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Abstract. Deep image classifiers have been found to learn biases from
datasets. To mitigate the biases, most previous methods require labels of
protected attributes (e.g., age, skin tone) as full-supervision, which has
two limitations: 1) it is infeasible when the labels are unavailable; 2) they
are incapable of mitigating unknown biases—biases that humans do not
preconceive. To resolve those problems, we propose Debiasing Alternate
Networks (DebiAN), which comprises two networks—a Discoverer and
a Classifier. By training in an alternate manner, the discoverer tries to
find multiple unknown biases of the classifier without any annotations of
biases, and the classifier aims at unlearning the biases identified by the
discoverer. While previous works evaluate debiasing results in terms of a
single bias, we create Multi-Color MNIST dataset to better benchmark
mitigation of multiple biases in a multi-bias setting, which not only reveals
the problems in previous methods but also demonstrates the advantage of
DebiAN in identifying and mitigating multiple biases simultaneously. We
further conduct extensive experiments on real-world datasets, showing
that the discoverer in DebiAN can identify unknown biases that may
be hard to be found by humans. Regarding debiasing, DebiAN achieves
strong bias mitigation performance.
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Debiasing

1 Introduction

Many studies have verified that AI algorithms learn undesirable biases from the
dataset. Some biases provide shortcuts [18] for the network to learn superficial
features instead of the intended decision rule causing robustness issues, e.g .,
static cues for action recognition [7,11,40]. Other biases make AI algorithms dis-
criminate against different protected demographic groups such as genders∗ [3,25–
27,58,61,66] and skin tones [9,23], leading to serious fairness problems. Therefore,
it is imperative to mitigate the biases in AI algorithms. However, most previous
bias mitigation methods [4,54,60,64,66] are supervised methods—requiring anno-
tations of the biases, which has several limitations: First, bias mitigation cannot
be performed when labels are not available due to privacy concerns. Second,

∗In this work, “gender” denotes visually perceived gender, not real gender identity.
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they cannot mitigate unknown biases—biases that humans did not preconceive,
making the biases impossible to be labeled and mitigated.

Since supervised debiasing methods present many disadvantages, in this work,
we focus on a more challenging task—unsupervised debiasing, which mitigates the
unknown biases in a learned classifier without any annotations. Without loss of
generality, we focus on mitigating biases in image classifiers. Solving this problem
contains two steps [2,14,36,45,52]: bias identification and bias mitigation.
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Fig. 1: Debiasing Alternate
Networks (DebiAN). We alter-
nately train two networks—a dis-
cover and a classifier. Discoverer
actively identifies classifier ’s un-
known biases. At the same time,
the classifier mitigates the biases
identified by the discoverer.

Due to the absence of bias annotations, the
first step is to assign the training samples into
different bias groups as the pseudo bias labels,
which is challenging since the biases are even
unknown. The crux of the problem is to define
the unknown bias. Some previous works make
strong assumptions about the unknown biases
based on empirical observations, such as bi-
ases are easier to be learned [45], samples from
the same bias group are clustered in feature
space [52], which can be tenuous for different
datasets or networks. Other works quantify
the unknown biases by inversely using the de-
biasing objective functions [2,14], which can
face numerical or convergence problems (more
details in Sec. 2). Unlike previous works, we follow an axiomatic principle to
define the unknown biases—classifier’s predictions that violate a fairness crite-
rion [13,17,21,22,35,46,55]. Based on this definition, we propose a novel Equal
Opportunity Violation (EOV) loss to train a discoverer network to identify the
classifier’s biases. In specific, it shepherds the discoverer network to predict bias
group assignments such that the classifier violates the Equal Opportunity [22,46]
fairness criterion (Figs. 1, 2).

Regarding debiasing as the second step, most previous approaches [2,14,52]
preprocess the identified biases into pseudo bias labels and resort to other super-
vised bias mitigation methods [6,47] for debiasing. In contrast, we propose a novel
Reweighted Cross-Entropy (RCE) loss that leverages soft bias group assignments
predicted by the discoverer network to mitigate the biases in the classifier (Fig. 1).
In this way, the classifier is guided to meet the Equal Opportunity.

In addition, many previous works [2,14,52] treat bias identification and bias
mitigation as two isolated steps. In [2,14], the biases are identified from an
undertrained classifier, which is suboptimal since the classifier may learn different
biases at different training stages. Consequently, these two-stage methods fail to
mitigate other biases learned by the classifier at later training stages. In contrast,
we employ an alternate training scheme to carry out bias identification and bias
mitigation simultaneously. We jointly update the discoverer and classifier in an
interleaving fashion (Figs. 1 and 2). In this way, the discoverer can repetitively
inspect multiple biases that the classifier learns at the entire training stage.
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We integrate our novel losses and training scheme into a unified framework—
Debiasing Alternate Networks (DebiAN), which contains two networks—a
discoverer D and a classifier C (see Fig. 1). We jointly train the two networks in
an alternate manner. Supervised by our novel EOV loss, D tries to discover C’s
multiple unknown biases that violate the Equal Opportunity fairness criterion.
Trained with our RCE loss, C aims at mitigating multiple biases identified by
the discoverer D to satisfy Equal Opportunity. After the alternate training, the
unknown biases in classifier C are mitigated, leading to a fairer and more robust
classification model. Besides, when employed with other network explanation
methods [49,50,67], the discoverer is helpful to interpret the discovered unknown
biases, facilitating dataset curators to locate dataset biases [53].

