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Supplementary Contents

This supplement is organized as follows:

– Section A contains the proof for Theorem 1.
– Section B contains the proof for Theorem 2.
– Section C contains the proof for Theorem 3.
– Section D discusses MIME existence beyond 1D.
– Section E describes further details for the feature space analysis.
– Section F contains implementation details across the six datasets.
– Section G describes additional secondary analysis.
– Section H describes our implementation of the hard mining comparison.
– Section I describes our code.
– Section J discusses potential negative ethical impacts of this work.

A Proof for Theorem 1

We consider the one-dimensional linear classifier setting, trained using the Per-
ceptron algorithm. Given any x ∈ R, the classifier evaluates an output y given
by,

y = wx+ b, (1)

where w, b ∈ R. The decision threshold in this case is at y = 0. For simplification,
we reduce the redundant parameter, as follows:

y′ = x+ b′. (2)

Note that the decision threshold is unaffected by this conversion. For notational
simplicity, we use y = y′ and b = b′ here onward. We consider the perceptron
decision and update rule, modified for our case. That is, for any training sample
(xi, yi), the predicted output is given by,

ŷi =
sign(xi + b) + 3

2
, (3)
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where sign(·) is the sign function. Readers will notice the unconventional form of
this decision rule. The additional terms map the conventional perceptron labels
in {−1, 1} to our chosen labels {1, 2} respectively.
For an appropriately chosen learning rate γ, the parameter update rule for this
setting is given by:

b←

{
b+ γ, if ŷi ̸= yi and yi = 2

b− γ, if ŷi ̸= yi and yi = 1
. (4)

Let hideal ≜ [1, bideal]
T denote the ideal decision hyperplane. Under the current

assumption of no domain gap, it can be shown that this ideal hyperplane is
located at x = dideal such that,

pminor
1 (dideal) = pminor

2 (dideal)

pmajor
1 (dideal) = pmajor

2 (dideal).
(5)

This also implies that bideal = −dideal. Now, consider an initial training set of
K − 1 samples from the majority group, Dmajor

K−1 . A decision hyperplane hK−1 is
learnt from these samples. Then, without loss of generality, we can assume that,

dK−1 = dideal +∆. (6)

That is, the real hyperplane hK−1 is non-ideally located closer to the positve
class (y = 2) than hideal. ∆ is a small positive value representing the error in
the learnt decision hyperplane. Consider that the K-th sample is drawn from
the majority group xmajor

K . Recall that parameter updates for the Perceptron
algorithm take place only in the event of incorrect label estimation ŷK ̸= yK . If
we denote the change in the parameter b due to this sample as ∆b, then three
cases exist:

1. Sample from class 2 is classified as belonging to class 1 such that
xmajor
K ∼ pminor

2 (x), xmajor
K < dideal −∆. Associated ∆b = +γ.

2. Sample from class 2 is classified as belonging to class 1 such that
xmajor
K ∼ pminor

2 (x), dideal −∆ ≤ xmajor
K < dideal +∆. Associated ∆b = +γ.

3. Sample from class 1 classified as belonging to class 2 such that
xmajor
K ∼ pminor

1 (x), xmajor
K ≥ dideal +∆. Associated ∆b = −γ.

Let the expected change in b due to one majority group sample be denoted as
∆bmajor. ∆dmajor is similarly defined for the expected change in d. Then, the
following holds true:

∆bmajor = E
xmajor
K

[∆b] . (7)

Writing out the expectation over all three cases,

∆bmajor = γ

∫ dideal−∆

x=−∞
pmajor
2 (x)dx+ γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx

− γ

∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (8)
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Similar expressions can be identified if the K-th sample is drawn from the minor-
ity group. Under the assumption that the mixture models under consideration
are symmetric Gaussian mixture models,∫ dideal−∆

x=−∞
pmajor
2 (x)dx =

∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (9)

Then, using Equation 8 and Equation 9,

∆bmajor = γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx. (10)

The region between x = dideal−∆ and dideal+∆ determines the expected change
in the classification parameter. If∆ is small enough,∆bmajor ≈ 2γpmajor

2 (dideal)∆.
Similarly, ∆bminor ≈ 2γpminor

2 (dideal)∆.

