
Supplemental Material for
Unsupervised and Semi-supervised Bias

Benchmarking in Face Recognition

Alexandra Chouldechova†∗ Siqi Deng† Yongxin Wang
Wei Xia∗ Pietro Perona

AWS AI Labs

We structure the appendices of the main text in the follow order:

– Appendix A provides further experiments demonstrating SPE-FR works for
models trained with different data or configurations.

– Appendix B shows results of semi-supervised SPE-FR where an ablation
study on NL is introduced to compare the unsupervised setting with the
semi-supervised ones.

– Appendix C discusses parametric modeling and demonstrates that two-piece
distributions provide good approximations while other standard parametric
families do not.

– Appendix D presents our procedure for estimating the proportion of true
matching pairs from data with no identity annotations.

– Appendix E provides the details of our Bayesian inference strategy, including
MCMC configuration.

– Appendix F provides more details on the training procedure for the face
verification models.

– Appendix G provides supporting information on the datasets and face veri-
fication benchmark protocols used during training and evaluation.

– Appendix H describes how we adapted the Bayesian Calibration [16] method
to the face verification application.

† Equal contribution. Corresponding author: Siqi Deng, Email: siqideng@amazon.com.
∗ Work done when at Amazon.
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A More results on Unsupervised FR Bias Evaluation

A.1 Results on Models Trained with Controlled Biases

In the main text Figure 1 and 5, we presented unsupervised SPE-FR results for
the AA model. We provide here corresponding Figures for the other “ablated”
models (main text Table 1). Interpretations are provided in the respective Figure
captions. Figure 1 shows results for CC- model, Figure 2 shows results for EA-
model, Figure 3 shows results for M- model, and Figure 4 shows results for RT
model.

A.2 Results on the Generalization Test of SPE-FR

In the main text we introduced that we evaluate the effectiveness of SPE-FR
for performance and bias estimation of face recognition models trained under 5
settings detailed in main text Table 2. We have shown results from two models
in main text Figure 7. Here we share results of the rest in Figure 5, Figure 6 and
Figure 7.
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CC− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

(a) Unsupervised SPE-FR applied to the RFW dataset. SPE-FR correctly esti-
mates performance on all groups except for Caucasian group. SPE-FR incorrectly
suggests significant underperformance for Caucasians.

african asian european hispanic

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e−04

1e−03

1e−02

1e−01

1e+00

FMR (= FAR)

F
N

M
R

 =
 1

 −
 T

P
R

type True SPE−FR female male

CC− Morph: SPE−FR TP−T FNMR vs FAR, NL = 0

(b) Unsupervised SPE-FR applied to the Morph dataset restricted to a maximum
of 40K samples per gender-ethnicity-match bin (detailed in Table 4). Overall SPE-
FR over-estimates the system FNMR, but correctly and confidently reveals gender
bias in the system that persists across all ethnicity groups.

Fig. 1: (CC Model) Unsupervised SPE-FR estimates of the FNMR vs
FMR curve. CC model (no European faces in training data) applied to RFW
(Top) and MORPH (Bottom). SPE-FRE estimates are shown as dashed lines,
with 89% posterior credible confidence bands overlaid.
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African Asian Caucasian Indian True SPE−FR

EA− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

(a) Unsupervised SPE-FR applied to RFW. The SPE-FR estimated performance
curves and confidence bands capture the True FNMR vs FMR curves, and correctly
and confidently reveal poor performance on Asian faces compared to the other
racial groups.

african asian european hispanic

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e
−

04

1e
−

03

1e
−

02

1e
−

01

1e−04

1e−03

1e−02

1e−01

1e+00

FMR (= FAR)

F
N

M
R

 =
 1

 −
 T

P
R

type True SPE−FR female male

EA− Morph: SPE−FR TP−SAS FNMR vs FAR, NL = 0

(b) Unsupervised SPE-FR applied to Morph data restricted to a maximum of 40K
samples per gender-ethnicity-match bin (as detailed in Table 4). Overall SPE-FR
over-estimates the system FNMR, but correctly and confidently reveals gender bias
in the system that persists across all ethnicity groups.