While previous works [7,31,41,45,47] only evaluate debiasing results in terms
of a single bias, we create Multi-Color MNIST dataset with two biases in the
dataset, which benchmarks debiasing algorithms in the multi-bias setting. Our
new dataset surfaces the problems in previous methods (e.g ., LfF [45]) and
demonstrates the advantage of DebiAN in discovering and mitigating multiple
biases. We further conduct extensive experiments to verify the efficacy of DebiAN
in real-world image datasets. In the face image domain, DebiAN achieves better
gender bias mitigation results on CelebA [43] and bFFHQ [32] datasets. On the
gender classification task, DebiAN achieves better debiasing results on CelebA
w.r.t. multiple bias attributes. We further show an interesting unknown bias
discovered by DebiAN in gender classification—visible hair area. Lastly, we
show that DebiAN applies to other image domains for broader tasks, such as
action recognition and scene classification. Our method not only achieves better
debiasing results, but also identifies interesting unknown biases in scene classifiers.

Our contributions are summarized as follows: (1) We propose a novel objective
function, Equal Opportunity Violation (EOV) loss, for identifying unknown biases
of a classifier based on Equal Opportunity. (2) We propose a Reweighted Cross-
Entropy (RCE) loss to mitigate the discovered unknown biases by leveraging
the soft bias group assignments. (3) We create Multi-Color MNIST dataset to
benchmark debiasing algorithms in a multi-bias setting. (4) Our Debiasing
Alternate Networks (DebiAN) outperforms previous unsupervised debiasing
methods on both synthetic and real-world datasets.

2 Related Work

Bias Identification Most previous works identify known biases based on bias
labels. In [9], face images are labeled with gender and skin tone to identify the
performance gaps across intersectional groups. Balakrishnan et al. [8] further
synthesize intersectional groups of images and analyze the biases with additional
labels. Beyond face images, recent works [44,56] compute the statistics of labels
based on the rule mining algorithm [1] or external tools. [34] uses clustering on
image embeddings to discover unknown biases. [37,42] discovers unknown biases
without labels. However, these works rely on GAN [20,29] to synthesize images,
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which suffers from image quality issues. In contrast, DebiAN directly classifies
real images into different bias attribute groups to discover the unknown biases.

Supervised Debiasing Supervised debiasing methods use bias labels for debi-
asing. [28] proposes a supervised reweighing method. Wang et al. [62] benchmark
recent supervised debiasing methods [4,54,64,66]. [15] lets the model be flexibly
fair to different attributes during testing. [48] uses disentanglement for debiasing.
Singh et al. [51] propose a feature splitting approach to mitigate contextual bias.
[16,19] use adversarial training to mitigate biases in face recognition.

Known Bias Mitigation with Prior knowledge Without using labels, some
works use prior knowledge to mitigate certain known biases. ReBias [7] uses model
capacity as the inductive bias to mitigate texture bias and static bias in image
and video classification. HEX [57] introduces a texture extractor to mitigate
the texture bias. Beyond image classification, RUBi [10] and LearnedMixin [12]
mitigate unimodal bias for visual question answering [5] with prior knowledge.

Unsupervised Debiasing In the field of mitigating unknown biases, Sohoni
et al. [52] apply clustering on samples in each class and use the clustering
assignment as the predicted bias labels, which could be inaccurate due to its
unsupervised nature. Li et al . [39,40] fix the parameters of feature extractors and
focus on mitigating the representation bias. LfF [45] identifies biases by finding
easier samples in the training data through training a bias-amplified network
supervised by GCE loss [65], which up-weights the samples with smaller loss
values and down-weights the samples with larger loss values. In other words,
GCE loss does not consider the information of the classifier, e.g ., the classifier’s
output. Therefore, LfF’s bias-amplified network blindly finds the biases in the
data samples instead of the classifier. Unlike LfF, the EOV loss in DebiAN
actively identifies biases in the classifier based on the classifier’s predictions,
leading to better debiasing performance. Following LfF, BiaSwap [32] uses LfF to
discover biases and generate more underrepesented images via style-transfer for
training. Other works [2,14,36,59] inversely use the debiasing objective function
to maximize an unbounded loss (e.g ., gradient norm penalty in IRMv1 [6]) for
bias identification, which may encounter numerical or convergence problems. As
a comparison, our EOV loss (Eq. (2)) minimizes negative log-likelihood, which is
numerically stable and easier to converge.

3 Method

Overview The overview of our proposed Debiasing Alternate Networks
(DebiAN) is shown in Fig. 2. It contains two networks—a discoverer D and
a classifier C. As shown in Fig. 2 (a), the discoverer D tries to discover the
unknown biases in the classifier C by optimizing our proposed EOV loss (LEOV)
and UA penalty (LUA) (Sec. 3.1). As shown in Fig. 2 (b), the classifier C’s goal
is to mitigate the biases identified by D via a novel Reweighted Cross-Entropy
loss (LRCE) (Sec. 3.2). Lastly, we train the two networks in an alternate manner
as the full model for discovering and mitigating the unknown biases (Sec. 3.3).
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(a) Training the discoverer to find biases in the classifier.

backpropagation

backpropagation

(b) Training the classifier to mitigate biases found by discoverer.

Fig. 2: Overview of Debiasing Alternate Networks (DebiAN). DebiAN consists
of two networks—a discoverer D and a classifier C. D is trained with LEOV and LUA

(Sec. 3.1) to find the unknown biases in C. C is optimized with LRCE (Sec. 3.2) to
mitigate the biases identified by D

Background To better explain our motivation for discovering the unknown
biases (without manual annotations of biases), let us first revisit the traditional
approach for identifying known biases when labels of biases (e.g ., protected
attributes) are available, which is illustrated in Fig. 3 (a). The following are given
for identifying known biases—a well-trained classifier C for predicting a target
attribute, n testing images {Ii}ni=1, target attribute labels of each image {yi}ni=1,
and bias attribute labels {bi}ni=1. We denote the i-th image target attribute as
yi ∈ {1, 2, ...K} and K is the number of classes. We consider the bias attribute
that is binary or continuously valued (i.e., bi ∈ {0, 1} or bi ∈ [0, 1]), such as
biological gender (e.g ., female and male) and skin tones (e.g ., from dark skin
tones to light skin tones in Fitzpatrick skin type scale). We leave bias attributes
with multi-class values for future works. Then, the given classifier C is tested
for predicting the target attribute ŷi for each testing image Ii. Finally, we check
whether the predictions meet a fairness criterion, such as Equal Opportunity [22]:

Pr{ŷ = k | b = 0, y = k} = Pr{ŷ = k | b = 1, y = k}, (1)

where the LHS and RHS are true positive rates (TPR) in negative (b = 0)
and positive (b = 1) bias attribute groups, respectively. k ∈ {1...K} is a target
attribute class. Equal Opportunity requires the same TPR across two different
bias attribute groups. That is, if the TPR is significantly different in two groups
of the bias attribute, we conclude that classifier C contains the bias of attribute
b because C violates the Equal Opportunity fairness criterion. For example, as
shown in Fig. 3 (a), although all images are female, a gender classifier may have a
larger TPR for the group of long-hair female images than the group of short-hair
female images. Thus the gender classifier is biased against different hair lengths.

3.1 Unknown Bias Discovery

As for identifying unknown biases, we do not have the labels to assign images into
two groups for comparing TPR since 1) we do not assume images come with bias
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predicts the bias 
attribute groups.
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(a) Traditional approach for identifying the known bias attribute.

(b) Our method for discovering the unknown bias attribute.
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Fig. 3: (a): The traditional approach for identifying the known bias attribute (e.g ., hair
length) by comparing true positive rates (TPR) of the target attribute (e.g ., gender) in
two groups of bias attributes (e.g ., long hair and short hair), where the group assignment
of bias attribute is based on the labels of the bias attribute. (b): Our method trains
a discoverer (D) to predict the groups of the unknown bias attribute such that the
difference of averaged predicted probabilities on the target attribute (e.g ., gender) in
two groups are maximized (see Eq. 2)

attribute labels, and 2) the type of bias is even unknown. However, we can compare
the difference in TPR for any group assignments based on speculated biases—a
significant difference in TPR hints that the Equal Opportunity fairness criterion
is most violated (our method mainly focuses on the Equal Opportunity fairness
criterion, and we leave other fairness criteria for future work). Motivated by this
finding, instead of using labels of bias attribute {bi}ni=1 for group assignment,
we train a discoverer D to predict the group assignment for each image, i.e.,
p(b̂ | Ii) := D(Ii). By optimizing loss functions below, we find the most salient
bias of the classifier C that violates the Equal Opportunity fairness criterion,
which is illustrated in Fig. 3 (b).

Equal Opportunity Violation (EOV) Loss To shepherd the discoverer D
to find the group assignment where classifier C violates the Equal Opportu-
nity fairness criterion, we propose the Equal Opportunity Violation (EOV) loss,
denoted by LEOV, as the objective function to train D. For computing LEOV,
we sample a set of n images {Ii}ni=1 with the same target attribute labels (i.e.,
∀iyi = k), e.g ., all images in Fig. 3 (b) are female. The classifier C has been
trained for predicting the target attribute y of the images (i.e., p(ŷ | Ii) := C(Ii)).
For simplicity, we denote pt as C’s prediction on images of the ground-truth class
(i.e., pt(Ii) = p(ŷ = yi | Ii)). Meanwhile, the same set of images {Ii} are fed
to the discoverer D for predicting the binary bias attribute group assignment:
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p(b̂ | Ii) := D(Ii). Finally, we define the EOV loss as:

LEOV = − log
(∣∣P̄b+(ŷ)− P̄b−(ŷ)

∣∣) , (2)

where P̄b+(ŷ) and P̄b−(ŷ) are defined by:

P̄b+(ŷ) =

∑n
i=1 p(b̂ = 1 | Ii)pt(Ii)∑n

i=1 p(b̂ = 1 | Ii)
,

P̄b−(ŷ) =

∑n
i=1 p(b̂ = 0 | Ii)pt(Ii)∑n

i=1 p(b̂ = 0 | Ii)
.

(3)

Intuitively, P̄b+(ŷ) and P̄b−(ŷ) are the weighted average predicted probabilities
of the target attribute in two bias attribute groups, which can be regarded as a
relaxation to Equal Opportunity’s true positive rate (Eq. 1) where the predicted
probabilities are binarized into predictions with a threshold (e.g ., 0.5). Minimizing
LEOV leads D to maximize the discrepancy of averaged predicted probabilities of
target attributes in two bias attribute groups (i.e., see maxD |P̄b+(ŷ)− P̄b−(ŷ)|
in Fig. 3), thus finding the bias attribute group assignments where C violates the
Equal Opportunity fairness criterion. For example, in Fig. 3 (b), if the gender
classifier C is biased against different hair lengths, then by optimizing LEOV,
D can assign the female images into two bias attribute groups (i.e., short hair
and long hair) with the predicted bias attribute group assignment probability

p(b̂ | Ii), such that the difference of averaged predicted probabilities on gender in
these two groups is maximized.
Unbalanced Assignment (UA) penalty However, we find that optimizing
LEOV alone may let the discoverer D find a trivial solution—assigning all images
into one bias attribute group. For example, suppose D assigns all images to the
positive bias attribute group (i.e., ∀i, p(b̂ = 1 | Ii) = 1). In that case, P̄b−(ŷ)
becomes zero since the negative group contains no images. P̄b+(ŷ) becomes a
large positive number by simply averaging pt(Ii) for all of the n images, which
can trivially increase |P̄b+(ŷ)− P̄b−(ŷ)|, leading to a small LEOV. To prevent this
trivial solution, we propose the Unbalanced Assignment (UA) loss denoted by:

LUA = − log

(
1− 1

n

∣∣∣∣∣
n∑

i=1

p(b̂ = 1 | Ii)− p(b̂ = 0 | Ii)
∣∣∣∣∣
)
. (4)