We now identify a sufficient condition where pminor
2 (x) > pmajor

2 (x) for −∆ ≤
x ≤ ∆, given that the overlaps satisfy the condition Ominor > Omajor, as defined
in the main text. Under the GMM assumption,

pmajor
2 (x) =

1√
2π(σmajor

2 )2
exp

(
− (x− µmajor

2 )2

2(σmajor
2 )2

)
. (11)

A similar expression exists for the minority group distribution as well. We wish
to find the intersection point for the majority and minority distributions, that
is pmajor

2 (x) = pmajor
1 (x) for some x. This expression reduces to,(

x− µmajor
2

)2
σmajor2

−
(
x− µminor

2

)2
σminor2

= 2ln

∣∣∣∣σminor

σmajor

∣∣∣∣. (12)

We want to ensure that this intersection point occurs for an x > dideal. This
sets up a hyperbolic equation for the condition. For our purposes of proving
existence, we qualitatively note that if the majority group variance is not very
large (meaning the likelihood of sampling at the ideal hyperplane is low for the
majority group), and the minority group variance is not very large (such that it

does not tend close to a uniform distribution), pminor
2 (x) > pmajor

2 (x). Then,

∆bminor > ∆bmajor. (13)

∆dminor < ∆dmajor < 0. (14)

Our final task is to relate the expected change in the decision hyperplane over a
choice of training sets D+

K and D−
K , with associated learnt hyperplanes h+

K and
h−
K . As a reminder,

D+
K = {Dmajor

K−1 , xmajor
K }

D−
K = {Dmajor

K−1 , xminor
K },

(15)
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Consider a general training setting, where we use minibatches of size M > 1,
over multiple epochs. Then, any minibatch containing the K-th sample can be
split into the K-th sample and a random subset of M − 1 samples from Dmajor

K−1 .
Therefore, on average, the only difference to the sample updates would be due
to the contributions of the K-th sample. This brings us to our final observations,

E
xminor
K

[d+K ] = dmajor
K−1 +∆dmajor

E
xminor
K

[d−K ] = dmajor
K−1 +∆dminor.

(16)

From Equations 14 and 16,

E
xminor
K

[d−K ] < E
xminor
K

[d+K ], and (17)

E
xminor
K

[|dideal − d−K |] < E
xminor
K

[|dideal − d+K |]. (18)

The above holds for small enough γ. Since we know the relationship between the
decision hyperplane h and the associated d in our setting, the following equations
hold true:

E
xminor
K

∥hideal − h−
K∥< E

xminor
K

∥hideal − h+
K∥, (19)

E
xminor
K

Pmajor
{
h−
K

}
< E

xmajor
K

Pmajor
{
h+
K

}
. ■ (20)

B Proof for Theorem 2

We follow a similar approach as in Theorem 1. Let hmajor
ideal ≜ [1, bmajor

ideal ]
T denote

the ideal decision hyperplane for the majority group. Let hminor
ideal ≜ [1, bminor

ideal ]
T

denote the ideal decision hyperplane for the minority group. Then, the ideal
hyperplanes are located at x = dmajor

ideal and x = dminor
ideal respectively such that,

pminor
1 (dminor

ideal ) = pminor
2 (dminor

ideal )

pmajor
1 (dmajor

ideal ) = pmajor
2 (dmajor

ideal ).
(21)

This implies that bmajor
ideal = −dmajor

ideal and bminor
ideal = −dminor

ideal . Consider an initial

training set ofK−1 samples from the majority group, Dmajor
K−1 . Then, without loss

of generality, we can assume that dK−1 = dmajor
ideal +∆, where ∆ > 0. Additionally,

we consider the existence of domain gap in this case, that is, dminor
ideal = dmajor

ideal +δ.

Let δ < ∆. Similar to the setting in Theorem 1 (Equation 8), we can set up the
equation for expected parameter change in the case of the majority and minority



Minority Inclusion for Majority Enhancement of AI Performance 5

groups as follows:

∆bmajor = γ

∫ dmajor
ideal −∆

x=−∞
pmajor
2 (x)dx+ γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx

− γ

∫ +∞

x=dmajor
ideal +∆

pmajor
1 (x)dx. (22)

∆bminor = γ

∫ dminor
ideal −(∆−δ)

x=−∞
pminor
2 (x)dx+ γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx

− γ

∫ +∞

x=dminor
ideal +(∆−δ)

pminor
1 (x)dx. (23)

Under the assumption that the mixture models under consideration are sym-
metric Gaussian mixture models,

∆bmajor = γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx, (24)

∆bminor = γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx. (25)

If ∆+ |δ| is small enough,

∆bmajor ≈ 2γpmajor
2 (dmajor

ideal )∆, (26)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (27)

By establishing the same conditions on group class variances as Theorem 1, we
know that pminor

2 (dminor
ideal ) > pmajor

2 (dmajor
ideal ). We now identify conditions under

which ∆bminor > ∆bmajor.