Fig. 2: (EA model) Unsupervised SPE-FR estimates of the FNMR vs
FMR curve. EA model (no East Asian faces in training data) applied to RFW
(Top) and MORPH (Bottom). SPE-FRE estimates are shown as dashed lines,
with 89% posterior credible confidence bands overlaid.
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M− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

(a) Unsupervised SPE-FR applied to RFW. The SPE-FR estimated performance
curves and confidence bands capture the True FNMR vs FMR curves, and correctly
indicate overall poor but similar performance across race/ethnicity groups.
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M− Morph: SPE−FR TP−SAS FNMR vs FAR, NL = 0

(b) Unsupervised SPE-FR applied to Morph data restricted to a maximum of 40K
samples per gender-ethnicity-match bin (as detailed in Table 4). Overall SPE-
FR over-estimates the system FNMR, but correctly infers that there is little, if
any, significant gender bias in system performance. The small distance between
the estimated FNMR-FMR curves for men and women within each race/ethnicity
group are overall similar to the true observed gap, except in the hispanic group
where the true gap is greater (but may be imprecisely estimated in the ground
truth).

Fig. 3: (M model) Unsupervised SPE-FR estimates of the FNMR vs
FMR curve. EA model (no Male faces in training data) applied to RFW (Top)
and MORPH (Bottom). SPE-FRE estimates are shown as dashed lines, with 89%
posterior credible confidence bands overlaid.
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RT− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

(a) Unsupervised SPE-FR applied to RFW. The SPE-FR estimated performance
curves and confidence bands capture the True FNMR vs FMR curves except for the
Asian group, and correctly indicate overall poor performance across race/ethnicity
groups, with somewhat worse performance correctly indicated in the African group.
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RT− Morph: SPE−FR TP−SAS FNMR vs FAR, NL = 0

(b) Unsupervised SPE-FR applied to Morph data restricted to a maximum of 40K
samples per gender-ethnicity-match bin (as detailed in Table 4). Overall SPE-FR
slightly mis-estimates the system FNMR, but currectly infers that there is little,
if any, significant gender bias in system performance. The small distance between
the estimated FNMR-FMR curves for men and women within each race/ethnicity
group are overall similar to the true observed gap, correctly indicating no sig-
nificant gender bias in the hispanic group, but some gender bias in the other 3
race/ethnicity groups.

Fig. 4: (RT model) Unsupervised SPE-FR estimates of the FNMR vs
FMR curve. RT model (only 10% of available training data is used in model
training) applied to RFW (Top) and MORPH (Bottom). SPE-FRE estimates
are shown as dashed lines, with 89% posterior credible confidence bands overlaid.
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AA_fresnet18_subarcface− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

Fig. 5: Unsupervised SPE-FR estimates of the FNMR vs FMR curve.
Model bias evaluated on RFW: FR model trained on BUPT-BalancedFace
dataset (ablation “AA” applied, leaving out the African group) with Sub-Center
Arcface loss and Res18 backbone.
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AA_fresnet100_NLL− RFW: SPE−FR TP−T FNMR vs FAR, NL = 0

Fig. 6: Unsupervised SPE-FR estimates of the FNMR vs FMR curve.
Model bias evaluated on RFW: FR model trained on BUPT-BalancedFace
dataset (ablation “AA” applied, leaving out the African group) with Softmax
loss and Res101 backbone, training sets ablation “AA” applied (see Table 1,
left-out set is African.
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Fig. 7: Unsupervised SPE-FR estimates of the FNMR vs FMR curve.
Model bias evaluated on RFW: FR model trained on DeepGlint dataset with
Sub-Center Arcface loss and Res101 backbone.
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B Semi-supervised SPE-FR