Intuitively, minimizing LUA penalizes the unbalanced assignment that leads to
large difference between

∑n
i=1 p(b̂ = 1 | Ii) and

∑n
i=1 p(b̂ = 0 | Ii), which can

be regarded as the numbers of images assigned into positive and negative bias
attribute groups, respectively. Therefore, LEOV is jointly optimized with LUA

to prevent the trivial solution. We acknowledge a limitation of the UA penalty.
Although it resolves the trivial solution, it introduces a trade-off since the bias
attribute groups are usually spuriously correlated with the target attribute
(e.g ., more long-hair females than the short-hair females in the dataset). Hence
encouraging balanced assignments may make the discoverer harder to find the
correct assignment. However, our ablation study shows that the benefits of using
LUA outweigh its limitations. The results are shown in Sec. 4.1 and Tab. 1.
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3.2 Unknown Bias Mitigation by Reweighing

We further mitigate C’s unknown biases identified by D. To this end, we propose
a novel Reweighted Cross-Entropy loss that adjusts the weight of each image’s
classification loss. Based on the bias attribute group assignment p(b̂ | Ii) predicted
by D, we define the weight W(Ii) of classification loss for each image Ii as:

W(Ii) =1
[
P̄b+(ŷ) ≥ P̄b−(ŷ)

]
p(b̂ = 0 | Ii)

+ 1
[
P̄b+(ŷ) < P̄b−(ŷ)

]
p(b̂ = 1 | Ii),

(5)

where 1 is an indicator function. Then, the Reweighted Cross-Entropy loss (LRCE)
is defined by:

LRCE = − 1

n

n∑
i=1

(1 +W (Ii)) log pt (Ii) . (6)

For example, when C performs better on images from the positive bias
attribute group (i.e., P̄b+(ŷ) ≥ P̄b−(ŷ)), we use p(b̂ = 0 | Ii) as the weight, which
up-weights the images from the negative bias attribute group, where classifier
C is worse-performed. At the same time, it down-weights the images from the
positive bias attribute group where C is already better-performed. Adding one to
the weight in Eq. (6) lets the loss function degenerate to standard cross-entropy
loss when W(Ii) = 0. By minimizing the Reweighted Cross-Entropy loss, C is
guided to meet Equal Opportunity.

3.3 Full Model

We summarize the proposed losses in Sec. 3.1 and Sec. 3.2 for the full model of
Debiasing Alternate Networks (DebiAN), which is shown in Fig. 2. When
the task is to only discover (i.e., not mitigate) the unknown biases of a given
classifier, the classifier’s parameters are fixed and we only train the discoverer D
by minimizing LEOV (Eq. 2) and LUA (Eq. 4) on the classifier’s training data.
When the task is to mitigate the unknown biases, we jointly train two networks
in an alternate fashion:

min
D

LEOV + LUA, (7)

min
C

LRCE. (8)

In Eq. 7, C’s parameters are fixed, and D is optimized to identify C’s unknown
biases where C violates the Equal Opportunity. Through Eq. 8, C is optimized for
mitigating the unknown biases discovered by D to satisfy the Equal Opportunity
while D’s parameters are frozen. After the alternate training, C’s unknown biases
identified by D are mitigated, leading to a fairer and more robust classifier. The
pseudocode of the complete algorithm is in Appendix A.
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4 Experiment

We conduct extensive experiments to verify the efficacy of DebiAN. First, we
evaluate the results on our newly created Multi-Color MNIST dataset (Sec. 4.1)
in a multi-bias setting. We further conduct experiments on real-world datasets
in multiple image domains–face (Sec. 4.2) and other image domains (e.g ., scene,
action recognition) (Sec. 4.3). More details (e.g ., evaluation metrics) are intro-
duced in each subsection. The code and our newly created Multi-Color MNIST
dataset are released at https://github.com/zhihengli-UR/DebiAN.
Comparison Methods We mainly compare with three unsupervised debiasing
methods: 1) LfF [45] uses Generalized Cross-entropy (GCE) loss [65] to train a
“biased model” for reweighing the classifier; 2) EIIL [14] identifies the bias groups
by optimizing bias group assignment to maximize the IRMv1 [6] objective function.
The identified bias groups will serve as pseudo bias labels for other supervised
debiasing methods to mitigate the biases. Following [14], IRM [6] is used as the
debiasing algorithm for EIIL. 3) PGI [2] follows EIIL to identify the biases by
training a small multi-layer perceptron for bias label predictions. Concerning
debiasing, PGI minimizes the KL-divergence of the classifier’s predictions across
different bias groups. We use the officially released code of LfF, EIIL, and PGI in
our experiment. Besides, we also compare with vanilla models, which do not have
any debiasing techniques (i.e., only using standard cross-entropy loss for training).
On bFFHQ [32] and BAR [45] datasets, we also compare with BiaSwap [32],
which follows LfF to identify unknown biases, and then uses style-transfer to
generate more underrepresented images for training. Since its code has not been
released, we cannot compare DebiAN with BiaSwap on other datasets. All results
shown below are the mean results over three random seeds of runs, and we also
report the standard deviation as the error bar.

4.1 Experiment on Multi-Color MNIST

Many previous works use synthetic datasets to benchmark bias mitigation per-
formance. For example, Colored MNIST [7,31,41] adds color bias to the original
MNIST [38] dataset, where each digit class is spuriously correlated with color
(see Fig. 4 (a)). We compare DebiAN with other methods on the Colored MNIST
dataset in Appendix E. However, we believe that the single-bias setting is an
oversimplification of the real-world scenario where multiple biases may exist. For
instance, Lang et al. [37] find that gender classifiers are biased with multiple
independent bias attributes, including wearing lipsticks, eyebrow thickness, nose
width, etc. The benchmarking results on such a single-bias synthetic dataset may
not help us to design better debiasing algorithms for real-world usage.

