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Appendix
A Pseudocode of DebiAN

We present the pseudocode of DebiAN for two tasks — 1) discover the unknown
biases (Alg. 1); 2) mitigate the unknown biases (Alg. 2). To ensure that the
sampled images have the same target attribute labels, we select images with the
same target attribute label in a batch to compute the loss (line 3-7 in Alg. 1, 2,
and line 10-14 in Alg. 2).

Algorithm 1: Discover unknown biases.

Input: C: trained classifier, T: number of iterations, K: number of target
attribute classes

Output: D: discoverer

Data: D: training set

1 fort:1...7T do
2 B:={(L;,y:)}}L, ~D // Sample a batch B with N pairs of images
I, and target attribute labels y;

/* for each target attribute class ¢ */
3 fork:1...K do
4 B ={I;,y;) | y; = k,;,y;) € B}}L, // Select M pairs from B

whose labels are k
p(9|1;) = C(;),1; € By // C predicts target attribute

6 p(b|1;) == D(1;),1; € By  // D predicts bias attribute groups
7 L = Lrov + Lua // Compute loss on B:.
8 update D with loss 1/x Zszl L

B Implementation Details

In DebiAN, the discoverer and classifier use the same architecture but do not
share the parameters.
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Algorithm 2: Mitigate unknown biases.

Input: T: number of iterations, K: number of target attribute classes
Output: C: classifier, D: discoverer
Data: D: training set
1 fort:1...7T do
/* ======== Start: optimize C, freeze D ======== */
2 B:={(Li,y:)}/L; ~D // Sample a batch B with N pairs of images
I, and target attribute labels y;
/* for each target attribute class ¢ */
3 fork:1...K do
Bi = {X;,y;) | y; = k,;,y;) € B}}L, // Select M pairs from B
whose labels are k

5 p(y11;) =C;),1; € By // C predicts target attribute
6 p(b|1;):=D(;),I; € B, // D predicts bias attribute groups
7 Lf = Lrer // Compute loss on Bj
8 update C with loss 1/x S0 | L§
/* ======== End: optimize C, freeze D ======== */
/* ======== Start: optimize D, freeze (' ======== */

9 B:={{,y)}} 1 ~D // Sample a batch B with N pairs of images
I, and target attribute labels y;

/* for each target attribute class k */
10 for k:1...K do
11 B = {(I;,y;) | y; =k, X;,y;) € B}, // Select M pairs from B

whose labels are k

12 p(9|1;) = C(;),I; € By // C predicts target attribute
13 p(b| L) = D(;),1I; € B, // D predicts bias attribute groups
14 ﬁkD = Lrov + Lua // Compute loss on By
15 update D with loss 1/x 3 v, LF

/* ======== End: optimize D, freeze ( ======== */

On Multi-Color MNIST dataset (Sec. 4.1), we follow the same setting used
in LfF [23]’s experiment on Colored MNIST. We use Adam [13] optimizer with
1073 learning rate and 256 batch size. We use an MLP with three hidden layers
(obtained from the LfF’s official code'). All models are trained for 100 epochs.

In the experiments for gender bias mitigation on CelebA [21] dataset (Sec. 4.2),
we follow most of the settings used in LfF. We use ResNet-18 [9] as the network
architecture. We use horizontal flip for data augmentation during training. We
use Adam optimizer with 10~* learning rate and 256 batch size. All models are
trained for 50 epochs. The only difference is that we use CelebA’s validation set
to choose the epoch where models achieve the best validation set accuracy and
report the results on the testing set. Note that validation set accuracy does not
use any bias attribute labels because unsupervised debiasing should not rely on
any labels of bias attributes. LfF directly reports the results at the 50 epoch on

! https://github.com/alinlab/LfF
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the validation set, which is hard to be replicated as reported by other users in
their official code GitHub repository?.

In the experiments for gender bias mitigation on bFFHQ dataset [12], we use
the same setting in [12]. We use Adam as the optimizer with 256 batch size. All
models are trained for 200 epochs. We use ResNet-18 as the backbone. We notice
that Lee et al. [16] use a different setting on bFFHQ dataset with StepLR, for the
learning rate scheduling, which is more complicated than the one in the original
paper [12]. Thus, we choose the former one as the setting on bFFHQ dataset.

In the experiment of mitigating multiple biases in gender classifier on CelebA
dataset (Sec. 4.2), we choose 64 as the batch size and ResNet-50 as the backbone
of classifiers. All models are trained with 50 epochs. We use CelebA’s validation
set to choose the epoch that has the best validation set accuracy for each method.
We report the results on the testing set. We use Adam as the optimizer with
104 learning rate.

On Biased Action Recognition (BAR) [23] dataset, we use the setting in [23].
We use Adam as the optimizer with 10~* learning rate. The batch size is 256. We
use 224 x 224 random cropping for data augmentation. All models are trained
with 90 epochs.

In the scene classification task, we choose ResNet-18 as the backbone of
classifiers and 128 as the batch size. We use Adam as the optimizer with 10~*
learning rate. All models are trained only on the Places [31] dataset for 50 epochs.
We choose the epoch where the model achieves the best accuracy on Places’s
validation set and report the results on LSUN’s [29] validation set.

The code is based on PyTorch [24]. We modify LfF’s code® that generates
Colored MNIST to create Multi-Color MNIST dataset.

~ In implementation, we add e = 1075 to the denominators of Py (§) and
P,-(9) (Eq. 3) to avoid zero division.