In the main text, we presented results for unsupervised SPE-FR, which does
not have access to any identity annotations. Here we present some results for
semi-supervised SPE-FR where we vary the number of labeled image pairs NL
from 0 to 256. We present results for the AA model applied to RFW. Figure 8
shows how the SPE-FR point estimates and confidence intervals for FNMR vary
with the number of annotated image pairs. FNMR values are calculated at a
threshold chosen to achieve FMR 0.005 on the full RFW data. We see that
unsupervised SPE-FR (NL = 0) performs just about as well as semi-supervised
SPE-FR, except in the case of the African group, where we see significant gains
coming from a small number of annotations. This is likely due to the fact that
in the AA model there is very poor separation between the score distributions
in the true match and non-match classes. A small number of labeled examples
helps resolve the classes in ways that the fully unsupervised SPE-FR model can
struggle to do.
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Fig. 8: Semi-supervised SPE-FR FNMR point estimates at overall tar-
get FMR 0.005 as number of labelled pairs NL varies. This plot shows
semi-supervised SPE-FR point estimates (blue points) and confidence inter-
vals (orange bars) for different numbers of labelled pairs (NL). Ground truth
FNMR is shown as a horizontal line. Plots show FNMR estimates for the four
race/ethnicity groups in the RFW data: African (top-left), Asian (top-right),
Caucasian (bottom-left), and Indian (bottom-right). We see that except for the
African group, adding labels does not significantly affect SPE-FR estimates. The
unsupervised SPE-FR results are mostly just as reliable. This is not the case for
the African group. We see a significant decrease in the width of the confidence
interval with just a small number of annotated pairs. This is likely due to the
fact that in the AA model there is very poor separation between the score dis-
tributions in the true match and non-match classes. A small number of labeled
examples helps resolve the classes in ways that the fully unsupervised SPE-FR
model can struggle to do.
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C Parametric Modeling

As discussed in the main text, we rely on two-piece distributions to model the
class-conditional distributions of face recognition system similarity and distance
scores. In the main text, we presented histograms of the distance scores S for the
AA model on the RFW data, along with true FNMR vs FMR curves compared
to parametric approximations obtained using the fully labelled data. Here we
present Normal QQ plots to support our assertion that, while the densities shown
in the main text may look close to normal, they are in fact significantly skewed
for non-matching pairs. This is shown in Figure 9.

Fig. 9: Normal QQ plots showing match-conditional distributions of
distance scores for the AA model on RFW. Departure from the diagonal
lines, particularly in the lower and upper tail, indicates that the observed data
are non-normally distributed. With the exception of the African subgroup, we
see that the score distribution for non-matching pairs (top row, grey figures)
deviates from normality.

We now display the corresponding plots for MORPH. Figure 10 shows his-
tograms and Normal QQ-plots of the distance scores S and similarity scores
S̃ = 1

1+S obtained by transforming the original distances. We see that among

true matches, the distribution of similarity scores S̃ is approximately Normal for
all gender-ethnicity subgroups. The distributions among non-matching scores is
highly non-normal. Figure 11 shows QQ plots for the scores of non-matching
pairs to assess fit of the Normal distribution and Gamma, Lognormal, Weibull
and Logistic. None of these distributions provide a particularly good approx-
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imation, with the Logistic distribution generally being the closest across all
ethnicity-gender groups.

Figure 12 shows true FNMR vs FMR curves compared to 4 parametric ap-
proximations. We find that the Two-piece t (TP-T) and Two-piece sinh-arsinh
(TP-SAS) distributions do a good job of approximating the true performance
curves. Our experiments for MORPH all operate on the similarity scores S̃ and
use TP-SAS class-conditional distributions.

