach that does not rely on a 3DMM decoder and can be
learned solely on our unified data.

1 Additional Results

Our 3DMM-based shape estimation method presented in the main paper has
two key components, (1) the encoder based on a face recognition network with
a mapping network and (2) the 3DMM-based geometry decoder. The difference
between our and the state-of-the-art methods w.r.t. their reconstruction quality
gets well visible in the cumulative error plots in Figure 1. Moreover, Figure 2
depicts side views of the reconstructions, which gives a better look at the shape
quality. In this section, we present several ablation studies w.r.t. those modules
and the used training data. All experiments were done with the same optimizer
and hyper-parameter configuration as the main method except where stated
otherwise. The Stirling dataset was excluded from all the ablation experiments.
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Fig. 2: Qualitative comparison on randomly sampled images from the VoxCeleb2
[3] dataset for side views.
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Encoder Ablation Studies. Exploiting generalized facial features from a face
recognition network is a key component of our method to predict geometry from
in-the-wild 2D data. However, completely refining the latent space of the face
recognition network is not possible with our medium-size dataset, thus, we can
only retrain selected layers to maintain generalizability. In Table 1, we compare
the performance of the two face recognition methods ArcFace [6] and FaceNet
[14]. Overall, the pretrained ArcFace outperforms the pretrained FaceNet in
terms of reconstruction quality in our shape estimation architecture. To further
improve the results of ArcFace, we refine the last ResNet layer of ArcFace. Simi-
larly, we conducted experiments on fine-tuning DECA [3] using our medium-scale
dataset and our reconstruction loss based on an ¢; error metric. We trained the
network on the same datasets like ArcFace for around 500 epochs. The fine-
tuning of partial layers or entire pipeline leads to huge overfitting of the training
data with significantly worse reconstructions on the test dataset (see Table 1).
In contrast, the partial fine-tuning of ArcFace in our approach gives the low-
est mean reconstruction error of 1.35mm. It shows that we can effectively use
the generalized features from the ArcFace network for the task of metrical face
reconstruction.

Table 1: Ablation study w.r.t. our face encoding network based on Stirling
dataset [9] using our metrical evaluation scheme. As a comparison, we also
show the results for DECA [3] fine-tuned on our dataset. The respective ResNet
[11] networks were refined in different configurations; {L3, L4} denotes the set
of selected trainable layers from {L1,...,L4}. Each layer is composed of sev-
eral ResNet blocks, specifically, ArcFace uses {3, 13, 30,3} and DECA {3,4,6, 3}
ResNet blocks for the respective layers.

Encoder Median |Mean (mm)| Std
LQ[HQ|LQ[ HQ |LQ[HQ
DECA [5] (frozen) 1.32[1.22|1.71] 1.58 |1.54|1.42
DECA [5] (fully trainable) 1.54[1.42[1.96| 1.82 |1.71]1.61
DECA [8] (L3 — L4 trainable) 1.55(1.43/1.97| 1.83 |1.71|1.62
DECA [8] (L4 trainable) 1.55(1.49/1.97| 1.83 |1.71/1.61
Ours — FaceNet [14] (frozen) 1.37(1.29|1.75| 1.65 [1.56|1.47
Ours — ArcFace [6] (frozen) 1.25|1.18|1.60| 1.52 |1.43|1.37
Ours — ArcFace [6] (fully trainable) 1.18|1.11|1.52| 1.42 |1.38|1.27
Ours — ArcFace [6] (L2 — L3 — L4 trainable)|1.22|1.12[1.56| 1.43 |1.39|1.27
Ours — ArcFace [6] (L3 — L4 trainable) 1.17|1.10(1.51| 1.40 |1.37|1.25
Ours — ArcFace [0] (L4 trainable) 1.15(1.06|1.46| 1.35 [1.30|1.20
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Decoder Ablation Studies. The decoder is defined by the 3DMM FLAME [12].
For our experiments in the main paper, we used 300 eigenvectors of the PCA
basis. In Table 2, we present an ablation study on the number of used eigenvectors
(i.e., the size of the latent geometry code z). As can be seen, exploiting the full
linear space of FLAME leads to the best performance.

Table 2: Evaluation of the influence of the number of principle components (PCs)
used for the shape decoder (Stirling dataset [9] with NoW protocol (metrical)).

Median |Mean (mm)| Std

Decoder - #PC LQ[HQ LQ[ HQ LQ{HQ

50 1.19(1.12|1.50| 1.41 (1.33|1.23
100 1.15(1.10|1.45| 1.39 [1.28|1.22
200 1.151.06/1.47| 1.36 |1.31{1.20
300 1.15(1.06/1.46| 1.35 [1.30(1.20

Dataset Ablation Studies. As described in the main paper, we used several
datasets to construct our training set. We perform a leave-one-out analysis in
Table 3 on the Stirling dataset. The LYHM dataset contains 1211 subjects and,
thus, has the most significant influence on the training.

In addition to the datasets listed in the main paper, we also processed
FaceScape [18, 20]. While FaceScape is a large-scale dataset, it has been recorded
within an uncalibrated setup, thus, being in a none metrical scale which is in-
troducing a bias in our prediction.