Case 1 - δ < 0: Under the same conditions as Theorem 1, (∆ − δ) > ∆, and

pminor
2 (dminor

ideal ) > pmajor
2 (dmajor

ideal ). Therefore,

∆bminor > ∆bmajor. (28)

Case 2 - δ > 0:
∆bmajor ≈ 2γpmajor

2 (dmajor
ideal )∆, (29)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (30)

For ∆bminor > ∆bmajor,

pminor
2 (dminor

ideal )(∆− δ) > pmajor
2 (dmajor

ideal )∆. (31)
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Rearranging Equation 31,

pmajor
2 (dmajor

ideal )

pminor
2 (dminor

ideal )
<

(
1− δ

∆

)
. (32)

Given the definitions of the majority and minority groups,

pmajor
2 (dmajor

ideal ) < pminor
2 (dminor

ideal ), (33)

Omajor < Ominor. (34)

Since all four of these terms depend only on the means and variances of the
Gaussian components, we can write,

Omajor

Ominor
=

pmajor
2 (dmajor

ideal )

pminor
2 (dminor

ideal )
f, (35)

where f is a positive scalar constant that depends only on the component means
and variances. From Equations 32 and 35,

Omajor

Ominor
<

(
1− δ

∆

)
f. (36)

This proves the conditions in the theorem. Theorem 1 can now be used to show
the existence of the MIME effect in the presence of domain gap, for these con-
ditions. ■

A Note on the Theorems: Theorems 1 and 2 are existence theorems. That is, they
show that there exist certain conditions under which the MIME effect can be
observed. The theorems make these arguments based on the ‘usefulness’ of points
close to the ideal hyperplane. The direct metric of correlation is the likelihood
for a particular distribution to sample at the ideal hyperplane. However, since
this cannot be easily measured in practice, we set up our proofs in terms of a
correlated metric: the overlap.

C Proof for Theorem 3

This Theorem considers distributions with general prior distributions. Therefore,
for the majority group, let

pmajor′

2 (x) = πmajorpmajor
2 (x),

pmajor′

q (x) = (1− πmajor)pmajor
1 (x).

(37)

Similar definitions are made for the minority group as well. Then, assuming
dK−1 = dmajor

ideal + ∆, ∆ > 0 (similar to Theorem 2), and δ = 0 (for now), and
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drawing from Equation 8), we can set up the equation for expected parameter
change in the case of the majority group as follows:

∆bmajor = γ

∫ dideal+∆

x=−∞
pmajor′

2 (x)dx− γ

∫ +∞

x=dideal+∆

pmajor′

1 (x)dx

= Tmajor(dideal +∆).

(38)

A similar expression holds true for the minority group. Then, if Tmajor(dideal +
∆) < Tminor(dideal +∆), the MIME effect will hold true.

Similarly, if dK−1 = dmajor
ideal −∆, ∆ > 0,

∆bmajor = −γ
∫ dideal−∆

x=−∞
pmajor′

2 (x)dx+ γ

∫ +∞

x=dideal−∆

pmajor′

1 (x)dx

= −Tmajor(dideal −∆).

(39)

Then, if −Tmajor(dideal −∆) < −Tminor(dideal −∆), the MIME effect will hold
true.

Combining the two expressions, for a sufficient existence condition, we get,

min
{
Tminor(dideal +∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal +∆),−Tmajor(dideal −∆)

}
. (40)

This completes the proof. ■
Note that the existence proof for Theorem 3 ignores the effect of domain gap
δ, in the interest of readability and brevity. A very similar existence proof can
be established with domain gap. We omit the derivation and provide the final
condition below (under the constraints on δ and ∆ as in Theorem 2, and using
the same notation):

min
{
Tminor(dmajor

ideal +∆),−Tminor(dmajor
ideal −∆)

}
>

max
{
Tmajor(dmajor

ideal +∆),−Tmajor(dmajor
ideal −∆)

}
. (41)

