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Abstract. Vision Transformer (ViT), as a powerful alternative to Con-
volutional Neural Network (CNN), has received much attention. Recent
work showed that ViTs are also vulnerable to adversarial examples like
CNNs. To build robust ViTs, an intuitive way is to apply adversarial
training since it has been shown as one of the most effective ways to
accomplish robust CNNs. However, one major limitation of adversarial
training is its heavy computational cost. The self-attention mechanism
adopted by ViTs is a computationally intense operation whose expense
increases quadratically with the number of input patches, making adver-
sarial training on ViTs even more time-consuming. In this work, we first
comprehensively study fast adversarial training on a variety of vision
transformers and illustrate the relationship between the efficiency and
robustness. Then, to expediate adversarial training on ViTs, we propose
an efficient Attention Guided Adversarial Training mechanism. Specifi-
cally, relying on the specialty of self-attention, we actively remove cer-
tain patch embeddings of each layer with an attention-guided dropping
strategy during adversarial training. The slimmed self-attention modules
accelerate the adversarial training on ViTs significantly. With only 65%
of the fast adversarial training time, we match the state-of-the-art results
on the challenging ImageNet benchmark.
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1 Introduction

Vision Transformers with the self-attention mechanism have been broadly stud-
ied and become de facto state-of-the-art models for many benchmarks. Recent
works broadly investigated the traits of this new genre of architectures on com-
puter vision tasks. Meanwhile, the adversarial robustness of Vision Transform-
ers has also been intensively studied [11, 52, 9, 44, 7, 1, 60, 84, 29, 46, 45, 48, 64, 32,
22]. To build robust Vision Transformers, an intuitive way is to apply adversar-
ial training [63, 25] since it has been shown to be one of the most effective ways
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(a) The illustration of layerwisely dropping patches (b) AGAT performance

Fig. 1. (a) AGAT chooses to drop a certain proportion of image embeddings based on
the attention information at each self-attention layer. (b) We plot the robust accuracy
against the training time (hours) for various ViTs. AGAT substantially accelerates
adversarial training, while maintaining or improving the robustness at the same time.

to achieve robust CNNs [23, 43, 5]. However, one major limitation of adversar-
ial training is its expensive computational cost. Adversarial training is known
for requiring no extra cost during testing but greatly increasing the training
cost. Huge efforts have been devoted to overcome this deficit [62, 81, 76, 3, 66, 51,
30, 31]. However, the philosophy of designing stronger ViTs has largely lifted up
the computation intensity and weakened the performance of previously-proposed
techniques. The specialty of the newly-proposed self-attention design [19, 13] in
ViTs also introduces new challenges for accelerating adversarial training.

In this paper, we study the problem of how to efficiently carry out adversarial
training on Vision Transformers. We first apply the state-of-the-art Fast Adver-
sarial Training (Fast AT) algorithm [62, 81] on a variety of vision transformers
and analyze how factors like attention mechanism, computational complexity,
and parameter size influence the training quality. To the best of our knowledge,
we are the first to accomplish a broad investigation on this topic. Our survey
shows that, although ViTs outperform CNNs by a great margin on robustness,
they have hugely increased the computational complexity. The self-attention
mechanism adopted by ViTs is a computationally intense operation whose cost
increases quadratically with the number of input patches. This newly-emerged
module hampers the utilization of several techniques for accelerating adversarial
training. Meanwhile, we find that large ViTs models also suffer from obvious
catastrophic over-fitting problems [56]. This eventually leads to the degradation
of robustness on ViTs with increasingly large capacity.

To make adversarial training efficient on the heavy-weight vision transform-
ers, we investigate in accelerating adversarial training for vision transformers.
Particularly, we leverage the specialty that the self-attention mechanism of trans-
formers is capable of processing variable-length inputs. This specialty of ViTs has
been utilized in a wide range of applications, including processing variable-length
word sequences for translations [19], mining graphs with unlimited edges [75],
etc. Recently, on vision tasks, several works [70, 55, 16] explored the possibil-
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ity of dropping input image patches during training or testing for acceleration
purposes. However, randomly dropping a certain number of input patches will
inevitably hurt the training quality. Thus, many works have proposed adaptive
designs [50, 83] in the scenarios of a variety of targeted tasks.

Enlightened by the above works, we propose an Attention-Guided Adver-
sarial Training (AGAT) mechanism, where we drop the patches based on the
attention information. As illustrated by Fig. 1(a), our method intends to drop
image embeddings after each layer of self-attention. Note that the self-attention
layer is non-parametric and thus is not limited to a static number of inputs.
We drop the embeddings with lower attention and keep the higher ones. Such a
design will better preserve the feed-forward process and therefore guard the back-
ward gradient computation of generating the adversarial examples. As shown in
Fig. 1(b), AGAT gets to keep the training quality mostly unchanged or be im-
proved by taking only 65% training time. Our work matches the state-of-the-art
results of adversarial robustness on the challenging benchmark of ImageNet.