For the discoverer D, we choose two different implementations for different
numbers of classes of the target attribute. When the target attribute is binary
(e.g., experiments in Sec. 4.2), i.e. number of classes is two, D predicts one
value for each image, which is the predicted bias attribute group. We denote this
implementation as “global” since two classes globally share the predicted bias
attribute groups. When the target attribute has ¢ > 2 classes, e.g., ten classes in
the digit classification, action recognition, and scene classification in Sec. 4.1 and
Sec. 4.3, D predicts ¢ values, where each value is the predicted bias attribute
group of the corresponding target attribute class. We denote this implementation
as “per class” since D predicts bias attribute groups for each target attribute
class. We provide an ablation study on this in Appendix C.5.
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Table 7: Ablation study on Unbalanced Assignment (UA) penalty (i.e., Lua) in
mitigating gender bias of Blond Hair classifier on CelebA [21] dataset

W/O Lua DebiAN

Avg group Acc. 79.6+1.7 84.0+1.4
Worst group Acc. 38.5+47 52.9147

Table 8: Ablation study on Unbalanced Assignment (UA) penalty (i.e., Lua) in
mitigating multiple biases of gender classifier on CelebA [21] dataset

bias attribute metric w/o Lua DebiAN

Avg. Group Acc. 87.7+04 88.5+1.1
Worst Group Acc. 58.1+12 61.7+a2

Heavy Makew Avg. Group Acc. 85.6+12 87.8+13
y P Worst Group Acc. 46.9+52 56.0+5.2

Wearing Lipstick

C Ablation Study

C.1 Unbalanced Assignment (UA) penalty

Here we show more ablation study results on the Unbalanced Assignment (UA)
penalty on CelebA dataset. The results are shown in Tabs. 7 and 8, which further
proves that Lya can improve fairness results by avoiding the trivial solution—
assigning all images into a single bias group (see Unbalanced Assignment (UA)
penalty in Sec. 3.1).

C.2 Batch Size

In practice, {I;}?; (defined in Sec. 3) is a mini-batch of images sampled from
the dataset for optimizing the networks. One may have the concern that the
sampled batch may not have enough images from different bias groups for the
discoverer to assign. Therefore, we conduct an ablation study on different batch
sizes on Multi-Color MNIST dataset with the same setting introduced in Sec 4.1,
where the ratio of the left color is 0.99 and right color is 0.95. We report
the accuracy results for images that are both bias-conflicting w.r.t. left color
and right color bias attributes (see “both bias-conflicting” in Tab. 9). We also
report the unbiased accuracy results. The results in Tab. 9 show that DebiAN
can achieve better debiasing results under different batch sizes compared with
the vanilla model.

2 https://github.com/alinlab/LfF/issues/2
3 https://github.com/alinlab/LfF/blob/master/make_dataset.py
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Table 9: Ablation study on different batch sizes on Multi-Color MNIST dataset. We
report the accuracy results for images that are both bias-conflicting w.r.t. left color
and right color bias attributes. We also report the unbiased accuracy results. DebiAN
achieves better debiasing results under all batch sizes

batch size vanilla DebiAN (Ours)
39 both bias-conflicting 8.0+0.5 18.911.2
unbiased accuracy 61.7+1.0 75.0+0.5
64 both bias-conflicting 8.2+1.9 18.1108
unbiased accuracy 61.7+1.4 74.2+0.4
198 both bias-conflicting 5.6+1.s 17.241.2
unbiased accuracy 58.7+2.5 72.1+0.7
956 both bias-conflicting 5.2+0.4 16.0+1.8
unbiased accuracy 57.4+o.7 72.0+08
512 both bias-conflicting 4.8+1.0 12.5+1.9
unbiased accuracy 56.1+1.3 70.1+1.1

C.3 Ablation Study on Different Ratios

We conduct an ablation study on different ratios of bias-aligned samples in Multi-
Color MNIST’s training set. We keep the ratio for the right color bias attribute
to 0.95 and use different ratios for left color bias attribute, ranging from 0.995
to 0.95. The results are shown in Tab. 10. DebiAN achieves better unbiased
accuracy results and accuracy results on samples that are bias-conflicting w.r.t.
both bias attributes. The only exception is the accuracy results of the samples
that are bias-conflicting w.r.t. both bias attributes when both ratios are 0.95
(last section in Tab. 10). Both LfF and DebiAN achieve 39.6 accuracy results.
However, our method achieves a lower standard deviation (0.2) than LfF (6.9)
and achieves much better final unbiased results (81.8 vs. 68.5). We also notice
that LfF’s debiasing results have a large standard deviation when the ratios of
both bias attributes are 0.95. We provide an explanation in Appendix D.3.

C.4 Alternate Training

We conduct an ablation study on alternate training on the Multi-Color MNIST
dataset with the same setting used in Sec. 4.1. To remove the alternate training
from DebiAN, we follow EIIL [5] and PGI [1] to train the discoverer to identify the
unknown biases in a classifier trained with one epoch. After training discoverer,
we fix the parameters of discoverer and only train the classifier to perform
debiasing. The results in Tab. 11 show that alternate training can improve the
debiasing results, e.g., higher unbiased accuracy and higher accuracy for samples
that are bias-conflicting w.r.t. both bias attributes (4th row), which demonstrates
the necessity of alternate training.
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C.5 Bias Attribute Groups: Global vs. Per Class

As mentioned in Appendix B, the predicted bias attribute groups from the
discoverer (D) are shared by both classes in the binary classification task. In
the multi-class classification setting (e.g., digit classification, scene classification
task, etc.), D predicts binary bias group assignments for each class. We justify
our implementation choices with the results in Tab. 12.

For the binary age classification on bFFHQ dataset, there is no significant
difference between the two implementation choices (i.e., differences are within
error bars). Therefore, we choose “global” discoverer for the binary classification
task due to its simplicity.

However, in the multi-class digit classification on Multi-Color MNIST dataset,
we do observe the better result produced by the discoverer that predicts bias
group assignment for each class (i.e., improvement is greater than the error
bar). We suspect that predicting bias attribute groups per class in the binary
classification task is redundant because the binary target attribute is spuriously
correlated with the binary bias attribute. For example, if the target attribute
age is spuriously correlated with the bias attribute gender, i.e., more young
females and old males than old females and young males, then it is not necessary
to predict bias attribute group for both genders since both genders share the
same bias attribute groups. However, this may not be the case for multi-class
settings. For example, in Multi-Color MNIST dataset, each digit class is spuriously
correlated with a unique left color, e.g., for bias-aligned samples, digit class 0’s
left color is red but digit class 1’s left color is yellow (Fig. 4). In other words, the
bias attribute values may not be shared globally across different target attribute
classes. Therefore, we choose different numbers of outputs for the discoverer
under different tasks.