D MIME Existence Beyond 1D Settings

Consider x ∈ Rn. The perceptron decisions are based on the metric y = wTx+b,
where w ∈ Rn, and y, b ∈ R. Similar to Theorem 1, we consider the perceptron
decision and update rule. That is, for any training sample (xi, yi), the predicted
label is given by,

ŷi =
sign(wTxi + b) + 3

2
. (42)
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We can rewrite this in terms of a single decision hyperplane by defining w̃ =
[wT b]T and x̃ = [xT 1]T . For a small learning rate γ, the updated decision rule
becomes,

ˆ̃yi =
sign(w̃T x̃i) + 3

2
. (43)

w̃←

{
w̃ + γx̃i, if ŷi ̸= yi and yi = 2

w̃ − γx̃i, if ŷi ̸= yi and yi = 1
. (44)

We now refer to the hyperplane w̃ as the decision hyperplane. Let hideal be
the ideal decision hyperplane. In this setting, any domain gap δ or error in real
hyperplane estimation ∆ manifests as a direction/angle error in the hyperplane
normal vector (since the bias term b is subsumed in the hyperplane). The updates
change the normal vector of the hyperplane through a linear combination with
the sample x̃i, scaled by the learning rate γ.

Class y = 2 support

R2R1

R3 R4

R6R5

Class y = 1 support

Ideal hyperplane

Estimated hyperplane

Mirror of est. hyperplane

Hyperplane Normal vector

Fig.A. The MIME effect holds in a multidimensional setting as well. We
show the support for the two finite distributions. Weight vector updates arising out
of samples from regions R3, R4, R5 and R6 lead to an update with a large vertical
(corrective) component (favorable update). Updates arising out of regions R1 and R2
result in an overall update in the horizontal direction (unfavorable update).

We now provide a qualitative description for the existence of the MIME effect,
in terms of the likelihood of a favorable update to w̃. We consider a simplified
2D case with symmetric distributions and δ = 0. A finite support is assumed for
the majority and minority groups, for ease of understanding. Consider that the
bias term b is known, and only the hyperplane direction is to be refined. Again,
we denote the hyperplane from our finite training set Dmajor

K−1 as hK−1. The
error ∆ in this case is now the angular error between the normals for hideal and
hK−1. Figure A indicates this setting. The learnt hyperplane w̃K−1 is shown as
a black solid line. The black dashed line represents the mirror image of the learnt
hyperplane, defined for aid in simplification. Recall that updates to the weight
vector take place on misclassification. On average, the updates due to samples
in regions R1 for (y = 2) and R2 (for y = 1) lead to a net horizontal (leftward)
weight update. This is an unfavorable update that increases ∆. Therefore, the
favorable updates on average are from regions R3 and R4 for y = 2, and R5 and
R6 for y = 1. This is a net update with large vertical (upward) update. This is
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a favorable update that decreases ∆. These regions are described based on the
small angular deviation ∆. Since the distributions have finite support along the
direction parallel to the ideal hyperplane (vertical direction in Figure A), the
requirement again reduces to greater likelihood of sampling close to the ideal
hyperplane (similar to Theorems 1 and 2), since ∆ is small. That is, distributions
that sample close to the ideal hyperplane with greater probability have a greater
expected likelihood of a favorable update. Under similar conditions as Theorem
1, MIME effect holds in this case.
The extension to include the bias term b is straightforward. We follow the set-
ting in Equation 43 and subsume the bias as part of the weights. In this case,
∆ includes the error in both the hyperplane normal direction as well as the
bias. Extensions to greater number of dimensions can be done using the same
arguments. Additionally, domain gap can also be introduced. We omit explicit
mathematical expressions in the interest of brevity, and since our goal here is to
establish existence.

E Feature Space Analysis

Constructing the Projected Feature Histograms: Let f denote a feature vector, in
the penultimate layer of a classification neural network. For example, in the case
of ResNet-34 [7], f ∈ R512. Similarly, let w be the final layer weights. In the case
of multiple final layer hyperplanes, we choose any one of the hyperplanes (since
for the two class classification task, the two projected variables are correlated
when trained against the cross entropy loss for 2 classes). Then, we define x ∈ R
as,

x = wT f . (45)

Classification decisions are made solely on the basis of the projected variable
x. Therefore, we analyze the histogram distributions for x. Practically, for each
dataset, we use the best performing (in terms of majority group performance)
model trained using a minority training fraction (β) of 0.5. This is chosen in
order to obtain histograms of x for all four distributions – the two task classes
for both the majority and minority groups. The histograms are created using
the test set samples.