2 Relate Works

Adversarial Training. Adversarial attacks [67, 23, 43, 80, 38, 39] intend to en-
danger the performance of deep networks via repeatedly optimizing the input
images with repect to the output of the model. To counter this unwanted deficit,
various defensive approaches were proposed [47, 20, 40, 82, 27, 65, 61, 41]. Among
these defenses, the methodology of adversarial training withstands most kinds
of examinations and has become one of a few defenses that can consistently im-
prove the robustness of deep networks when facing most attacks [5]. However,
adversarial training is known to suffer from complexity issues [62, 81, 54]. Partic-
ularly, Fast AT [81] enhances the single-step adversarial training with random
initialization. Fast AT shows promising results on benchmark datasets. Later
works [4, 33, 76, 3, 66, 51] also proposed improved variants of Fast AT.
Vision Transformer. The Transformer architecture and its self-attention mech-
anism were first proposed in the field of natural language processing (NLP) [74,
19, 13] and then adopted in the scenario of computer vision [85, 17, 79]. After
the huge efforts of a surge of explorations [21, 71, 77], the Vision Transformer
(ViT) has shown the potential to surpass the traditional convolutional neural
networks. Then, researchers keep pushing this new philosophy of model design
into a wide range of fields like high-resolution vision tasks [42, 78]. Meanwhile, to
reduce the huge computational expense that is brought by the densely modeled
self-attention mechanism, various techniques have been proposed [77, 17].
Adversarial Robustness of ViT. The adversarial robustness of ViT has also
achieved great attention due to its impressive performance [12, 63, 53, 49, 26, 8,
10, 64]. Some works [12, 63, 10] first reported positive results where they showed
that standard ViTs perform more robust than standard CNNs under adver-
sarial attacks. The later works [8, 26] revealed that ViTs are not more robust
than CNNs if both are trained in the same training framework. By adopting
Transformers’ training recipes, CNNs can become as robust as Transformers on
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defending against adversarial attacks. In both sides, we can observe that the
clean accuracy of standard models can be easily reduced to near zero under
standard attack protocols. In addtion, Fu et al. [22] studied attacking ViTs in a
patch-wise approach, which reveals the unique vulnerability of ViTs. To boost
the adversarial robustness of ViTs, recent works [68, 6] explored multiple-step
adversarial training to ViTs. Shao et al. [63], tested the vanilla adversarial train-
ing on CIFAR10. However, multi-step adversarial training is computationally
expensive. And in this work, we take the step of exploring fast single-step ad-
versarial training on ViT models.

3 Fast Adversarial Training on Vision Transformers

We first comprehensively study the Fast AT [81] algorithm on vision transform-
ers. Fast AT is designed to be efficient so that it can be applied to large models
(e.g., ResNet-101 [28]) on large-scale datasets (e.g., ImageNet [58]). Specifically,
Fast AT refines the standard single-step FGSM [23] algorithm by adopting a large
random perturbation as the starting point for searching adversarial examples. By
doing so, Fast AT is supposed to effectively resist the catastrophic overfitting [81]
of training with the plain FGSM. Thus, Fast AT preserves the effectiveness while
significantly improves the efficiency over the multi-step PGD [43] algorithm. To
better understand the robustness of the newly-developed ViT models, in this
section, we apply Fast AT to a wide range of ViTs.

We select nineteen models of different sizes from five vision transformer fami-
lies, including ViT [21], CaiT [73], LeViT [24], SwinTransformer [42], and Cross-
Former [78]. The selected models cover a wide range of model designs, includ-
ing hybrid models [24], slim models [24, 78], constrained attention [42, 78], and
multi-scale attention [24, 78]. Following the settings of Fast AT [81], we set the
perturbation radius to 2/255 for ImageNet and test the adversarially trained
models with the 100-step PGD attack. Our training schedule aligns with Swin-
Transformer [42] and DeiT [72]. We keep all hyper-parameters, e.g., image size,
training epoch, and data augmentation, identical for all models. We also present
the results of Fast AT on the CNN models of ResNet-50 and ResNet-101 for com-
parison. As shown by Fig. 2(a), ViTs are consistently more robust than CNNs.
This aligns with concurrent researches on model robustness [69]. We conclude
draw novel observations as follows:

1. Within the same transformer family, larger transformers do not
always result in better robustness. In Fig. 2(a), the transformer fami-
lies of LeViT, CaiT, and ViT exhibit a pattern of over-fitting. Namely, as the
models get larger, the network robustness learned by Fast AT degrades con-
versely. For instance, Cait-S36 performs worse than CaiT-XXS24. Fig. 2(b)
provides more details of the above over-fitting issue. The optimization of
the CaiT-S36 model gradually degrades after a certain point. In contrast,
the CaiT-XXS24 model possesses a monotonically increasing training curve.
This aligns with previous findings that ViTs may suffer from more severe
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(a) Robust Accuracy for Different Attacking Steps.
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Fig. 2. (a) Robust accuracy for various ViTs. (b) Large ViTs like CaiT-S36 may suffer
from obvious unstable training and over-fitting, while designs like window attention [42]
can alleviate the issue. (c) The perfromance of ViTs on Fast AT may not align with
their natural accuracy of natural training. (d) In contrast, the natural and robust
accuracies of ViTs align with each other when both are under Fast AT. (e) Large ViTs
greatly increase the computational complexity.

over-fitting on natural tasks and need the assistance of aggressive data aug-
mentation schedules [72]. Moreover, transformers with a constrained atten-
tion mechanism can alleviate the over-fitting problem. In Fig. 2(b), unlike
CaiT-S36, the large model of Swin-Base shows a steady training curve.

2. Among different transformer families, the attention mechanism
designed for better natural performance not necessarily results in
better robustness. In Fig. 2(c), for each transformer architecture, we plot
its natural performance under natural training against its robust perfor-
mance under Fast AT. Among different transformer architectures, the two
metrics of natural accuracy and robust accuracy approximately form a line,
indicating the close relation between natural and robust performances. Com-
pared with the line formed by CNNs, vision transformers consistently achieve
better robustness on models with similar natural performance. However, we
can observe a few outliers of models from the LeViT and CaiT families.
Specifically, the hybrid design of LeViT can achieve high robustness with
very small models. Large CaiTs, despite being effective on the natural task,
result in obvious inferiority on robustness. Notice that, for each point in
Fig. 2(c), the two metrics of the vertical axis and the horizontal axis are
evaluated on two models, either adversarially-trained or naturally-trained,
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of the same architecture. When we plot the natural accuracy and robust
accuracy, both of which are under Fast AT, as shown by Fig. 2(d), the two
metrics consistently align with each other without any outlier, revealing the
difference between Fast AT and standard training.

3. SOTA ViTs suffer from a severe efficiency issue and require much
more training time than SOTA CNNs. The above over-fitting problem
mainly shows on large ViTs like Cait-S36 or LeViT-384, but not on the small
ones. This is reasonable since models like Cait-S36 are consistently larger
than commonly-used CNNs. However, the over-fitting is not the only problem
of adopting larger and larger ViTs. These increasingly large models have
hugely lifted up the computation intensity. In Fig. 2(e), we plot robustness
(Robust Accuracy) against computation intensity (GFLOPs). State-of-the-
art ViTs can be a few times larger than CNNs. This makes utilizing Fast AT
even harder since the self-attention module is more intricate to accelerate.

4 Efficient Adversarial Training on Vision Transformers

As discussed in the last section, one major problem that hinders the deployment
of adversarial training on vision transformers is the efficiency issue. Adversar-
ial training is known to be computationally intensive. This greatly hampers its
usage on large-scale models or datasets. Various techniques have been proposed
to mitigate this problem. However, with the revolution brought by vision trans-
formers, many existing techniques such as variable-resolution training [81] have
been unusable. More importantly, there is a rising trend of adopting increasingly
large ViTs for better performance. The complexity of these enormous ViTs is
too large to afford, even for efficient algorithms like Fast AT.

In this section, we first analyze the computational complexity of popular
ViTs. Our analysis shows that ViT requires a much longer time to finish adver-
sarial training, which is caused by the large computational cost of ViT brought
by a large number of input patches. Then, we explore the input patches to re-
duce the brought computational cost. Given the fact that the flexibility of self-
attention allows ViTs to process an arbitrary length of image patches, we explore
a random patch dropping strategy to reduce the computation. The dropping op-
eration with the reduced number of patches can accelerate adversarial training,
as expected. However, the naive dropping strategy will also hurt robustness. To
address the above issues, we propose our Attention-Guided Adversarial Training
algorithm, which selectively drops patches based on attention magnitude.

4.1 Computation Intensity of ViTs

We first formally formulate our task. For each matrix, we present its shape
in the lower right corner and its index in the upper right corner. Denote the
input feature as Xp×d, which consists of a sequence of p embeddings with the
dimension being d : X = [X1

d , X
2
d , ..., X

p
d ]. Each embedding relates to a specific

non-overlapped patch of the input image. Vision transformer consists of a list
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of blocks, each of which consists of two kinds of computation, i.e., the Multi-
head Self-Attention layer (MSA) and the Multi-Layer Perceptron layer (MLP).
In the MSA module, X is first normalized via Layer Normalization and then
transformed to the query, key, and value matrices (K, Q, V).