C.6 Alternative Design for Debiasing: maxc Lrov

One may consider an alternative design for debiasing—train the classifier C to
maximize the Equal Opportunity Violation (EOV) loss, or formally maxc Lroy.
This alternative design, to some degree similar to GAN [6]’s training strategy,
may look more “unified” since it lets the discoverer D and classifier C play the
minmax game:

min max | P+ (9) — By~ (9)], 9)

where Pyt (4) and P, (§) are defined in Eq. 3. This alternative design enables C
to directly meet the Equal Opportunity [8,25] fairness criterion. More concretely,
we implement this alternative design of C’s objectives by the following loss
function:

mcin —log (1= |Py+ (9) — Py-(9)

) + CE(p: (L), y), (10)

where the first — log term implements C’s objective in the minmax game (Eq. (9))
and the second term CE is the standard cross-entropy loss. We conduct an



Discover and Mitigate Unknown Biases with Debiasing Alternate Networks

-
N o © o
o o o S

N
o

bias aligned / conflicting accuracy

Method
— LfF

DebiAN (Ours)

Bias Attribute
— left color (ratio=0.98)
=== right color (ratio=0.95)

0 20 40 60

epoch

(a) left color’s ratio = 0.98

80

100

bias aligned / conflicting accuracy

-
o
1<

©
oS

o
o

IS
o

N
o

_

0 20

Method
— LfF

DebiAN (Ours)

Bias Attribute
—— left color (ratio=0.995)
=== right color (ratio=0.95)

40 60

epoch

80 100

(b) 1left color’sratio = 0.995

Fig. 8: More bias discovery results w.r.t. left color and right color biases through-
out the training epochs on Multi-Color MNIST dataset under different ratios of bias-
aligned samples w.r.t. left color. The results are consistent with Fig. 5
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Fig. 9: Bias discovery results when left color and right color are equally salient
(both ratios are 0.95). The three plots are results under three different random seeds. In
the first two plots, LfF mainly discovers right color at the early training stage and
gradually discovers both biases. In the third seed, it mainly discovers left color bias.
The results show that L{F are unstable in bias discovery when two biases are equally
salient. In contrast, our DebiAN consistently discovers both biases at the early stage
under different random seeds and gradually converges 50% bias discovery accuracy as
debiasing is performed in the classifier

ablation study on the design for debiasing (i.e., playing minmax game vs. RCE
loss (Eq. 6)) and the results on Multi-Color MNIST dataset are shown in Tab. 13.
The results demonstrate that our RCE loss performs much better than the
alternative design. We suspect the reason is that C in DebiAN has two goals —
1) fooling the discoverer to achieve fairer results; 2) achieving higher accuracy
by optimizing the standard cross-entropy loss, which is different from GAN [6]
where the generator only has one goal — fooling the discriminator to achieve
better image quality of the synthesized images. Therefore, it is hard to control
the balance between the two goals of C' in this alternative design. In contrast, our
RCE loss can better incorporate the two goals within a single objective function
LrcE, leading to better debiasing results.
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D Bias Discovery on Multi-Color MINIST

D.1 Implementation Details

To evaluate the bias discovery results, we transform the outputs from LfF’s “biased
model” and DebiAN’s discoverer into bias-aligned / bias-conflicting prediction
by the following approaches.

For L{F, since the biased model is trained to amplify the biases, the biased
model’s outputs predict ten colors aligned with digits. Thus, when its predicted
color class is the same as the ground-truth digit class, e.g., c-th color for the
c-th class, we regard its prediction as bias-aligned. Otherwise, its prediction is
bias-conflicting.

For DebiAN, we use discoverer and classifier to predict each image I;’s
predicted bias group assignment p(l; | I,) and predicted probability of the ground-
truth class of the target attribute p;(I;) on the entire testing set, respectively.
Then, we compute the weighted average predicted probabilities P+ () and P, (%))
(see Eq. 3) in two bias groups. If Py+(§) > Py—(§), we use p(b = 1| L) as the
bias-aligned prediction and p(l; = 0] I;) as the bias-conflicting prediction since
the positive bias group has higher weighted average predicted probability, i.e.,
classifier performs better on the positive bias group. If P+ (9) < P,—(¢), we use
p(b=1|1,) as the bias-conflicting prediction and p(b = 0| I;) as the bias-aligned
prediction.

After obtaining bias-aligned and bias-conflicting predictions, we compute
the bias-aligned and bias-conflicting accuracy for left color and right color
biases as follows. Each testing image has two labels—(1) bias-aligned/bias-
conflicting w.r.t. left color; (2) bias-aligned/bias-conflicting w.r.t. right color.
Thus, the left color (or right color) bias discovery accuracy is computed based on
the bias-aligned /bias-conflicting predictions against the left color (or right color)
bias-aligned /bias-conflicting labels.

D.2 More Bias Discovery Results under Different Ratios

In the main paper, we evaluate LfF and DebiAN’s bias discovery results when
the ratio of left color is 0.99 in Fig. 5. Here, we show results under more
ratios in Fig. 8, where the ratios of left color are 0.98 (Fig. 8 (a)) and 0.995
(Fig. 8 (b)). The results are consistent with Fig. 5—LfF can only discover the
more salient left color and cannot identify the less salient right color bias,
whereas DebiAN’s discoverer can discover both biases at the early training stage
and the bias discovery accuracy gradually converges to 50% when debiasing is
performed in the classifier.

D.3 Bias Discovery Results under Equally Salient Biases

We further evaluate bias discovery results when left color and right color
biases are equally salient, i.e., ratios of both biases are 0.95. We found that
LfF shows more unstable results under different random seeds than in previous
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settings. Therefore, we show bias discovery results under three different random
seeds in Fig. 9. Under the first two random seeds (left and middle plots in
Fig. 9), L{F first discovers right color bias and gradually discovers both biases.
However, under the third random seed (the right plot in Fig. 9), L{fF mainly
discovers the 1left color bias. Therefore, our Multi-Color MNIST dataset reveals
another weakness of LfF—unstable bias discovery results when two biases are
equally salient, which also explains LfF’s unstable debiasing results under the
equally salient biases (LfF has large error bars, e.g., £33.7 and +25.9, of the
accuracy results in Tab. 10). In contrast, DebiAN’s bias discovery results are
stable—consistent results across different random seeds and under different ratios.