In Figure 4 and 6 of the main paper, we saw that unsupervised SPE-FR
tended to over-estimate error rates (FNMR) on the MORPH data. This may
be somewhat surprising given that Figure 12 shows the TP-SAS model being
capable of approximating the true FNMR vs FMR curve well. The challenge
is that unsupervised SPE-FR does not use any identity annotations to estimate
the TP-SAS model parameters. So while Figure 12 shows that there exists a TP-
SAS model that produces a good approximation to the true performance curves,
unsupervised SPE-FR does not necessarily find that optimal model. We can see
this more directly in Figure 13, which compares the true FNMR vs FMR curve to
the optimal TP-SAS approximation and to the unsupervised SPE-FR estimates
for 4 different gender-ethnicity groups using the AA model applied to MORPH.
We see that for some groups (e.g., african male), the optimal parametric model
lies inside SPE-FR confidence band, but for others (e.g., asian and hispanic
female), it does not. This confirms that unsupervised SPE-FR cannot always
find the optimal model within the specified parametric class.
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Fig. 10: Class-conditional distributions of distance/similarity scores for
the AA model on MORPH. Top: Histograms of class-conditional distance
scores for all race/ethnicity groups in the MORPH data. Middle: Histograms
of class-conditional similarity scores (indian and other groups omitted) obtained
by transforming distance scores S via S̃ = 1

1+S . We see that this transformation
produces true match scores that are symmetric and turn out to be well-modelled
by a normal distribution. Bottom: Orange curves confirm that S̃ | Y = 1
(the similarity distribution among true matches) is approximately normally dis-
tributed within each ethnicity and gender group. The similarity distributions for
non-matching pairs are clearly skewed.
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Fig. 11: QQ plots showing distributions of similarity scores 1
1+d for non-

matching pairs using the AA model on MORPH. QQ plots are shown
for Normal, Gamma, Lognormal, Weibull and Logistic distribution families. Best
fitting parametric models are identified via maximum likelihood estimation. De-
parture of the from the diagonal lines indicates that the observed data are not
well approximated by the given parametric distribution family. We see that these
standard parametric families are generally poor fits to the observed score data.
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Fig. 12: True FNMR vs FMR curves vs. parametric approximations
for the AA model on MORPH. The Figures show the true FNMR vs FMR
curves as computed on the fully labelled data compared to different paramet-
ric approximations, with parameters computed via maximum likelihood on the
fully annotated data. Parametric approximations shown are Normal (top-left),
Two-piece Normal (top-right), Two-piece t (bottom-left), and Two-piece sinh-
arcsinh (bottom-right). All plots are based on parametric modelling of the
similarity scores S̃ = 1

1+S . We see that the TP-T and TP-SAS parametric
models do a very good job of approximating the true FNMR vs FMR curves.
Our MORPH experiments all rely on TP-SAS parametric models for the class-
conditional scores.
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Fig. 13: True FNMR vs FMR curves vs. parametric approximations
and SPE-FR for the AA model on MORPH. The Figures show the true
FNMR vs FMR curves as computed on the fully labelled data (blue) compared
to the optimal TP-SAS approximation computed via maximum likelihood es-
timation (red) and unsupervised SPE-FR estimates (brown curve and orange
confidence band). Results are shown for 4 gender-ethnicity groups: african fe-
male (top-left), african male (top-right), asian female t (bottom-left), and
hispanic female (bottom-right). We see that the unsupervised SPE-FR con-
fidence band sometimes does contain the best parametric approximation (red
curve), such as for the african male subgroup, but sometimes it does not, such
as for the asian and hispanic female subgroups. Thus unsupervised SPE-FR is
not guaranteed to approximate the true performance curve as well as the optimal
curve in the assumed parametric family.
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D Estimating Proportion of True Matches

We observed experimentally that SPE-FR performed better when informed by
a good estimate of π = P (Y = 1), the proportion of true matches in the data.
To obtain initial estimates of π we rely on kernel density estimation methods
for mode estimation [13] and methods for estimating the proportion of nulls in
large scale hypothesis testing [19].

Our analysis is informed by the empirical observation that the true match
score distribution S | Y = 1 tends to be approximately normally distributed.
On MORPH, we observed that transforming the distance scores via S̃ = 1

1+S

produced perfectly normally distributed similarity scores S̃. It is not surprising
that (potentially transformed) distances or similarities among true matches tend
to be approximately normally distributed. Such distances are often the accumu-
lation of a number of small differences between image pairs, which is precisely
the setting where the Central Limit Theorem is expected to apply.