[Kp×d, Qp×d, Vp×d] = LayerNorm(Xp×d)W
1
d×3d. (4.1)

For the multi-head design, we partition the K, Q, V matrices of shape p × d
into h heads, with each part having a shape of p× d

h . Then, taking the first head
as an example, V1 will be re-weighted by A1 with the following form:

Attn(K1
p× d

h
,Q1

p× d
h
,V1

p× d
h
) = SoftMax(Q1K1⊤/

√
d+B)V1 = A1

p×pV
1. (4.2)

B is a learnable bias. Note that all the column vectors of A1 are normalized by
Softmax and thus have a summation of 1 in each. Then, AV value of each head
will be concatenated and transformed to the output of MSA.

X′
p×d = Concat(A1V1,A2V2, ...,AhVh)p×dW

2
d×d. (4.3)

A following MLP module will take in the output of MSA, X′, and transform
each embedding with Layer Normalization and GELU activation.

X′′
p×c = GELU

[
LayerNorm(X′

p×d)W
3
d×4d

]
W4

4d×d. (4.4)

The computational complexity of the above process is:

Ω(MSA) = 4pd2 + 2p2d+ pd; Ω(MLP) = 8pd2 + pd. (4.5)

A typical vision transformer will consecutively conduct the above process to
generate the final image representation for prediction. Take the ViT-Base model
as an example. Each layer has d = 768. Therefore, we have Ω(MSA)+Ω(MLP) =
7×106p+1.5×103p2. Since 7×106 ≫ 1.5×103 and p is mostly around 2×102,
the computational complexity of the entire ViT is approximately linear to p.

4.2 Dropping Patch: The Flexibility of Self-Attention

Different from the convolutional operation where the hyperparameters (e.g., ker-
nel size, padding size) are supposed to be fixed, the self-attention operation does
not require the inputs with fixed length. For instance, this flexibility of self-
attention is leveraged to process an arbitrary length of words in NLP tasks.
Similarly, the flexibility makes its adaption to graph data feasible, in which dif-
ferent nodes can have a different number of connected edges [75]. When trans-
formers with self-attention mechanisms have been introduced into computer vi-
sion tasks, researchers also investigate dynamically dropping the patches or the
embeddings in the forward pass of a ViT model [70, 55, 16]. It is found that,
when a constrained quantity of patches are dropped, the forward inference can
be significantly accelerated. Meanwhile, the performance of the model will be
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Fig. 3. (a) We repeat the baseline without any dropping for three times. We can observe
the training is very unstable. (b) Training curve when we drop various rates of input
patches. (c)Training curve when we adopt various rates of attention dropout.

only slightly degraded [50, 83]. Several works utilize this feature to design new
mechanisms for their own unique purposes.

In this work, we also explore a patch dropping strategy to accelerate adver-
sarial training given the excellent trade-off it achieves. We first test the scheme
of randomly dropping a certain number of input patches to see how it influences
the training quality of Fast AT. We report the results in Fig 3(b), where we plot
the robustness against the training epoch for different ratios of dropping. Note
that no patches will be dropped during inference in the testing stage. When the
number of input patches is reduced, the forward inference of ViT can be acceler-
ated. Surprisingly, from the figure, we also observe that the dropping operation
also stabilizes the adversarial training and alleviates the phenomenon of catas-
trophic over-fitting [81, 59, 34]. As shown by Fig 3(a), we repeat Fast AT without
any dropping for three times. The training procedure can be very unstable and
occasionally drop to zero accuracy. We conjecture that it is the regularization ef-
fect brought by the patch dropping operation that stabilizes Fast AT. To further
verify this conjecture, we test ViTs equipped with the dropout operation as in
DeiT [72]. The dropout module is applied right after the self-attention module.
As shown in Fig 3(c), like dropping patches, the attention dropout module also
stabilizes Fast AT. Unlike dropping patches, the dropout module cannot save
computation. However, the final robust accuracy can be reduced in both cases
when dropping is applied. The random patch dropping strategy poses a dilemma.
Namely, it brings both acceleration and performance degradation. In the follow-
ing section, we will present our attention-guided patch dropping strategy, where
we achieve a better trade-off between efficiency and effectiveness.

4.3 Attention-Guided Adversarial Training

It is known that adversarial training utilizes adversarial attacks to generate ex-
amples so that the network can learn to fit the generated adversarial examples.
This is a typical hard example mining framework. The more powerful the adver-
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(a) Plain Self-Attention. (b) Attention of AGAT.