D.4 Detailed Discussion on Bias Discovery

Why LfF’s bias discovery accuracies do not converge to 50%? In Fig. 5
and Fig. 8, LfF’s bias discovery accuracies maintain at about 100% or 50%
throughout the training epochs. One may wonder why it does not converge to
50% as DebiAN does. The reason is that DebiAN discovers biases from the
classifier (Lrov is based on classifier’s output), whereas LfF identifies biases
from the dataset. Concretely, LfF uses the assumption that the bias attribute is
easier than the target attribute to define the bias and uses Generalized Cross-
entropy (GCE) loss [30] to train a biased model. GCE loss is defined by —p{ log p;,
where p; is bias model’s predicted probability of the ground-truth class and ¢ is
a hyperparameter. Intuitively, it up-weights easy examples (i.e., high p;) with
high weight p] and down-weights hard examples (i.e., low p;) with low weight p7.
Therefore, the “biased model” focuses more on the easy examples in the dataset.
However, it does not know any biases in the classifier (no classifier’s outputs
used in GCE). Therefore, whether the classifier is performing debiasing will not
affect LfF’s bias discovery, making the bias attribute accuracy stays the same
throughout the entire training stage. In contrast, DebiAN’s discoverer actively
identifies biases in the classifier. Therefore, discoverer’s bias discovery results
will converge to 50% as debiasing is performing in the classifier, making the
discoverer harder to find the biases.

Bias Discovery: EIIL and PGI Here, we discuss the connection and difference
between DebiAN and two previous methods—EIIL and PGI. In contrast to LfF
that finds biases from the dataset based on the assumption, all EIIL, PGI, and
DebiAN actively find biases from the classifier. However, DebiAN differs from
EIIL and PGI in terms of the objective function, network architecture, and
training scheme. We mainly introduce EIIL because PGI is a follow-up work for
EIIL with a difference in the network architecture.

In terms of objective function, EIIL (and PGI) inversely uses the debiasing
objective function—IRMvl [2]. In other words, while minimizing IRMv1 was
designed for debiasing in previous works, EIIL maximizes the gradient norm
penalty in IRMv1 to identify biases. However, this is suboptimal for two rea-
sons. First, IRMv1 approximates IRM with gradient norm penalty to make it
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computationally tractable. However, the zero gradient norm may only indicate a
local minimum instead of the global minimum. In contrast, DebiAN’s EOV loss
uses the principled definition to define the bias—violation of equal opportunity
fairness criterion. Second, since the gradient norm does not have an upper bound,
maximizing it leads to an optimization problem. As a comparison, DebiAN’s
EOV loss minimizes a bounded negative log-likelihood (Eq. 2), which is easier to
be optimized.

Regarding network architecture, EIIL does not train any networks but directly
optimizes a vector q € RV for N images in the training set to maximize IRMv1’s
gradient norm, which can be regarded as directly optimize the bias group assign-
ments. Since the vector q is only fitted to the training set, we cannot evaluate
EIIL’s bias discovery results on the balanced testing set. PGI uses a slightly
different approach by training a small MLP that takes the classifier’s features as
the input and predicts the bias group assignments. PGI’s bias discovery objective
function is identical with EIIL’s—maximizing IRMv1. We use the trained MLP
to infer the bias-aligned / bias-conflicting on the testing set on Multi-Color
MNIST dataset under the setting used in Sec. 4.1 (ratio w.r.t. left color is
0.99 and ratio w.r.t. right color is 0.95) based on a classifier trained with one
epoch (explain in the next paragraph). The bias discovery accuracy results w.r.t.
left color and right color are 50.6+1.9 and 49.940.3. In contrast, DebiAN’s
discoverer has the same network architecture as the classifier to predict bias
group assignments from raw images, which enables discoverer to learn its own
feature of the bias attribute directly from the raw images. As a result, DebiAN
achieves about 60% to 75% accuracy at the first epoch (see Fig. 5). Therefore,
we empirically show that DebiAN can discover biases more accurately.

Finally, with respect to the training scheme, by hypothesizing that the classifier
learns bias features in the early stage, EIIL and PGI use a fixed classifier trained
with one epoch to discover biases. However, this might not be the case in the
multi-bias setting where multiple biases may be learned at different training
stages. In contrast, DebiAN trains discoverer and classifier in an alternate fashion,
enabling discoverer to find biases in the classifier during the entire training stage.
Our ablation study on the alternate training (Appendix C.4) further demonstrates
its benefits.

E Results on Colored MNIST (single-bias setting)

We also compare with other methods on Colored MNIST in a single-bias set-
ting. There are two variants of Colored MNIST datasets in previous works—(1)
adding colors to the foreground (i.e., digit) [1,11,17]; (2) adding colors to the
background [3,26]. Therefore, we conduct experiment on both variants of Col-
ored MNIST dataset. We denote the Colored MNIST with foreground color
as “Colored MNIST (foreground)” and the Colored MNIST with background
color as “Colored MNIST (background).” Same with the experiment setting
on Multi-Color MNIST, we follow the setting used in LfF [23], including using
MLP as the network architecture, training with 100 epochs, etc. Same with L{F,
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we report the results under four ratios of bias-aligned samples in the training
set—0.995, 0.99, 0.98, and 0.95. In terms of evaluation metrics, we follow LfF to
report the accuracy results on bias-conflicting samples and unbiased accuracy.
We additionally report the accuracy results on bias-aligned samples.

We report LfF’s reported results on Colored MNIST (foreground). Besides, we
also replicate LfF’s results via their officially released code. We cannot replicate
their reported results. This issue is also reported in the official code’s GitHub
repository by other people®.

The results on Colored MNIST (foreground color) are in Tab. 14. Although
LfF achieves better bias-conflicting accuracy results, it also achieves much lower
bias-aligned accuracy, revealing that LfF’s reweighing method overly focuses
on the bias-conflicting samples than the bias-aligned samples. As a result, LfF
achieves low unbiased accuracy. Overall, DebiAN achieves comparable or slightly
lower unbiased accuracy results.