To this end, we propose Multi-Color MNIST dataset to benchmark debi-
asing methods under the multi-bias setting. In the training set, each digit class
is spuriously correlated with two bias attributes—left color and right color

(Fig. 4 (b)). Following the terms used in LfF [45], we call samples that can be
correctly predicted with the bias attribute as bias-aligned samples. Samples that
cannot be correctly predicted with the bias attribute are called bias-conflicting

https://github.com/zhihengli-UR/DebiAN
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(b) New dataset for multi-bias setting: Multi-Color MNIST

(a) previous dataset for single-bias setting: Colored MNIST

Fig. 4: Comparison between
(a) previous Colored MNIST [7,
31,41] with a single color
bias and (b) our new Multi-
Color MNIST dataset that
contains two bias attributes—
left color and right color
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Fig. 5: Evaluating bias discovery w.r.t. left

color, right color biases throughout the train-
ing epochs on Multi-Color MNIST. LfF only
finds the more salient left color bias (ra-
tio=0.99), whereas DebiAN’s discoverer finds
both biases at the early training stage. Then
accuracies gradually converge to 50% as debi-
asing is performed in the classifier, making the
discoverer harder to find biases

samples. For example, if most digit “0” images are in red left color in the train-
ing set, we call them bias-aligned samples w.r.t. left color attribute, and we
regard digit “0” images in a different left color (e.g ., yellow) as bias-conflicting
samples. Since the dataset contains two bias attributes, there exist images that
are bias-aligned w.r.t. to left color and bias-conflicting w.r.t. right color

simultaneously, or vice versa. Following [45], we use the ratio of the bias-aligned
samples for each bias attribute to indicate how strong the spurious correlation is
in the training set. The two ratios for two bias attributes can be different, which
is more common in the real-world scenario. The images in the testing set also
contain two background colors, but the testing set has a balanced distribution of
bias-aligned and bias-conflicting samples w.r.t. each bias attribute.
Evaluation Metrics and Settings Following [45], we report the accuracy
results in bias-aligned and bias-conflicting samples on the testing set. Since
Multi-Color MNIST contains two bias attributes, we report the four accuracy
results in the combination of (bias-aligned, bias-conflicting) × (left color,
right color), e.g ., middle four rows in Tab. 1 for each method. We also report
the unbiased accuracy, which averages the four results above. Here, we choose
0.99 as the ratio of bias-aligned samples w.r.t. left color and 0.95 as the ratio
of bias-aligned samples w.r.t. right color. In this way, the left color is a
more salient bias than the right color. We report the results of other ratio
combinations in Appendix C.3. We strictly use the same set of hyperparameters
used in (single) Colored MNIST in LfF. More details are in Appendix B.
Debiasing Results on Multi-Color MNIST The debiasing results are shown
in Tab. 1. Except for LfF, all other methods achieve higher accuracy results on
left color bias-aligned samples (1st and 2nd rows) than right color bias-
aligned samples (1st and 3rd rows), indicating that most methods are more biased
w.r.t. the more salient bias, i.e., left color (ratio=0.99) in the multi-bias setting.
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Table 1: Debiasing results on Multi-Color MNIST dataset. The accuracy results in
the four combinations of two bias attributes, (i.e., left color and right color) and
(bias-aligned and bias-conflicting) are reported. Unbiased accuracy averages the results
over all four combinations. We bold top-2 results and underline lowest results

left color right color
vanilla LfF EIIL PGI w/o LUA (Ours) DebiAN (Ours)

ratio = 0.99 ratio = 0.95

bias-aligned bias-aligned 100.0±0.0 99.6±0.5 100.0±0.0 98.6±2.3 100.0±0.0 100.0±0.0

bias-aligned bias-conflicting 97.1±0.5 4.7±0.5 97.2±1.5 82.6±19.6 97.2±0.5 95.6±0.8

bias-conflicting bias-aligned 27.5±3.6 98.6±0.4 70.8±4.9 26.6±5.5 71.6±0.7 76.5±0.7

bias-conflicting bias-conflicting 5.2±0.4 5.1±0.4 10.9±0.8 9.5±3.2 13.8±1.1 16.0±1.8

unbiased accuracy 57.4±0.7 52.0±0.1 69.7±1.0 54.3±4.0 70.6±0.3 72.0±0.8

Unlike all other methods, LfF gives abnormal results—high accuracy results (e.g .,
99.6, 98.6) for the right color bias-aligned samples and low accuracy results
(e.g ., 4.7, 5.1) for the right color bias-conflicting samples. Consequently, LfF
achieves the worst unbiased accuracy (52.0). The results indicate that LfF only
mitigates the more salient left color bias, rendering the classifier to learn the
less salient right color bias (ratio=0.95). Compared with all other methods,
DebiAN achieves better unbiased accuracy results (72.0). More importantly,
DebiAN achieves much better debiasing result (16.0) in bias-conflicting samples
w.r.t. both left color and right color attributes, where neither color can
provide the shortcut for the correct digit class prediction, demonstrating better
debiasing results of DebiAN for mitigating multiple biases simultaneously in the
multi-bias setting, which is closer to the real-world scenarios.