Fig. 4. The illustration of the plain self-attention layer and the attention layer of
AGAT. The embedding mask is directly generated from A and is non-parametric.
Thus, for the same model, one can adopt our AGAT during training and the plain
self-attention during testing, respectively.

sarial examples are, the more robust the learned network will be. The quality
of the adversarial examples relies on the adversarial attacking algorithm. And
the attack algorithm depends on accurately estimating the gradient of the input
pixels with respect to the loss function. Thus, a major insight of achieving our
goal is to drop the patches that will barely hamper the gradient estimation. A
similar philosophy has been utilized for sparse attacks or black-box attacks.

Recent works studied the learned attention and found that the magnitude
of the attention can reveal how salient an embedding is [15]. This enlightens
us that we can utilize this ready-made information to filter salient embeddings.
Thus, we sum 1

h

∑h
i=1 A

i by row and generate an index vector a. Note that the

column of 1
h

∑h
i=1 A

i is the weighted-average parameter and thus always equal
to 1. It indicates how much a generated embedding receives the information
of each input embedding. In contrast, the row of 1

h

∑h
i=1 A

i reveals how much
each input embedding influences the output embeddings. This value differs from
embedding to embedding. Thus, we choose to select the top-k embeddings based
on their magnitude in a. Then, the formulation of (4.3) becomes:

X′
k×d = MaskBy

[
Concat(A1V1, ...,AhVh),Topk(a)

]
k×d

W2
d×d. (4.6)

We drop the embeddings after the weighted average calculation of AV so that
the magnitude of embeddings will be kept stable. The number of embeddings will
reduce from p to k. To fully utilize the attention information in each layer, we
propose a layer-wise exponential dropping scheme. Namely, in each layer, we drop
a constant proportion of patches. Thus, this scheme will drop more embeddings
on deeper layers, where the embeddings are consistently more redundant [55]. We
set the dropping rate to 0.9. On a 12-layer ViT-Base model, the final layer will
process only 31% number of embeddings and save more than 40% FLOPs of the
entire model. A detailed implementation of our Attention-Guided Adversarial
Training is shown in Algorithm 1. Our AGAT only modifies the training process.
During testing, we use the original model for prediction. The class token will not
be dropped when it involves the feed-forward procedure.
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Algorithm 1 AGAT attention code (PyTorch-like)

def init(num_heads, dim, drop_rate):
head_dim = dim // num_heads # num_heads: the number of heads, dim: embedding dimension
scale = head_dim ** -0.5

qkv = nn.Linear(dim, dim * 3)
proj = nn.Linear(dim, dim)

def forward(self, x): # x: input tensor with the shape of (b, p, d);
b, p, d = x.shape # b: batch size; p: patch number
q, k, v = qkv(x).reshape(b, p, 3, num_heads, head_dim).permute(2, 0, 3, 1, 4).unbind(0)

attn = (q @ k.transpose(-2, -1)) * scale
attn = attn.softmax(dim=-1) # b num_heads p p

own_attn = torch.sum(torch.sum(attn, dim=1), dim=-2) # b p
kept_num = int(p * drop_rate) - 1 # compute the number of kept embeddings
_, rank_indices = torch.topk(own_attn[:,1:], k=kept_num, dim=-1) # b k
rank_indices = rank_indices.unsqueeze(-1).repeat(1,1,dim) # for the API of torch.gather

x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = torch.gather(x, dim=1, index=rank_indices) # drop embeddings

return proj(x)

5 Experiments

5.1 Experimental Setup

Dataset We evaluate our method on the challenging ImageNet [57] dataset.
Due to the huge computational expense of adversarial training, most adversar-
ial training approaches are only verified on relatively small datasets such as
CIFAR10 [36] or MNIST [37]. Our efforts on improving the efficiency of adver-
sarial training allow us to apply adversarial training to large-scale datasets. The
input image size is 224 on all models for a fair comparison.
Training Schedule Following previous works [72, 78], we use the AdamW [35]
optimizer for training for 300 epochs with a cosine decay learning rate schedule.
The initial learning rate is set to 0.001. The first 20 epochs adopt the linear
warm-up strategy. The batch size is 1024 split on 8 NVIDIA A100 GPUs.
Evaluation Metrics We report our major results on two metrics, robust ac-
curacy and GFLOPs. We mainly focus on improving the speed of training and
keeping the learned robustness unchanged at the mean time. For a direct impres-
sion of training speed, we also record the training time for each method. Note
that the training time is not only determined by the efficiency of the training
algorithm, but also the IO speed and many other nonnegligible factors.
Adversarial Attack We choose the powerful multi-step PGD attack [43] with
the perturbation radius being 2/255 or 4/255 and the optimization step being 20
or 100 [82]. We also test different kinds of attacks, including black-box attacks,
to rule out the possibility of obfuscated gradient [5].
Vision Transformers Our AGAT can be directly used on the self-attention
model and most of its variants. We apply our AGAT to three commonly-used
models ViT [21], CaiT [73], and LeViT [24]. All the three models are built on the
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Table 1. Adversarial Training on The ImageNet Dataset. In most cases, our Attention-
Guided Adversarial Training on ViTs achieves comparable clean performance and ro-
bust accuracy to Fast-AT with much less time. The conclusion still holds when different
perturbation ranges are applied.