The results on Colored MNIST (background color) are in Tab. 15. Similar
to the results on Colored MNIST (foreground color), LfF achieves better bias-
conflicting accuracy but low bias-aligned accuracy and unbiased accuracy. Overall,
DebiAN achieves comparable or slightly better unbiased accuracy results.

We also notice that PGI achieves inconsistent results on Colored MNIST
(foreground color) and Colored MNIST (background color). While PGI achieves
very good results on Colored MNIST (foreground color), e.g., top-1 unbiased
accuracy when ratio = 0.995 and ratio = 0.98 in Tab. 14, it achieves bad results on
Colored MNIST (background color), e.g. the lowest unbiased accuracy results in
Tab. 15. We suspect the reason is that PGI is overly sensitive to hyperparameters,
e.g., the coefficient of the KL-divergence for debiasing. In contrast, our method
achieves good results across two Colored MNIST variants without tuning or
changing any hyperparameters.

Finally, we restate that Colored MNIST is a single-bias setting, which may
not be the case in real-world scenarios where multiple biases exist. Therefore, we
regard that we should focus more on our new Multi-Color dataset to evaluate
the debiasing results w.r.t. multiple biases (Tab. 10), where DebiAN achieves
better debiasing results.

F More results on Mitigating Multiple Biases in Gender
Classification

In Tab. 4, we show better DebiAN’s better debiasing results w.r.t. Wearing
Lipstick and Heavy Makeup. To demonstrate that DebiAN’s better debiasing
results w.r.t. more bias attributes, we evaluate on Transects [4] dataset (men-
tioned on L567 in the main paper). Transects dataset contains high-quality face
images synthesized by StyleGAN2 [10], which are also balanced w.r.t. multiple
biases such as Hair Length and Skin Color. The dataset does not contain
training split because it is designed as a testing set to identify biases in gender

4 https://github.com/alinlab/LfF/issues/1
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Fig. 10: Discovered bias of gender classifier: visible hair area. D’s CAM saliency

map is paired with each image. The vanilla gender classifier train on CelebA dataset
performs worse for males with larger visible hair area

classifier. We use gender classifiers trained on CelebA dataset (same setting used
in Sec. 4.2) to evaluate their debiasing performance w.r.t. Hair Length and Skin
Color bias attributes on Transects dataset. The results are shown in Tab. 16,
which demonstrates DebiAN’s better capability in mitigating multiple biases si-
multaneously. Furthermore, the better results w.r.t. Hair Length can also reflect
that DebiAN’s discoverer identifies visible hair area bias attribute (Fig. 6
and Fig. 10).

G More Qualitative Results

G.1 More Examples of Discovered Biases on Face Images

While Fig. 5 shows the discovered visible hair area bias of gender classifier
on female images, we further show the male image examples in Fig. 10. D focuses
on the visible hair area to separate images into “small visible hair area” and
“large visible hair area” groups, which is consistent with the female examples
shown in Fig. 5.

G.2 More Examples of Discovered Biases on Scene Images

We show more examples of discovered biases on the scene images in Fig. 11. For
bridge images, D predicts two bias groups. When the photos are taken on the
bridge, the vanilla classifier performs worse. In comparison, the vanilla classifier
performs better when the photos are taken off the bridge with some correlated
backgrounds, such as mountains or water. For conference room images, the vanilla
classifier performs better when the table is the major object in the scene. However,
it performs worse when the conference room images have many tables, and the
tables do not occlude the chairs.
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off the bridge

on the bridge & co-occur with mountain / water

p(conference room) = 0.32 p(conferec room) = 1.00

p(bridge) = 0.87 p(bridge) = 1.00

(a) Discovered bias in the bridge class. (b) Discovered bias in the conference room class.

Fig. 11: Discovered biases of vanilla scene classifiers. D’s CAM is paired with the image

H Discussion

H.1 Is DebiAN a hard negative method?

No. Hard negative methods focus on addressing the imbalanced problem by
letting the classifier focus on hard misclassified examples and pay less attention
to easy examples. A seminal hard negative method is focal loss [19], which
reweighs the standard cross-entropy loss (—log(p;), where p; is the predicted
probability of the ground-truth class) to —ay(1 — p;)7 log(p;), where o and ~ are
hyperparameters. Intuitively, it uses classifier’s predicted probability to reweigh
the cross-entropy loss, where hard examples (i.e., low p;) are up-weighted with
high a;(1 — p;)” weights and easy examples (i.e., high p;) are down-weighted
with low ay(1 — p;)? weights. Different from focal loss, our RCE loss (Eq. 6)
uses discoverer’s predicted bias group assignments to reweigh the cross-entropy
loss, and the discoverer is trained with Lgoy to differentiate classifier’s p; on
examples from the same target class where the Equal Opportunity is violated.
Therefore, DebiAN is not a hard negative method because we do not use easy or
hard samples (i.e., low or high p;) to perform reweighing, but rather use samples’
estimated bias group assignments to perform debiasing.

We also compare with focal loss on Multi-Color MNIST dataset. We use
a = 0.25 and v = 2.0 as they perform the best in [19]. The results are shown
in Tab. 17, where focal loss’s results are even worse than the vanilla model.
The results prove that hard negative methods are not well-suited for debiasing.
Since DebiAN is different from hard negative methods by using estimated bias
group assignments to mitigate biases, our method achieves much better debiasing
results.

H.2 1Is EOV loss simply doing clustering?

No. EOV loss is used to train discoverer to classify different bias groups values.
Therefore, instead of simply clustering classifier’s prediction, EOV loss guide
the discoverer to do a classification for the bias group assignment. The results in
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Fig. 12: Vanilla’s cross-entropy loss and DebiAN’s RCE loss in (a) blond hair classifi-
cation and (b) gender classification

Fig. 5, Fig. 8, and Fig. 9 show that discoverer can accurately classify if the samples
on the testing set (unseen during training) are bias-aligned or bias-conflicting,
demonstrating that EOV loss guides the discoverer to do classification based on
different bias groups values and it can generalize to testing set’s images.

H.3 Will classifier achieve 100% accuracy such that discoverer
cannot predict bias group assignments?