Bias Discovery: LfF vs. DebiAN We further evaluate the bias discovery
results throughout the entire training epochs, which helps us better understand
LfF’s abnormal results and DebiAN’s advantages. We use LfF’s “biased model”
and DebiAN’s discoverer to predict if a given image is bias-aligned or bias-
conflicting w.r.t. a bias attribute (i.e., binary classification, more details in
Appendix D.1). We show the accuracy results of bias discovery w.r.t. each bias
attribute at the end of each epoch in Fig. 5, which shows that LfF only discovers
the more salient left color bias attribute (100% accuracy), but completely
ignores the less salient right color bias (50% accuracy) throughout the entire
training stage. It reveals the problem of LfF’s definition of the unknown bias—
an attribute in the dataset that is easier, which only holds in the single-bias
setting but does not generalize to the multi-bias setting. In contrast, DebiAN
uses the principled definition to define the bias—classifier’s predictions that
violate equal opportunity, enabling discoverer to find both biases accurately
at the beginning (it achieves about 60% to 70% accuracy because debiasing
is simultaneously performed before the end of the first epoch). At the same
time, DebiAN’s alternate training scheme lets the classifier mitigate both biases,
making the discoverer harder to predict the biases, e.g ., accuracies of both bias
attributes gradually converge to 50%. More discussions are in Appendix D.4.

Ablation Study on UA penalty We conduct an ablation study to show the
effectiveness of Unbalanced Assignment (UA) penalty (Sec. 3.1). Tab. 1 shows



12 Li et al.

Table 2: Results of mitigating the gender bias
of Blond Hair classifier on CelebA [43]

vanilla LfF EIIL PGI DebiAN (Ours)

Avg Group Acc. 79.8±0.3 80.9±1.4 82.0±1.1 81.6±0.3 84.0±1.4

Worst Group Acc. 37.9±1.1 43.3±3.0 46.1±4.9 40.9±6.4 52.9±4.7

Table 3: Accuracy results on bias-
conflicting samples on bFFHQ [32]

vanilla LfF PGI EIIL BiaSwap DebiAN

51.03 55.61 55.2±5.3 59.2±1.9 58.87 62.8±0.6

that LUA improves the debiasing results (see w/o LUA). Besides, we also conduct
ablation studies on different batch sizes, which are included in Appendix C.2.

4.2 Experiments on Face Image Dataset

Gender Bias Mitigation In the face image domain, we conduct experiments
to evaluate gender bias mitigation results on CelebA [43] dataset, which contains
200K celebrity faces annotated with 40 binary attributes. The dataset has spurious
correlations between gender and Blond Hair, leading to gender biases when
performing hair color classification. We follow most of the settings used in LfF,
such as using ResNet-18 [24] as the backbone, using Adam [33] optimizer, etc.
The only difference is that LfF reports the results on the validation set of CelebA,
whereas we use the validation set to select the epoch with the best validation set
accuracy (bias labels in the validation set are not used) to report the results on
the testing set. All methods (including LfF) are benchmarked under the same
setting. We report results in two evaluation metrics: 1) Average Group Accuracy
(Avg. Group Acc.), which calculates the unweighted average of accuracies in four
groups between target attribute and bias attribute, i.e., (male, female) × (blond,
not blond); 2) Worst Group Accuracy (Worst Group Acc.) [47], which takes
the lowest accuracy in the four groups. As shown in Tab. 2, DebiAN achieves
better Average and Worst Group accuracy results, which shows that DebiAN
can better mitigate gender bias without labels. We also conduct experiments on
bFFHQ [32] where the training data contains the spurious correlation between age
and gender. We compare DebiAN with other methods of gender bias mitigation.
We strictly follow the setting in [32]. We report the age accuracy results on the
bias-conflicting samples in the testing set in Tab. 3. The results of vanilla, LfF,
and BiaSwap are from [32] and [32] does not provide the error bars. DebiAN
achieves the best unsupervised results for mitigating gender bias.
Mitigating Multiple Biases in Gender Classifier The results on Multi-
Color MNIST dataset suggest that DebiAN better mitigates multiple biases in the
classifier. In the face image domain, a recent study [37] shows that gender classifier
is biased by multiple attributes, such as Heavy Makeup and Wearing Lipstick.
Hence, we train gender classifiers on CelebA dataset and evaluate Average Group
Accuracy and Worst Group Accuracy w.r.t. these two bias attributes. As shown
in Tab. 4, DebiAN achieves better debiasing results w.r.t. both bias attributes,
proving that the discoverer can find multiple biases in the classifier C during the
alternate training, enabling classifier to mitigate multiple biases simultaneously.
Identified Unknown Bias in Gender Classifier Gender classifier can have
more biases beyond Wearing Lipstick and Heavy Makeup. For example, Bal-
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Table 4: Results of mitigating multiple biases (i.e., Wearing Lipstick and Heavy

Makeup) in gender classifier on CelebA dataset

bias attribute metric vanilla LfF PGI EIIL DebiAN (Ours)

Wearing Lipstick
Avg. Group Acc. 86.6±0.4 87.0±0.9 86.9±3.1 86.3±1.0 88.5±1.1

Worst Group Acc. 53.9±1.2 55.3±3.6 56.0±11.7 52.4±3.2 61.7±4.2

Heavy Makeup
Avg. Group Acc. 85.1±0.0 85.5±0.6 85.4±3.4 84.0±1.2 87.8±1.3

Worst Group Acc. 45.4±0.0 46.9±2.6 46.9±13.1 40.9±4.5 56.0±5.2
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Fig. 6: Discovered bias of gender classi-
fier: visible hair area based on dis-
coverer ’s saliency map. p(female) is
vanilla classifier’s predicted probability
of the face is female. In the two groups
predicted by D, the visible hair areas
are different, where the classifier has
different confidences on gender for the
same identity
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p(restaurant) = 1.00
<latexit sha1_base64="TDqpuGd/mkXhzw2RoP+m0bchCjE=">AAACBHicbVC7SgNBFJ2NrxhfUcs0g0GITdiNgjZC0MYygnlAEsLs5CYZMju7zNwVw5LCxl+xsVDE1o+w82+cPApNPHC5h3PuZeYeP5LCoOt+O6mV1bX1jfRmZmt7Z3cvu39QM2GsOVR5KEPd8JkBKRRUUaCERqSBBb6Euj+8nvj1e9BGhOoORxG0A9ZXoic4Qyt1srmo0EJ4wESDQRZrpnB8Qi+pV3TdTjbv2jYBXSbenOTJHJVO9qvVDXkcgEIumTFNz42wnTCNgksYZ1qxgYjxIetD01LFAjDtZHrEmB5bpUt7obalkE7V3xsJC4wZBb6dDBgOzKI3Ef/zmjH2LtqJUFGMoPjsoV4sKYZ0kgjtCg0c5cgSxrWwf6V8wDTjaHPL2BC8xZOXSa1U9E6LpduzfPlqHkea5MgRKRCPnJMyuSEVUiWcPJJn8krenCfnxXl3PmajKWe+c0j+wPn8ASsUlxw=</latexit>