ϵ = 2/255 ϵ = 4/255

Model Params
Block

Number
Training
Method

Dropping
Rate

FLOPs
Training
Time

Nat-
Acc.

PGD-20 PGD-100
Nat-
Acc.

PGD-20 PGD-100

ResNet-50 [28] 25.6M 16
Free AT [62] - 3.8G 46H 62.28 43.77 43.44 58.31 30.89 30.71
Fast AT [81] - 3.8G 14H 58.20 43.62 43.31 52.62 30.17 30.13
Grad Align [4] - 3.8G 14H 57.44 42.61 42.46 53.66 31.18 31.01

ResNet-101 [28] 44.5M 33
Free AT [62] - 7.6G 51H 64.37 43.27 43.14 60.41 31.17 31.14
Fast AT [81] - 7.6G 17H 60.90 44.57 44.11 55.62 33.02 33.26
Grad Align [4] - 7.6G 17H 60.12 43.28 43.04 53.94 30.27 30.21

CaiT-XXS24 [73] 12.0M 24
Fast AT [81] 0.0 2.5G 32H 72.84 54.31 54.26 68.77 32.14 32.09
Random 0.4 1.5G 22H 65.62 39.81 39.52 60.87 31.54 31.46
AGAT 0.05 1.5G 23H 71.15 54.17 54.08 68.22 31.46 31.39

CaiT-XXS36 [73] 17.3M 36
Fast AT [81] 0.0 3.8G 38H 74.01 55.58 55.41 73.54 34.61 34.28
Random 0.4 2.7G 25H 69.25 50.13 49.89 65.12 28.00 27.91
AGAT 0.03 2.7G 25H 73.83 55.81 55.72 73.91 35.22 35.19

CaiT-S36 [73] 68.2M 36
Fast AT [81] 0.0 13.9G 76H 72.51 53.12 52.76 71.20 33.02 32.84
Random 0.4 7.8G 51H 70.46 51.27 51.03 66.62 28.95 28.75
AGAT 0.03 7.7G 53H 72.69 53.66 53.48 71.06 33.46 33.17

LeViT-128 [24] 7.8M 9
Fast AT [81] 0.0 0.4G 12H 67.30 45.00 44.87 64.66 32.11 32.09
Random 0.4 0.2G 10H 58.14 30.62 30.52 54.94 28.05 28.01
AGAT 0.15 0.2G 10H 67.19 45.30 45.21 64.98 32.02 31.88

LeViT-256 [24] 11.0M 12
Fast AT [81] 0.0 0.6G 15H 68.69 46.94 46.89 66.24 33.81 33.62
Random 0.4 0.4G 12H 60.71 31.45 31.18 57.64 29.89 29.66
AGAT 0.1 0.4G 13H 68.90 47.37 47.06 65.98 33.12 33.05

LeViT-384 [24] 39.0M 12
Fast AT [81] 0.0 2.35G 28H 70.01 46.24 46.13 65.38 31.22 31.04
Random 0.4 1.3G 20H 63.70 33.74 33.26 60.11 28.51 28.02
AGAT 0.1 1.3G 22H 69.73 48.80 48.59 67.02 33.48 33.35

ViT-Tiny [21] 5.1M 12
Fast AT [81] 0.0 1.1G 20H 69.09 48.32 48.28 64.03 31.68 31.20
Random 0.4 0.6G 13H 61.11 31.58 31.16 58.10 27.43 27.25
AGAT 0.1 0.6G 13H 69.64 48.50 48.46 63.02 31.17 31.04

ViT-Small [21] 22M 12
Fast AT [81] 0.0 4.6G 47H 71.37 49.49 49.41 66.92 34.07 33.82
Random 0.4 2.7G 33H 63.62 33.58 33.29 60.18 29.10 28.91
AGAT 0.1 2.6G 32H 70.62 49.00 48.85 66.10 33.62 33.40

ViT-Base [21] 86M 12
Fast AT [81] 0.0 17.5G 86H 70.31 50.55 50.06 65.18 33.59 33.39
Random 0.4 10.5G 55H 65.80 37.04 36.81 61.16 30.07 30.01
AGAT 0.1 10.1G 56H 70.41 51.23 51.11 67.93 34.94 34.78

original self-attention module and can fully reveal the effectiveness of our AGAT.
In future work, we will explore combining our AGAT with more sophisticated
attention mechanism like window attention [42] or multi-scale attention [78].
Training Algorithm For vision transformers, we compare our AGAT with
FastAT and the random dropping strategy (Random). we also provide results of
Free AT [62] and Grad Align [4] algorithms on the ResNet [28] models.