We leverage the approximate normality of S | Y = 1 and separation between
the match-conditional distributions S | Y = 0 and S | Y = 1 to estimate π
as follows. We describe the procedure assuming the score S is a similarity. If
S is a distance, the inequalities/orderings referenced below need to be flipped.
There are two stages. First, we use mode estimation methods to estimate the
parameters (µ, σ) in the Normal approximation of the conditional true match
distribution, S | Y = 1 ∼ N(µ, σ2). Then we transform the scores S into p-

Fig. 14: Mode estimation step for estimating proportion of true
matches. Kernel density estimate-based mode estimates for similarity score
distribution of the AA model on hispanic males in the MORPH data. We esti-
mate µ = E(S | Y = 1) using the greater of the two estimated modes shown
(the one around 0.65).
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values and apply a method for estimating the proportion of nulls, which in our
case translates into the proportion of true matches in the data. Note that no
identity labels are used in this estimation strategy. Group labels are used: the
procedure is carried out separately for each group. To reduce notation burden
we will index the scores with a single index i as opposed to a double index ij
going over all image pairs ij. We will think of there being n image pairs. Within
each group we:

1. Since the Normal is unimodal and symmetric, the mean µ is equal to me
mode. We estimate the two modes of the marginal score distribution S us-
ing the KDE-based mode estimation method of [13] as implemented in the
multimode library in R. We then let µ̂ be the greater of the two modes.
(Figure 14 shows mode estimation applied to the hispanic male score distri-
bution.)

2. If the class-conditions are well-separated, there are no (or very few) obser-
vations from Y = 0 with score S > µ̂. We therefore estimate σ as:

σ̂2 =
2

nU

nU∑
i=1

(si − µ̂)2I(si ≥ µ̂),

where nU = |{i : si > µ̂}. This amounts to using only the upper half of the
data to estimate the variance of a symmetric distribution.

3. We then transform all of the scores into Z-scores:

zi =
si − µ̂

σ̂
, (1)

and then turn these Z-scores into p-values by taking,

pi = 2 (1− Φ(|zi|)) (2)

where Φ is the standard normal CDF function.
4. We then use the Storey(λ) estimator [19]. Given a threshold 0 < λ ≤ 1, the

Storey(λ) estimator for the number of true matches is then given by:

π̂Storey(λ) =
#{i : pi > λ}

n(1− λ)
, (3)

where n is the total number of observations in the group.

The intuition for Step (4) is as follows. If the normal approximation to S |
Y = 1 is approximately correct, then pi | Y = 1 ∼ Unif(0, 1). For a given
threshold λ, we have

P (p > λ) = π(1− λ) + (1− π)P (p > λ | Y = 0)

Non-match scores Si coming from non-match pairs Yi = 0 will tend to have
p-values very close to 0, because they will look like unlikely observations from
the N(µ̂, σ̂2) distribution of the S | Y = 1 true match scores. This means we
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Table 1: Estimates of proportions of true matches. Results shown for
MORPH 40K subset data (as detailed in Table 4). Table shows ground truth
(true π column) along with Storey(0.05) estimate that uses the fully labelled
data to estimate the mean and standard deviation of the normal approximation
for the true match score distribution (storey*(0.05) column). Three right-most
columns are estimated from data with no identity annotations. We find that at
λ = 0.05 and 0.1 the Storey procedure consistently does a good job of estimating
π, the proportion of true matches in the data.

ethnicity gender true π storey* (0.05) storey(0.01) storey(0.05) storey(0.10)

african female 0.392 0.395 0.441 0.416 0.425
african male 0.500 0.502 0.524 0.524 0.541
asian female 0.030 0.031 0.254 0.036 0.034
asian male 0.027 0.027 0.028 0.029 0.029
european female 0.500 0.503 0.591 0.527 0.546
european male 0.500 0.502 0.669 0.527 0.548
hispanic female 0.064 0.065 0.174 0.069 0.070
hispanic male 0.186 0.187 0.201 0.195 0.203

expect the second term in the sum to be approximately 0. Rearranging to solve
for π yields the estimator in(3).