No. First, note that discoverer’s EOV loss is based on classifier’s predicted
probabilities instead of thresholded hard predictions. Therefore, 100% accuracy
does not indicate that discoverer cannot predict the bias group assignments.
Second, we show the vanilla model’s cross-entropy loss and DebiAN’s RCE loss
on blond hair classification and gender classification tasks in Fig. 12. The results
show that the losses do not completely converge to zero, which proves that
there always exist samples in the training set that classifier does not achieve 1.0
predicted probabilities. Therefore, it still leaves the room for discoverer to predict
bias group assignments based on classifier’s different predictions on different
samples.

H.4 What if the mini-batch only contains the samples from a single
bias group?

It mainly happens under two conditions—(1) very strong spurious correlation;
(2) small mini-batch size. For the first case, our ablation study on the ratios
on Multi-Color MNIST dataset (Appendix D.2) shows that DebiAN achieves
better debiasing results even when the ratio of left color is 0.995 (i.e., very
strong spurious correlation). For the second case, our ablation study on different
batch sizes (Appendix C.2) shows that our method still achieves strong debiasing
results when the batch size is small.
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H.5 RCE loss compared with previous reweighing-based methods

LfF and focal loss are two previous reweighing-based methods for unsupervised
debiasing. At a high level, LfF, focal loss, and DebiAN’s RCE loss all target at
up-weighting worse performed samples and down-weighting better-performed
samples. The difference is how to compute the weight. LfF uses the ratio of
cross-entropy loss between the biased model and the classifier to compute weights.
Focal loss, as a hard negative method (see Appendix H.1), directly uses classifier’s
predicted probabilities to compute the weights. Different from previous methods,
RCE loss uses discoverer’s predicted bias group assignment to compute the
weights. Compared with LfF and focal, DebiAN achieves better debiasing results
(Tab. 1-6 and Tab. 17).

H.6 Evaluation on Discovered Unknown Biases

In Fig. 6, Fig. 7, Fig. 10, and Fig. 11, we show some interesting unknown
biases that human may not preconceive via saliency map. One may wonder if
there exist other approaches to evaluate the results. First, it is hard to directly
quantify the findings due to lack of annotations of the discovered bias attributes,
e.g., CelebA does not have attribute annotations or segmentation annotations of
visible hair area. Using other datasets (e.g., COCO [20]) with more attribute
or segmentation ground-truth may not help since the discovered unknown biases
may still be out of the annotations. Second, UDIS [14], a recent bias discovery
method, also uses saliency maps to interpret the bias. We believe that using
saliency maps is an established evaluation protocol in this task. Third, although
it is hard to evaluate bias discovery in real-world dataset, our evaluation of bias
discovery on Multi-Color MNIST (Fig. 5, Fig. 8, and Fig. 9) has shown that
DebiAN achieves strong bias discovery results. Finally, we believe that our better
debiasing results w.r.t. Hair Length bias attribute on the Transects dataset
can also indirectly prove that discoverer identifies visible hair area bias (see
Appendix F).

H.7 Why not add two colors to the foreground in Multi-Color
MNIST?

The reason is that foreground digits are not always well aligned to the center
of the images. If we assign two colors to the foreground digit based on whether
the foreground is on the left or right, we may encounter cases where the digit is
mainly on the right and only has a tiny area on the left, e.g. an italic digit “1.”
Thus, we choose to add colors to the background.

H.8 Difference between Multi-Color MNIST and Biased MNIST

Shrestha et al. [27] recently proposed the Biased MNIST dataset, which contains
seven biases. However, all seven biases in Biased MNIST share the same bias-
aligned ratio (i.e., 0.7). In contrast, our Multi-color MNIST contains two biases
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that are in different bias-aligned ratios, which we believe is more common in
real-world scenarios and can better reveal the failure modes of existing debiasing
methods. For example, while LfF performs the best in the Biased MNIST bench-
mark, our Multi-Color MNIST dataset reveals that LfF can only discover the
more salient bias—the bias with a larger bias-align ratio.

H.9 Why evaluate on scene classification task?

First, we regard that scene classification as a core vision task on par with object
classification. Second, while many previous debiasing works create datasets [12,23]
that contain a single bias (e.g., artificially introducing the spurious correlation
w.r.t. a single bias), we believe that the classical cross-dataset generalization
evaluation approach [28] does not have the single-bias assumption. The subgroup
distribution w.r.t. multiple biases may vary across different datasets, which is
closer to the real-world setting.

H.10 Limitations and Future Directions

We list some limitations that DebiAN has not fully resolved. First, we only assume
that the bias attribute is binary or continuously valued from 0 to 1 (i.e., two
bias attribute groups). Future works can focus on extending DebiAN to discover
and mitigate unknown biases with more than two groups. Second, DebiAN
can only discover the biases caused by spurious correlation rather than lack of
coverage. For example, suppose a face image dataset only contains long-hair
female images and does not contain any short-hair female images. In that case,
DebiAN cannot discover the hair length bias attribute because the discoverer
does not have samples to categorize female images into two groups in terms of
the hair length bias attribute. Finally, in terms of interpreting the discovered
biases, DebiAN’s approach, using the saliency maps on real-world images, is not
as easy as interpreting biases from synthesized counterfactual images [15,18].
Future works can further explore better interpreting the discovered unknown
biases on real-world images.

H.11 Potential Negative Social Impact

One potential negative social impact is that DebiAN’s discovered biases could be
used as a way to choose real-world images as the adversarial images to attack
visual models in some safety-critical domains, e.g., self-driving cars. Therefore,
we encourage the defender to use DebiAN to mitigate the biases as the defense
strategy.