Table 3: To analyze the contribution of a single dataset, we perform a leave-
one-out analysis. We report the reconstruction quality for images from Stirling
dataset [9] (where we exclude Stirling from training). As can be seen, LYHM [5]
has the highest influence on the reconstruction quality, leaving it out leads to an
increase of the mean error for HQ images from 1.35mm to 1.43mm and for LQ
images from 1.46mm to 1.51mm on the Stirling dataset [9].

Dataset Median |Mean (mm)| Std
LQ‘HQ LQ‘ HQ LQ‘HQ
w/o LYHM [5] 1.18(1.12|1.51| 1.43 [1.35(1.27
w/o FRGC [19] 1.15|1.06|1.47| 1.36 |1.33[1.23
w/o BP4D+ [19] 1.14{1.09|1.46| 1.38 |1.30{1.21
w/o BU3DFE [19] 1.14(1.08|1.45| 1.37 |1.29]1.21
w/o D3DFACS [1] 1.13(1.06|1.43| 1.35 [1.28|1.19
w/o Face Warehouse [1][1.13|1.07|1.43| 1.36 |1.27|1.20
All 1.15(1.06/1.46| 1.35 [1.30/1.20
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2 Studies on the Facial Expression Tracking

Our metrical face shape prediction can be used to initialize facial expression
tracking. In contrast to methods like [8], our method uses a perspective cam-
era model, which allows us to predict a depth. In Figure 4, we show a sample
sequence from [17] with an according depth and photo-metric error plot.
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Fig.3: Evaluation of the tracking error on the ’Volker’ sequence of [17]. The

RMSE depth error is computed based on the reference depth maps which have
been reconstructed using a stereo system. The photo-metric error is computed
based on an RMSE error metric assuming RGB in [0, 255].

As can be seen, our method results in the lowest photo-metric error in terms
of a masked RMSE metric on the colors. The error plots shown in Figure 3
contain the metric reconstruction error of the depth (RMSE). It is based on
the reference depth information of the sequence, which has been reconstructed
from a passive stereo system. We also evaluate the dense photometric error
(RMSE), which can be computed for [7, 8] too. In comparison to the method
Face2Face [16] which also uses a perspective camera model (11.0mm mean RMSE
depth error), our metrical face shape estimation improves the tracking quality
significantly (5.7mm mean RMSE). In the supplemental video, we show several
tracking results which demonstrate that our proposed technique is temporally
stable.
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Fig. 4: Photo-metric error on the three sequences from Garrido et al. [10] shown in
the supplemental video.The photo-metric error is computed based on an RMSE
error metric assuming RGB in [0, 255]3.

3 Model-free Decoder

Inspired by pi-GAN [2] and Dynamic Surface Function Networks [1], we also
evaluated a coordinated-based multi layer perceptron (MLP) with sinusoidal ac-
tivation functions (SIREN [15]) to represent the geometry of a face (see Figure 5).
This architecture can be trained solely on the data of our unified dataset without
requiring any 3DMM model. The network and its sinusoidal activation functions
are controlled by a mapping network M’ to represent different faces. The map-
ping network takes the identity code z as input and predicts the frequencies
and phase shifts of the sinusoidal activation layers. The SIREN network S is
evaluated at the FLAME [12] template mesh vertices A € R*N and N = 5023
to leverage the correspondences of the 3D training data.

Gsiren(2z) = S(A | M'(2)).
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Since this model does not rely on the PCA basis of the FLAME model, it can
predict meshes outside the FLAME face space. In comparison to the 3DMM-
based model presented in the main paper, this model-free approach performs
on par on the different benchmarks (see Table 4). A benefit of the model-free
decoder is that it can be trained solely on our dataset of paired 2D /3D data which
is significantly smaller than the dataset of 3D scans used for the construction of
the FLAME model (2.3k (our dataset) versus 4k subjects used for FLAME).

‘In-the-wild* 2D Data
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Fig.5: Overview of a model-free decoder. The model-free decoder is based on a
Siren architecture [15] using FiLM conditionings [2]. In contrast to the FLAME-
based decoder, this model-free decoder can be trained in conjunction to the
encoder only based on the dataset with the paired 2D /3D data which is smaller
than the dataset of 3D scans used for constructing the FLAME model.

A drawback of this Siren-based approach is its runtime and complexity
(3DMM only has a single linear layer for representing shape variations). The
used SIREN network is a more compact representation using 8 hidden layers
and 256 feature size with total 1976327 parameters, while the 3DMM has a
linear layer with (300 + 1) % 5023 % 3 = 4535769 parameters.

Table 4: Quantitative evaluation of the face shape estimation using Stirling
dataset [9] and NoW protocol (metrical).

Non-Metrical Metrical (mm)
Stirling (NoW Protocol)| Median | Mean Std Median | Mean Std
LQIHQ|LQ[HQ|LQ[HQ[LQ[HQ[LQ[HQ|LQ[HQ
Deng et al. [7] (PyTorch) 1.12(10.99(1.44|1.27|1.31|1.15|1.47|1.31|1.93|1.71|1.77|1.57
DECA [3] 1.09(1.03(1.39]1.32|1.26|1.18|1.32|1.22|1.71|1.58|1.54|1.42
Ours (SIREN) 1.01{0.94|1.281.19(1.15|1.06|1.20|1.09|1.53|1.39|1.35|1.23
Ours (FLAME) 0.96/0.92{1.22|1.16|1.11|1.04|1.15|1.06|1.46|1.35{1.30|1.20
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