Table 1 compares the ground truth proportion of true matches in each ethnicity-
gender subground of the MORPH 40K data (as detailed in Table 4) to the
Storey(0.05) estimate obtained by using fully labelled data to estimate the (µ̂, σ̂)
parameters and also to Storey(λ) estimates at λ = 0.01, 0.05, 0.1 using data with
no identity annotations. We find that the procedure at λ = 0.05 and 0.1 does a
good job of estimating the true proportions π across all ethnicity-gender groups.
Smaller values of λ such as 0.01 are rarely used in practice, and are shown
only to demonstrate how the estimation accuracy can degrade. For our SPE-FR
experiments we apply Storey(0.05) to inform the prior on π for each group.
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E SPE-FR Experimental Details

E.1 MCMC Configurations

For the RFW experiments we ran the sampler for 17000 iterations, using the first
2000 iterations for adaptation and discarding a burn-in of 4000. For the MORPH
experiments the chains were slower to mix. Through experimentation we found
that running the sampler for 25000 iterations and taking a burn-in of 7000
resulted in adequate mixing. At these settings the Gelman-Rubin diagnostic [2]
was typically under 1.2 for each model parameter, and was often much smaller.

E.2 SPE-FR hyperparameters estimation

We inform the analysis by estimating {µj , ηj , β
τ
jk, α

δ
j , β

δ
j } using unlabeled data.

Specifically, we begin by fitting a two-component Gaussian mixture model and
taking µj to be the means of the estimated components. When S denotes distance
(rather than similarity), µ0 is taken to be the greater of the two-component
means. We set the βτ parameters to make the Gamma means equal to the
estimated standard deviations of the mixture components. αδ

j = 5 when using

the TP-T and 50 when using TP-SAS. βδ
j is then taken to be αδ

j/20 for TP-T

and αδ
j for TP-SAS. This centers the prior on δj at 1, at which value the TP-

SAS distribution has Gaussian tails. δj < 1 gives tails that are heavier than
Gaussian; δ > 1 gives tails that are lighter. Lastly, to estimate the parameter
π, we adapt methods for estimating the proportion of non-nulls in large-scale
hypothesis testing [9]. These methods are specifically tailored to the setting
where the number of non-nulls (here, true match image pairs) is small relative
to the number of nulls (here, non-match image pairs).
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F Face Embedding Model Training

F.1 Model Training with Controlled Biases.

We adopt the well-known state-of-the-art Sub-center ArcFace [4] method in our
face recognition model. We employ a variant of ResNet [15] as our underlying
feature extractor that take as inpout a face image xi, i ∈ {1, . . . , I}, and outputs
an embedding zi ∈ Rd where d is the embedding feature dimension. We use
the Sub-center ArcFace loss as described in equation 4 for training the face
recognition model.

L = − log
es(cos (m1θi,yi+m2)−m3)

es(cos (m1θi,yi+m2)−m3) + Z(θ)
(4)

θi,j = arccos (max
k

(WT
jkzi)

Z(θ) =

N∑
j=1,j ̸=yi

es cos (θi,j)

where s and m∗ are the hyper-parameters representing scale and margin respec-
tively. N is the total number of classes and yi is the corresponding class label
of xi. Wj denotes the class center for class j and k ∈ {1, 2, ...,K} where K is
the number of sub-centers for each Wj . For all our experiments, we set s = 24,
m1 = 1, m1 = 0.5, m3 = 0.1 and K = 3. We use an initial learning rate of 0.01
and a cosine learning rate schedule that decays the learning rate periodically.
The batch size is set to 64, and a weight decay of 0.0005 is used. We train our
model with 8 Tesla V100 GPUs for a total of 32 epochs.
Model Architecture We implemented our model in MxNet version 1.5.0. Here
we take the ResNet 101 model as an example and share a summary of the
architecture. There are four ResNet blocks in the model, and each block contains
3, 13, 30, 3 Basic Blocks. Each Basic Block uses a number of channels 64, 128,
256, and 512 respectively. No bottle neck is used in our architecture. We also
swap the ReLU activation with PReLU. We use a Conv2D filter with 64 channels
and kernal size of 3 as the first layer before the main ResNet blocks. A Dense
layer with output dimension d = 128 is used for the feature extractor.