Estimating the Overlap: The overlap is estimated from the histograms, using
the following Python code snippet:

def histogram_intersection(h1 , h2 , bins):

#INPUTS:

#h1 , h2: normalized histograms

#bins: number of bins in the histograms (should be

equal for the two

histograms)

#OUTPUTS:

#sm: overlap fraction

sm = 0
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for i in range(bins):

sm += min(h1[i], h2[i])

return sm

Estimating the Domain Gap: We follow a two step process to estimate the do-
main gap δ. First, the ideal decision hyperplanes for the majority and minority
groups are estimated, using Equation 21. We fit a fifth order polynomial to the
two histograms. The central intersection point of the histograms (i.e the inter-
section point that lies between the means of the two classes) is then the location
of the ideal decision threshold. The following Python code snippet describes this:

import numpy as np

def ideal_hyperplane(h1 , h2 , z, ref=5):

#INPUTS:

#h1 , h2: the two histograms , of equal length and

identical bins

#z: a list of the histogram bin centers

#ref: Search space for the intersection of the two

histograms - default is

from -5 to 5

#OUTPUT:

#z_dec: Ideal decision threshold between the two

histogram

distributions

z_dash = np.polyfit(z, h1, 5)

f1 = np.poly1d(z_dash)

# calculate polynomial

z_dash = np.polyfit(z, f2, 5)

f2 = np.poly1d(z_dash)

new_z = np.linspace(-ref ,ref ,5000)

new_f1 = f1(new_z)

new_f2 = f2(new_z)

id_dec = np.argmin(np.abs(new_f1-new_f2))

z_dec = new_z[id_dec]

return z_dec

The domain gap is the absolute difference between two ideal decision thresholds,
for each of the two group classes. Figure 3 of the main paper may be referred to
for a graphical visualization.

Notes on the Estimated Measures: The latent feature space analysis is not per-
fect. This is because the feature extraction part of the network is jointly learnt
along with decision hyperplane. Histograms are plotted on the 50% minority
training ratio so as to enable a fair domain gap and overlap comparison between
the two group classes. Specifically, note that we define task complexity in the
main paper in terms of the minority only and majority only train sets which
deviates from the setting here. The estimates for overlap and domain gap are
therefore approximate correlated estimates and not exact measures.
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Analysis of Feature Space Gaussian-like Behavior: We set up the Chi-Squared
goodness of fit test on all 20 distributions under consideration (i.e. across 5
datasets and 4 distributions each per dataset). These statistics correspond to
the distributions in Table 1 and Figure 4 of the main paper. Python code for
testing the hypotheses is given below. The number of bins are chosen so as to
ensure ≥ 5 samples per bin on average.

from scipy.stats import chisquare

from scipy.stats import norm

from scipy import stats

import pandas as pd

def chi_square_stats(vals ,no_bins)

#INPUTS:

#vals: a list of samples whose Gaussianity is to be

tested

#no_bins: number of bins (thumb rule: no_bins <len(

vals)/5)

tot_vals = len(vals)

# mean and standard deviation of given data

mean = np.mean(vals)

std = np.std(vals)

interval = []

for i in range(1,no_bins+1):

val = stats.norm.ppf(i/no_bins , mean , std)

interval.append(val)

interval.insert(0, -np.inf)

lower = interval[:-1]

upper = interval[1:]

df = pd.DataFrame({’lower_limit ’:lower , ’upper_limit ’

:upper})

sorted_vals = list(sorted(vals))

df[’obs_freq ’] = df.apply(lambda x:sum([i>x[’

lower_limit ’] and i<=x

[’upper_limit ’] for i

in sorted_vals]), axis

=1)

df[’exp_freq ’] = tot_vals/no_bins

statistic = stats.chisquare(df[’obs_freq ’], df[’

exp_freq ’])

p = 2 # number of parameters for 1D Gaussian

DOF = len(df[’obs_freq ’]) - p -1
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thresh = stats.chi2.ppf(0.95, DOF)

return statistic , thresh

Table A highlights the evaluated chi-square statistics, as well as related parame-
ters. Note that a lower value of the statistic is better, and the null hypothesis is
not rejected when the value of the statistic is lower than the critical value. We
establish the null hypothesis at a 5% level of significance for each distribution to
be that the samples are drawn from a Gaussian distribution. Distributions that
are unable to reject the null hypothesis are indicated in bold. It can be seen that
a large majority of the distributions indicate that the projected latent features
follow a Gaussian-like distribution.