5.2 Improved Efficiency of Adversarial Training on ImageNet

We present the performance of AGAT in Table 1. Because AGAT drops a static
rate of embeddings for each self-attention layer, the depth of the ViTs will decide
the total number of dropped features. Thus, we adjust the dropping rate for
ViTs with different numbers of blocks so that the complexity of the feed-forward
process will be approximately reduced by 40% of the baseline. For instance, we
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Table 2. Evaluation of Adversarially Trained Models under Various Attacks. Robust
accuracy of adversarially trained models is reported in this table. The robust accu-
racy achieved by our AGAT is comparable to that by Fast-AT under various attack
evaluations and different perturbation ranges.

Method Model
ϵ = 2/255 ϵ = 4/255

PGD C&W APGD-
CE

APGD-
DLR

Square PGD C&W APGD-
CE

APGD-
DLR

Square

ViT-Tiny [21]
Fast AT 48.28 48.02 48.20 48.05 58.21 31.20 31.09 31.11 31.00 37.97
AGAT 48.46 48.17 48.37 48.24 58.33 31.04 31.03 31.01 30.85 37.84

ViT-Base [21]
Fast AT 50.06 49.87 50.01 49.52 59.28 33.39 33.36 33.28 33.10 40.81
AGAT 51.11 50.84 51.23 50.45 61.12 34.78 34.42 34.54 34.20 42.24

CaiT-XXS24 [73]
Fast AT 54.26 54.19 54.20 54.13 63.22 32.09 32.01 32.08 31.90 38.02
AGAT 54.08 53.88 54.00 53.98 62.35 31.39 31.22 31.20 31.11 37.48

CaiT-S36 [73]
Fast AT 52.76 52.51 52.70 52.53 61.75 32.84 32.73 32.79 32.61 39.71
AGAT 53.48 53.13 53.37 53.02 62.86 33.17 33.08 33.10 33.00 40.12

LeViT-128 [24]
Fast AT 44.87 44.81 44.73 44.60 56.89 32.09 32.03 32.02 31.95 38.90
AGAT 45.21 45.19 45.19 45.06 57.12 31.88 31.77 31.87 31.76 38.61

LeViT-384 [24]
Fast AT 46.13 45.98 46.02 45.93 56.39 31.25 31.00 31.22 30.82 37.99
AGAT 48.59 48.26 48.58 48.49 58.90 33.35 33.24 33.29 33.17 40.22

set the dropping rate to 0.1 for models with 12 blocks but 0.03 for models with
36 blocks. For the baseline of randomly dropping input patches, we can always
set the dropping rate to 0.4 since the total amount of saved computation will
not be affected by the number of blocks.

As shown by Table 1, for each vision transformer, the Fast AT baseline
achieves high robustness but is time-consuming, while the Random dropping
strategy saves training time but achieves inferior robustness. In contrast, AGAT
achieves comparable robustness with Fast AT using much less training time.
Particularly, on the ViT-Base model, AGAT achieves similar robustness to Fast
AT but only takes 65% of training time. Meanwhile, since slim models such as
ViT-Tiny and LeViT-128 do not possess the same level of model redundancy as
their large-sized counterparts, the robustness of these slim models degrades more
dramatically than larger ones when we randomly drop patches. When trained
with AGAT, the robustness of slim models matches the plain Fast AT .

5.3 Ablation Study

Results under Various Attacks. Adversarial robustness is known to be hard
to examine. Several defensive algorithms were found to be vulnerable to tailored
attacks. One of the most important and typical representatives of such phe-
nomena is the obfuscated gradient problem. Our AGAT does not fall into this
category, considering the algorithm neither utilizes any stochastic process nor
hampers the gradient computation. In fact, our AGAT only takes effect on the
training stage and does not modify any procedure during evaluation. To further
show the robustness of the learned ViTs, we present the robust accuracy of our
learned models under various different attacks in Table 2. We select the attack-
ing criteria of C&W [14], Square [2], APGD-CE [18], and APGD-DLR [18]. The
AGAT models achieve the same level of robustness as Fast AT.
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Table 3. Ablation Study on Dropping Strategy. We compare our attention-guided
dropping strategy with random dropping. Ours outperforms random dropping con-
stantly in different dropping rates.