p(restaurant) = 0.68
<latexit sha1_base64="THHnZx5V7sWuQXP22SC3sP0EsW8=">AAACBHicbVA9SwNBEN3zM8avU8s0i0GITbhT0TRC0MYygjGB5Ah7m4ku7u0du3NiOFLY+FdsLBSx9UfY+W/cxCs0+mDg8d4MM/PCRAqDnvfpzMzOzS8sFpaKyyura+vuxualiVPNocljGet2yAxIoaCJAiW0Ew0sCiW0wpvTsd+6BW1ErC5wmEAQsSslBoIztFLPLSWVLsIdZhoMslQzhaNdeky96mGt55a9qjcB/Uv8nJRJjkbP/ej2Y55GoJBLZkzH9xIMMqZRcAmjYjc1kDB+w66gY6liEZggmzwxojtW6dNBrG0ppBP150TGImOGUWg7I4bXZtobi/95nRQHtSATKkkRFP9eNEglxZiOE6F9oYGjHFrCuBb2VsqvmWYcbW5FG4I//fJfcrlX9fere+cH5fpJHkeBlMg2qRCfHJE6OSMN0iSc3JNH8kxenAfnyXl13r5bZ5x8Zov8gvP+BT7Llyk=</latexit>

p(restaurant) = 0.25
<latexit sha1_base64="lOoa1GGAFEyE46NfQP8UmDsI0mA=">AAACBHicbVA9SwNBEN3zM8avqGWaxSDEJtxFRRshaGMZwXxAEsLeZpIs2ds7dufEcKSw8a/YWChi64+w89+4+Sg08cHA470ZZub5kRQGXffbWVpeWV1bT22kN7e2d3Yze/tVE8aaQ4WHMtR1nxmQQkEFBUqoRxpY4Euo+YPrsV+7B21EqO5wGEErYD0luoIztFI7k43yTYQHTDQYZLFmCkfH9JK6heJZO5NzC+4EdJF4M5IjM5Tbma9mJ+RxAAq5ZMY0PDfCVsI0Ci5hlG7GBiLGB6wHDUsVC8C0kskTI3pklQ7thtqWQjpRf08kLDBmGPi2M2DYN/PeWPzPa8TYvWglQkUxguLTRd1YUgzpOBHaERo4yqEljGthb6W8zzTjaHNL2xC8+ZcXSbVY8E4KxdvTXOlqFkeKZMkhyROPnJMSuSFlUiGcPJJn8krenCfnxXl3PqatS85s5oD8gfP5AzQrlyI=</latexit>

Fig. 7: Discovered biases in Places [68]
dataset. We apply CAM on discoverer
to generate saliency map. The value
p(bedroom) (p(restaurant)) is vanilla
classifier’s predicted probability of the
scene image is bedroom (restaurant)

akrishnan et al. [8] leverages StyleGAN2 [30] to generate high-quality synthesized
images and identify the hair length bias of the gender classifier, e.g ., longer
hair length makes the classifier predict the face as female. Related to their finding,
the discoverer D in DebiAN identifies an interesting unknown bias: visible
hair area. We use D to predict the bias attribute group assignment on images
in CelebA. To better interpret the bias attribute, we further use the identity
labels in CelebA to cluster images with the same identity. Fig. 6 shows that D
assigns images of the same identity into two distinct groups based on the visible
hair area, which is verified by D’s CAM [67] saliency maps. Strictly speaking, all
females in Fig. 6 have long hair. However, due to the hairstyle, pose, or occlusion,
visible hair areas differ between the two groups. As a result, the gender classifier
has lower predicted probabilities on the female images with smaller visible hair
areas. More visualizations are shown in Appendix G.1.

4.3 Experiments on Other Image Domains

Our method is not limited to synthetic and face image domains. Here we conduct
experiments on action recognition and scene classification tasks.
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Table 5: Results on Biased Action
Recognition (BAR) [45] dataset
vanilla LfF PGI EIIL BiaSwap DebiAN

51.85±5.92 62.98±2.76 65.19±1.32 65.44±1.17 52.44 69.88±2.92

Table 6: Scene classification accuracy re-
sults on the unseen LSUN [63] dataset

vanilla LfF PGI EIIL DebiAN (Ours)

79.3±0.3 71.1±1.0 74.1±1.9 79.4±0.2 80.0±0.4

Mitigating Place Bias in Action Recognition We conduct experiments
on Biased Action Recognition (BAR) dataset [45], an image dataset with the
spurious correlation between action and place in the training set. The testing
set only contains bias-conflicting samples. Hence, higher accuracy results on the
testing set indicate better debiasing results. The accuracy results in Tab. 5 show
that DebiAN achieves better debiasing results than other methods.
Improving Cross-dataset Generalization on Scene Classification We
conduct experiments on the more challenging scene classification task, where
datasets are more complex and may contain multiple unknown biases. The
biases in this task are underexplored by previous works partly due to the lack
of attribute labels. Due to the absence of attribute labels, we use cross-dataset
generalization [53] to evaluate the debiasing results. Concretely, models are
trained on Places [68] with ten classes overlapped with LSUN [63] (e.g ., bedroom,
classroom, etc.), and evaluated on the unseen LSUN dataset. The results are
shown in Tab. 6. DebiAN achieves the best result on the unseen LSUN dataset,
showing that DebiAN unlearns the dataset biases [53] in Places to improve the
robustness against distributional shifts between different datasets.
Identified Unknown Biases in Scene Classifier DebiAN discovers Places
dataset’s unknown biases that humans may not preconceive. In Fig. 7, the
discoverer separates bedroom and restaurant images based on size of beds and
indoor/outdoor. The vanilla classifier performs worse on bedroom images with
twin-size beds and outdoor restaurant images (see more in Appendix G.2).