F.2 Model Training for Generalization Validation.

To validate if SPE-FR is applicable to face embedding models trained across
different settings, we test on a second set of FR models trained to represent
popular and the state-of-the-art choices. This suite of models are trained across
IMDB [20], DeepGlint [3] and BUPT-BalancedFace [23] datasets. Sub-Center
Arcface [4], CosFace [21] and ℓ2-Softmax [17] loss functions are studied, as well
as the ResNet-101[14] and a light-weight ResNet-18 model architectures. For
models trained on the BUPT-BalancedFace dataset, we again introduce a leave-
one-out ablation setting (“AA”) for easy observation of controlled biases.
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G Datasets and evaluation protocols

G.1 Testing datasets

We use the MORPH [18] dataset and RFW [22] dataset as our test data for the
face verification performance and bias analysis. Basic statistics of the evaluation
dataset MORPH [18] and RFW [22] are shown in Table 2 and Table 3.

The MORPH longitudinal Database is a large facial recognition database
which contains over 400K images of nearly 70K subjects. The images are 8-bit
color and of generally high image quality. MORPH provides descriptive statis-
tics associated with the variables including age, gender, ethnicity, height, etc.
Noticeably, it is also a longitudinal database that provides multiple images of a
given subject over time. In our study, we make use of the gender and ethnicity
annotation. Within each gender and ethnicity intersectional group, we sampled
1v1 face verification protocols consisting up to 40K face pairs (Table 4, some
groups have fewer images), which we refer to as the MORPH 40K protocol.
The ‘Indian’, ‘Other’, ‘Unknown’ groups are not included in our experiments
due to insufficient number of images for reliable estimation of ground truth per-
formance.

Racial Faces in-the-Wild (RFW) is a testing database for studying racial
bias in face recognition. Four testing subsets, namely Caucasian, Asian, Indian
and African, are constructed, and each contains about 3K individuals with 6K
image pairs for face verification. They can be used to evaluate and compare the
recognition ability of the algorithm on different races. For RFW, we used these
officially released 1v1 verification protocol, so we have 6K pairs for each ethnicity
group, and half are genuine pairs and half are imposter pairs.

Table 2: MORPH Database Demographics. MORPH [18] dataset image
statistics breakdown by gender and ancestry.

MORPH
Gender

Total
Female Male

Ethnicity

African 24898 155783 180681
Asian 536 1150 1686

European 109132 99093 208225
Hispanic 1880 8908 10788
Indian 66 322 388
Other 82 93 175

Unknown 10 102 112

Total 136604 265451 402055
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Table 3:RFW Demographics. Racial Faces in-the-Wild (RFW) dataset image
statistics breakdown by ethnicity.

Group Num of Identities Num of Images

Caucasian 2959 10196

Indian 2984 10308

Asian 2492 9688

African 2995 10415

Table 4: MORPH 40K Protocol Details. MORPH 40K Protocol statistics
breakdown by ethnicity, gender, and whether the pair is genuine match.

Ethnicity Gender Num of Match Pairs Num of Non-Match Pairs

african
female 25840 40000
male 40000 40000

asian
female 777 24899
male 1125 40000

european
female 40000 40000
male 40000 40000

hispanic
female 2715 40000
male 9136 40000
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G.2 BUPT-BalancedFace dataset

In order to train face recognition models for our experiments, we employed the
BUPT-BalancedFace dataset [23] as our training set. This dataset provides im-
ages that are balanced across four ethnicities, namely African, Asian, Caucasian
and Indian, each with 7,000 identities. The images are sourced from MS-Celeb-
1M dataset [12] and downloaded from Google FreeBase images. The ethnicity
labels are obtained with the help of the ‘Nationality’ attribute of the FreeBase
images and Face++ API prediction. Note that since this dataset does not pro-
vide gender annotations, we use Insightface∗, an open-source face analysis repos-
itory [10, 1, 5, 7, 11, 8, 6], to assign gender labels to the images in the BUPT-
BalancedFace dataset.