Since our bias discovery approach relies on the fairness criterion based on
equations, e.g., equal true positive rates among two groups, our method cannot
identify the biases that a fairness criterion cannot capture, e.g., discrimination
against the historically disadvantaged group. To mitigate this issue, we include a
model card [22] in the released code to clarify that our method’s intended use case
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is discovering and mitigating biases that violate the equal opportunity fairness
criterion [8], and the model’s out-of-scope use case is identifying or mitigating
other biases that cannot be captured by the equation of a fairness criterion, e.g.,
discrimination against the historically disadvantaged group [7].
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Table 10: Ablation study on the ratios on Multi-Color MNIST dataset. Top-1 accuracy
results are bolded, and the lowest accuracy results are underlined

left color right color
ratio = 0.995 ratio = 0.95

bias-aligned bias-aligned 100.0+0.0 96.3+0.5 100.0+0.0 100.0+0.0 100.0+0.0

vanilla LfF EIIL PGI DebiAN (Ours)

bias-aligned bias-conflicting 98.7+06 7.6x1.0 98.4+02 92.21111 98.1+0.4
bias-conflicting bias-aligned  6.5+1.0 96.5+t1.6 46.8+05 27.7+142 55.442.1
bias-conflicting bias-conflicting 2.0t0.4 5.9+13 7.4101  6.3+2.4 9.210.8
unbiased 51.8+02 51.6+06 63.2+0.1 56.5+4.3 65.7+0.7

left color right color

ratio — 0.99  ratio — 0.95 vanilla LiF EIIL PGI DebiAN (Ours)

bias-aligned  bias-aligned 100.0+0.0 99.6+0.5 100.0+0.0 98.6+2.3 100.0=0.0
bias-aligned bias-conflicting 97.1+05 4.7+05 97.2115 82.6+196 95.6+0.8
bias-conflicting bias-aligned  27.5+3.6 98.6+04 70.8+49 26.6+5.5 76.5+0.7
bias-conflicting bias-conflicting 5.2+0.4  5.1+0.4 10.940s8 9.5+3.2 16.0+1.5
unbiased 57.4+07 52.0+01 69.7+1.0 54.3+40 72.0+0.s
left color right color

ratio — 0.98  ratio — 0.95 vanilla L{F EIIL PGI DebiAN (Ours)

bias-aligned  bias-aligned 100.0+0.0 99.0+1.7 100.0+0.0 89.0+19.0 100.0=0.0

bias-aligned bias-conflicting 96.6+1.2  9.7+0.7 96.0+0.3 78.6+32.4 97.1+0.s
bias-conflicting bias-aligned 64.4+23 98.3+09 84.0t06 69.5+27.7 85.1+43.4
bias-conflicting bias-conflicting 12.4+1.1 11.5+11 16.0+17  16.4+1.1 19.4413
unbiased 68.3+1.4 54.6+05 T4.0+05 63.42+19.3 75.4+0.9

left color right color

ratio — 0.95  ratio — 0.95 vanilla, L{F EIIL PGI DebiAN (Ours)

bias-aligned  bias-aligned 100.0+0.0 93.4+5.5s 100.0+0.0 100.0+0.0 100.0=0.0

bias-aligned bias-conflicting 91.1+2.3 71.1+33.7 92.7+05 76.5+17.8 94.7+o0.9
bias-conflicting bias-aligned  87.0+3.7 69.8+25.9 90.0+1.1 74.4+17.7 92.7+1.3
bias-conflicting bias-conflicting 26.0+1.3 39.6+6.0 34.7+33 15.84a7 39.6+0.2

unbiased 76.0+1.6 68.5+3.2 79.3+0.7 66.7+10.0 81.8+0.6

Table 11: Ablation study on alternate training on Multi-Color MNIST dataset

left color right color . . .
ratio — 0.99  ratio — 0.95 w/o alternate training DebiAN
bias-aligned bias-aligned 100.0+0.0 100.0=+0.0
bias-aligned bias-conflicting 97.3+0.1 95.6+0.8

bias-conflicting bias-aligned 74.0+0.3 76.5+0.7
bias-conflicting bias-conflicting 11.5+0.7 16.0+15

unbiased accuracy 70.7+0.1 72.0x0.8
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Table 12: Results of ablation study on discoverer’s outputs. Bolded methods are used
to report results in the main paper. For binary classification (i.e., age classification on
bFFHQ dataset) task, there is no significant difference whether or not the discoverer
predicts bias attribute groups per class or globally. When it comes to the multi-class
digit classification on Multi-Color MNIST dataset, predicting bias attribute groups per
class has better accuracy results on the images that are bias-conflicting w.r.t. both left
color and right color bias attributes

dataset #classes per class DebiAN (global)

bFFHQ 2 62.80-+0.60 62.87+0.61

dataset #classes global DebiAN (per class)
Multi-Color MNIST 10 13.5+01 16.0+1.5

Table 13: Results of an alternative design for debiasing in DebiAN — D and C play
the minmax game (see DebiAN (minmax)) on Multi-Color MNIST dataset. Our RCE
loss significantly outperforms the alternative design

left color right color . . .
ratio — 0.99  ratio — 0.95 DebiAN (minmax) DebiAN (RCE)
bias-aligned  bias-aligned 97.3+4.6 100.0+0.0
bias-aligned bias-conflicting 95.7+0.8 95.6+0.8
bias-conflicting bias-aligned 64.5+2.0 76.5+0.7
bias-conflicting bias-conflicting T.T+1.9 16.0+15
unbiased accuracy 66.3+0.0 72.0+0.s

Table 14: Results on Colored MNIST (foreground color) under different ratios of
bias-aligned samples in the training set. We bold top-1 results (except LfF’s results
reported in the original paper since they cannot be replicated by their officially released
code) and underline the lowest results based on the mean value. Although LfF achieves
better bias-conflicting accuracy, it achieves lower bias-aligned accuracy, resulting in low
unbiased accuracy. Overall, DebiAN achieves comparable or slightly lower unbiased
accuracy results compared with other methods
LiF L{F