ϵ = 2/255 ϵ = 4/255

Model Method Attack 0% 20% 40% 60% 0% 20% 40% 60%

ViT-Tiny [21]
Random PGD 48.28 39.02 31.16 21.01 31.20 29.64 27.25 24.11
AGAT PGD 48.28 48.15 48.46 46.60 31.20 31.15 31.04 28.13

ViT-Small [21]
Random PGD 49.41 40.62 33.29 28.81 33.82 30.13 28.91 25.25
AGAT PGD 49.41 49.43 48.85 47.90 33.82 33.29 33.40 32.10

ViT-Base [21]
Random PGD 49.26 45.02 36.81 33.17 33.39 32.61 30.01 28.86
AGAT PGD 49.26 49.80 50.02 48.20 33.39 34.15 34.78 32.90

Robustness and Dropping Rate. We cross-validate the rate of dropping of
our AGAT in Table 3. To provide a clear comparison with the random dropping
strategy, we compare their learned robust accuracy when both dropping strate-
gies reduce approximately the same amount of computation. Due to the differ-
ence between the two algorithms (layer-wise vs input-wise), the actual learning
rates are different across the two methods. It can be told that AGAT can main-
tain the learned robustness in a wide range of dropping rates. In contrast, the
random dropping strategy significantly degrades the performance, especially for
the slim model of ViT-Tiny. Dropping more than 40% computation will bring
obvious degradation on robustness, even for AGAT. Thus, we consider this drop-
ping rate as a good trade-off between effectiveness and efficiency.

Visualization. To better get an insight of how AGAT takes effect, we visualize
the internal results of the ViT-Base model. For each of the 12 blocks in ViT-Base,
we show the position of the dropped embeddings by masking out the correspond-
ing image patches. In Fig. 5.3, the position of the dropped embedding mainly
concentrates on the relatively unimportant positions like background, while the
patches of the main object are mostly kept. This indicates that our AGAT suc-
cessfully guards the feed-forward procedure and thus secures the generation of
adversarial examples. We also visualize the corresponding value of attention for
each patch. The darkness of each patch position indicates how much the cor-
responding embedding of this patch influences the other embeddings. For each
block, we normalize all the values of attention by dividing the maximum value of
attention. This visualization also demonstrates that the dropping rate of AGAT
gets to cover the embeddings on the position of the main object. Therefore, drop-
ping rates larger than the chosen value may lose crucial information for inference
and thus hamper the generation of adversarial examples for training.

6 Conclusions

Adversarial training is one of the most effective defense methods to boost the
adversarial robustness of models. However, it is computationally expensive, even
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Fig. 5. Visualizations of dropped image patches and the distribution of attention.
AGAT mainly cuts off the computation of non-object embeddings and thus maintains
the performance and gradient computation.

after many efforts have been made to address it. The emergence of ViTs, whose
computational cost increases quadratically with the number of input patches,
makes adversarial training more challenging. In this work, we first thoroughly
examined the most popular fast adversarial training on various ViTs. Our in-
vestigation shows that ViT achieves higher robust accuracy than ResNet, while
it does suffer from a large computation burden, as expected. Our further explo-
ration showed that random input patch dropping can accelerate and stabilize
the adversarial training, which, however, sacrifices the final robust accuracy. To
overcome the dilemma, we proposed an Attention-Guided Adversarial Train-
ing (AGAT) mechanism based on the specialty of the self-attention mechanism.
Our AGAT leverages the attention to guide the patch dropping process, which
accelerates the adversarial training significantly and maintains the high robust
accuracy of ViTs. We hope that this work can serve the community as a baseline
for research on efficient adversarial training on vision transformers.
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attention networks. In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net (2018), https://openreview.net/forum?id=
rJXMpikCZ

76. Vivek, B., Babu, R.V.: Single-step adversarial training with dropout scheduling.
In: CVPR (2020)

77. Wang, W., Xie, E., Li, X., Fan, D., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. CoRR abs/2102.12122 (2021)

78. Wang, W., Yao, L., Chen, L., Lin, B., Cai, D., He, X., Liu, W.: Crossformer:
A versatile vision transformer hinging on cross-scale attention. In: International
Conference on Learning Representations (2022), https://openreview.net/forum?
id=_PHymLIxuI



20 B. Wu et al.

79. Wang, Z., Jiang, W., Zhu, Y., Yuan, L., Song, Y., Liu, W.: Dynamixer: A vision
MLP architecture with dynamic mixing. In: Chaudhuri, K., Jegelka, S., Song, L.,
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