The demographics of the training set BUPT-BalancedFace dataset [23] are
shown in Table 5.

Table 5: BUPT BalancedFace Demographics. BUPT BalancedFace dataset
image statistics breakdown by ethnicity.

BUPT-BalancedFace Num of Identities Num of Images

African 7000 324376

Asian 7000 325475

Caucasian 7000 326484

Indian 7000 275095

∗ Insightface is an open-source face analysis software. Repository can be accessed at
https://github.com/deepinsight/insightface

https://github.com/deepinsight/insightface
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H Bayesian Calibration

As introduced in main paper Sec.5, we extend experiments on the AA model to
the recent Bayesian calibration (BC) [16] method on the same Morph 40K subset
face verification benchmark protocol (detailed in Table 4) at the same threshold.
The Bayesian calibration method was implemented using the open-source code
from the paper ∗.

To adapt the method from binary classification to distance based face verifi-
cation, we made several changes to accommodate to the implementation and the
given priors on hyperparameters. Specifically, input to binary classification cal-
ibration is classification probability while our input is face verification distance;
classification accuracy in our case can still be classification accuracy, but for the
binary indication of if a face pair is a genuine match from the same identity.

We empirically found that directly using the pairwise Euclidean distance
for accuracy calibration yields nearly random accuracies (close to 50%) and
very high error compared to the ground truth of using all id labels, such that
the calibration is not useful. We speculate this is due to the priors been given
on binary classification probabilities in the numerical range [0, 1]. Therefore,
we explored several ways of mapping the Euclidean distance to the range and
found the intuitive mapping to cosine similarity (clipped to fit the range [0,
1]) to give the best results (see Table 6). As for the threshold at which we
decide the classification boundary and calculate accuracy, the default setting
for binary classification is 0.5. However, we adapted the threshold selected on
FNMR (False Non-Match Rate) at FMR=0.001 over the entire Morph dataset.
This is consistent with the SPE threshold in the main text Figure 4(b) plot, and
the generated results have been shown in the main text Figure 6 for comparison.
We conclude that although the the Bayesian calibration method has fairly good
estimation of the pair classification accuracy, its estimation of FNMR is error-
prone, biased towards over-estimation, and generate larger error than our method
(main text Figure 6).

Though the BC method works very well in the experiments reported in the
original paper and our accuracy estimation of binary classification, our experi-
ments on FNMR@FMR consider models with very different operating character-
istics and assess error rates that are very small compared to those in the original
work. We also did not consider fine-tuning the calibration approach to better
tailor it to the face recognition context. So while our results demonstrate that
an off-the-shelf application of BC does not produce accurate estimates of face
recognition system performance, we believe that tailoring BC to this setting is
a promising direction for future work.

∗ https://github.com/disiji/bayesian-fairness-assess

https://github.com/disiji/bayesian-fairness-assess
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Table 6: Bayesian Calibration Results for Accuracy. The estimated accu-
racy are compared with the ground truth of the accuracy calculated when using
full identity labels. 90% confidence intervals, cut points being 5% and 95%, are
provided in the brackets. It can been seem that the Bayesian calibration method
has fairly good estimation of the pair classification accuracy.

Ground Truth BC Estimation [90% CI]

Caucasian Male 0.97 0.97 [0.95, 0.98]

African Male 0.99 0.97 [0.95, 0.98]

Asian Male 1.00 0.99 [0.97, 1.00]

Hispanic Male 1.00 0.99 [0.97, 0.99]

Caucasian Female 0.98 0.97 [0.94, 0.98]

African Female 0.99 0.96 [0.94, 0.98]

Asian Female 1.00 0.99 [0.96, 1.00]

Hispanic Female 1.00 0.98 [0.96, 1.00]
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