ratio vanilla (reported in the paper) (replicate via official code) EIIL PGL DebiAN (Ours)
bias-aligned 100.00+0.00 - 54.1346.33 99.90+0.01 99.86+0.11 100.00=0.00
0.995 bias-conflicting ~ 7.92+4.6s 63.49+1.04 57.11+6.22 24.63+0.37 27.0145.40 24.83+1.83
unbiased accuracy 53.96+2.34 63.39+1.07 55.62+6.26 62.27+1.85 64.4442.78 62.41+0.01
bias-aligned 99.97+0.05 - 61.96+3.20 99.81+0.19 99.86+0.07 99.86+0.05
0.99  bias-conflicting  18.73+2.7s 74.19+0.04 67.20+4.58 40.71+1.05 41.88+0.90 43.33+0.86
unbiased accuracy 59.35+1.40 74.01+2.21 64.58+2.22 70.26+1.06 70.87+0.53 71.60+0.44
bias-aligned 99.80+0.16 - 73114541 99.77+0.14 99.73+0.11 99.76+0.05
0.98  bias-conflicting  39.23+1.63 80.67+0.56 78.23+1.56 54.4441.26 57.46+1.13 55.46+0.71
unbiased accuracy 69.52+0.90 80.48+0.45 75.67+2.05 77.10+0.55 78.60+0.55 77.61+0.37
bias-aligned 99.60+0.17 - 71.67+0.68 99.61+0.25 99.37+0.31 99.70+0.17
0.95 bias-conflicting  70.99+2.45 85.77+0.66 82.37+1.40 73.01+1.08 70.63+2.24 73.04+2.20

unbiased accuracy 85.30+1.30 85.39+0.04 77.02+4.11 86.31+0.46 85.00+1.05 86.37+1.10
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Table 15: Results on Colored MNIST (background color) under different ratios of
bias-aligned samples in the training set. We bold top-1 results and underline the lowest
results based on the mean value. Similar to the results in Colored MNIST (foreground
color) (Tab. 14), although LfF achieves better bias-conflicting accuracy, it achieves lower
bias-aligned accuracy, resulting in low unbiased accuracy. Overall, DebiAN achieves
comparable or slightly higher unbiased accuracy results compared with other methods

ratio vanilla LfF EIIL PGI DebiAN (Ours)
bias-aligned 99.97+0.05 42.98+1.67 100.00+0.00 100.00+0.00 100.00+0.00
0.995 bias-conflicting 1.98+035 61.37T+1.69 14.16+489  9.95+3.28 20.94+3.92

unbiased accuracy 50.98+0.1s8 52.17+1.62 57.0842.44 54.98+1.64 60.47+1.06
bias-aligned 100.00+0.00 52.24+1.84¢  99.97+0.05  99.26+1.10 100.00+0.00

0.99 bias-conflicting 5.434+032 67.941088 35.71+17s 12.89+1.62 42.5710.36
unbiased accuracy 52.75+0.16 60.09+1.26 67.84+0.90 56.07+0.81 71.29+0.1s
bias-aligned 99.97+0.05 71.90+486 99.90+0.09 97.83+3.54 99.90+0.00

0.98 bias-conflicting  21.84+539 80.28+0.98 51.25+286 18.06+5.47 53.4141.21

unbiased accuracy 60.91x2.71 76.09+2.01 75.58+1.46 59.75+4.02 76.66+0.60

bias-aligned 99.87+0.15 69.71+7.07 99.90+0.16  96.78+4.90 99.90+0.01
0.95 bias-conflicting  55.14+2.06 81.67+454 69.17+315 33.90+15.55 70.70+0.76
unbiased accuracy 77.51+1.00 75.69+5.50 84.53+1.54 65.3440.80 85.30-+0.37

Table 16: Average group accuracy results of gender classification on Transects [4]
dataset. All models are trained on CelebA dataset and evaluated on Transects w.r.t.
two bias attributes—Hair Length and Skin Color. DebiAN achieves better results,
which demonstrates that DebiAN better mitigate multiple biases simultaneously in the
real-world multi-bias setting. Besides, it also reflects that DebiAN discovers visible
hair area bias attribute to achieve better debiasing results w.r.t. Hair Length bias
attribute

bias attribute vanilla LfF EIIL  PGI DebiAN (Ours)

Hair Length 55.1+5.8 54.7+2.9 54.0+0.4 56.2+1.3 60.5+1.7
Skin Color 53.5+5.3 53.3+2.9 53.1+0.08 57.4+0.3 60.1+1.2




22 Li et al.

Table 17: Comparing with focal loss [19], a hard negative method, on Multi-Color
MNIST dataset

left color right color
skew = 0.995 skew = 0.95

bias-aligned  bias-aligned 100.0+0.0 100.0+0.0 100.0+0.0

vanilla focal DebiAN (Ours)

bias-aligned bias-conflicting 98.7+0.6 97.9+0.0 98.1+0.4
bias-conflicting bias-aligned 6.5+1.0  0.4%0.2 55.4+2.1
bias-conflicting bias-conflicting 2.0+04  1.2103 9.2108
unbiased 51.8+0.2 49.2+0.2 65.7+0.7

left color right color

skew — 0.99  skew — 0.95 vanilla focal DebiAN (Ours)

bias-aligned  bias-aligned 100.0+0.0 100.0+0.0 100.0+0.0

bias-aligned bias-conflicting 97.1+0.5 95.7+0.6 95.6+0.8
bias-conflicting bias-aligned  27.5+36  3.3x2.0 76.5+0.7
bias-conflicting bias-conflicting 5.2+04  2.4403 16.0+13
unbiased 57.4x+07 50.3+0.4 72.0+0s

left color right color

skew — 0.98  skew — 0.95 vanilla focal DebiAN (Ours)

bias-aligned bias-aligned 100.0x+0.0 100.0+0.0 100.0+0.0

bias-aligned bias-conflicting 96.6+1.2 85.1+2.1 97.1+0s
bias-conflicting bias-aligned 64.4+2.3 15.9+4.4 85.1+3.4
bias-conflicting bias-conflicting 12.4+1.1  6.0x0.1 19.4+13
unbiased 68.3+1.4  51.7+o0s 75.4+0.9

left color right color

skew — 0.95  skew — 0.95 vanilla focal DebiAN (Ours)

bias-aligned  bias-aligned 100.0+0.0 100.0+0.0 100.0+o0.0

bias-aligned bias-conflicting 91.1+23 63.7+3.s 94.T+o0.9
bias-conflicting bias-aligned  87.0x3.7 54.444.1 92.7T+13
bias-conflicting bias-conflicting 26.0+1.5  11.3+0.1 39.6+0.2

unbiased 76.0+1.6 57.3+1.2 81.8+06