5 Conclusion

We propose Debiasing Alternate Networks to discover and mitigate the
unknown biases. DebiAN identifies unknown biases that humans may not precon-
ceive and achieves better unsupervised debiasing results. Our Multi-Color MNIST
dataset surfaces previous methods’ problems and demonstrates DebiAN’s advan-
tages in the multi-bias setting. Admittedly, our work has some limitations, e.g .,
DebiAN focuses on binary or continuously valued bias attributes, not multi-class
ones. We hope our work can facilitate research on bias discovery and mitigation.

Acknowledgment This work has been partially supported by the National
Science Foundation (NSF) under Grant 1764415, 1909912, and 1934962 and by the
Center of Excellence in Data Science, an Empire State Development-designated
Center of Excellence. The article solely reflects the opinions and conclusions of
its authors but not the funding agents.



Discover and Mitigate Unknown Biases with Debiasing Alternate Networks 15

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: International Conference on Very Large Data Bases (1994)

2. Ahmed, F., Bengio, Y., van Seijen, H., Courville, A.: Systematic generalisation
with group invariant predictions. In: International Conference on Learning Repre-
sentations (2021)

3. Albiero, V., K. S., K., Vangara, K., Zhang, K., King, M.C., Bowyer, K.W.: Anal-
ysis of Gender Inequality In Face Recognition Accuracy. In: The IEEE Winter
Conference on Applications of Computer Vision Workshops (WACVW) (2020)

4. Alvi, M., Zisserman, A., Nellaaker, C.: Turning a Blind Eye: Explicit Removal of
Biases and Variation from Deep Neural Network Embeddings. In: The European
Conference on Computer Vision Workshop (ECCVW) (2018)

5. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh,
D.: VQA: Visual Question Answering. In: The IEEE International Conference on
Computer Vision (ICCV) (2015)

6. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant Risk Minimization.
arXiv:1907.02893 [cs, stat] (2020)

7. Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning De-biased Representations
with Biased Representations. In: International Conference on Machine Learning
(2020)

8. Balakrishnan, G., Xiong, Y., Xia, W., Perona, P.: Towards causal benchmarking of
bias in face analysis algorithms. In: The European Conference on Computer Vision
(ECCV) (2020)

9. Buolamwini, J., Gebru, T.: Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification. In: ACM Conference on Fairness, Accountability,
and Transparency (2018)

10. Cadene, R., Dancette, C., Ben younes, H., Cord, M., Parikh, D.: RUBi: Reducing
Unimodal Biases for Visual Question Answering. In: Advances in Neural Information
Processing Systems (2019)

11. Choi, J., Gao, C., Messou, J.C.E., Huang, J.B.: Why Can’t I Dance in the Mall?
Learning to Mitigate Scene Bias in Action Recognition. In: Advances in Neural
Information Processing Systems (2019)

12. Clark, C., Yatskar, M., Zettlemoyer, L.: Don’t Take the Easy Way Out: Ensemble
Based Methods for Avoiding Known Dataset Biases. In: Empirical Methods in
Natural Language Processing (2019)

13. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic Decision
Making and the Cost of Fairness. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2017)

14. Creager, E., Jacobsen, J.H., Zemel, R.: Environment Inference for Invariant Learning.
In: International Conference on Machine Learning (2021)

15. Creager, E., Madras, D., Jacobsen, J.H., Weis, M., Swersky, K., Pitassi, T., Zemel,
R.: Flexibly Fair Representation Learning by Disentanglement. In: International
Conference on Machine Learning (2019)

16. Dhar, P., Gleason, J., Roy, A., Castillo, C.D., Chellappa, R.: PASS: Protected
Attribute Suppression System for Mitigating Bias in Face Recognition. In: The
IEEE International Conference on Computer Vision (ICCV) (2021)

17. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through
awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (2012)



16 Li et al.

18. Geirhos, R., Jacobsen, J.H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M.,
Wichmann, F.A.: Shortcut learning in deep neural networks. Nature Machine
Intelligence (2020)

19. Gong, S., Liu, X., Jain, A.K.: Jointly De-biasing Face Recognition and Demographic
Attribute Estimation. In: The European Conference on Computer Vision (ECCV)
(2020)

20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems (2014)

21. Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process
fairness in learning: Feature selection for fair decision making. In: NIPS Symposium
on Machine Learning and the Law (2016)

22. Hardt, M., Price, E., Srebro, N.: Equality of Opportunity in Supervised Learning.
In: Advances in Neural Information Processing Systems (2016)

23. Hazirbas, C., Bitton, J., Dolhansky, B., Pan, J., Gordo, A., Ferrer, C.C.: Towards
Measuring Fairness in AI: The Casual Conversations Dataset. arXiv:2104.02821 [cs]
(2021)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

25. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also
Snowboard: Overcoming Bias in Captioning Models. In: The European Conference
on Computer Vision (ECCV) (2018)

26. Jia, S., Meng, T., Zhao, J., Chang, K.W.: Mitigating Gender Bias Amplification in
Distribution by Posterior Regularization. In: Annual Meeting of the Association for
Computational Linguistics (2020)
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