Table A. Chi-Squared goodness of fit measures for all distributions. Distribu-
tions with bolded values show the estimated statistics that are lower than the critical
value, indicating that the null hypothesis (Gaussian distribution) cannot be rejected.

Dataset No. of samples
per group per class

No. of Bins Critical Value Majority Group Minority Group
y = 1 y = 2 y = 1 y = 2

DS-1 [10] 379 15 21.03 13.65 28.69 10.25 15.39
DS-2 [5] 126 15 21.03 7.81 12.10 11.62 9.24
DS-4 [16] 126 15 21.03 10.43 17.57 17.10 4.48
DS-5 [1] 159 15 21.03 11.09 24.05 5.74 14.40
DS-6 [18, 19] 43 5 5.99 25.48 5.02 5.72 4.79

F Implementation Details

Analysis measures: For each task, we estimate the test accuracy aip(β) as a
function of minority group fraction in the train set β ∈ [0, 1], for a trial i ∈
{1, ..., N}, for a group class g (e.g. dark skin tones). N is the total number of
trials. Practically, we evaluate performance for a finite set of β values, represented
by the set B = {0, 0.1, 0.2, . . . , 1.0}. We now define the following measures.
Average accuracy : For a given minority training ratio β0, and for a given group
class g, we define the average accuracy,

āg(β0) =
1

N

N∑
i=1

aig(β0). (46)

Error bounds: We also evaluate the trend variation among aig(β) for various i.
That is, we want to evaluate if across all the trials (for a particular task-dataset
combination), the relative trend (of majority group performance gain) holds
true. One candidate measure for this is stdi(a

i
g(β)) for each β, where stdi(·)

is the standard deviation operator, over i. However, this measure will include
average changes in accuracy for all splits, for a particular trial (arising out of
unrelated effects such as different train or test set samples). This is unnecessary
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in our case. Therefore, we define our error measure ζ̂(β) as the β-mean subtracted
standard deviation. That is,

ζ̂(β) = stdi(a
i
g(β)− āig),

āig =
1

|B|
∑
β∈B

aig(β),
(47)

where | · | is the cardinality operator representing the size of a set. In our graphs,

we plot the average accuracy āg(β) as well as the error bounds, from āg(β)− ζ̂(β)
to āg(β) + ζ̂(β), ∀β ∈ B.

Network Architectures Used: For all the vision-related experiments, we use the
ResNet-34 architecture [7]. We only modify the output layer of the network
so as to match the number of task classes (9 for Dataset 3, and 2 for all other
tasks). For the Adult (Census) Dataset [1], we use a fully connected network with
sigmoid outputs. The PyTorch [15] implementation for the model is included
below.

#Model

def act(x):

return F.relu(x)

class Network(nn.Module):

def __init__(self ,):

super().__init__ ()

self.fc1 = nn.Linear(101 , 50)

self.fc2 = nn.Linear(50, 50)

self.fc3 = nn.Linear(50, 50)

self.fcLast = nn.Linear(50,2)

def forward(self ,x):

x = act(self.fc1(x))

# x = self.b1(x)

x = act(self.fc2(x))

x = act(self.fc3(x))

x = torch.sigmoid(self.fcLast(x))

return x

General Experiment Details: All experiments were carried out using PyTorch [15].
Table B highlights the training parameters used for each dataset. We use dif-
ferent parameters for each of the datasets. These are experimentally chosen to
maximize accuracy. All the models are trained using the AdamW optimizer [13]
and the cross entropy loss. The train and test set sizes vary slightly across tri-
als, due to different data splits. However, the train set size remains the same
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Table B. Training configuration and parameters for all datasets and exper-
iments. Parameters for each dataset are chosen so as to maximize performance.

Dataset DS-1 [10] DS-2 [5] DS-3 [19] DS-4 [16] DS-5 [1] DS-6 [18, 19]
(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Group class Race Skin tone Gender Gender Gender Species
Train set size 10900 1500 7700 1500 2600 750
Test set size (per group) 760 250 970 250 300 90
No. of trials 5 5 5 7 5 5
No. of epochs 35 60 65 40 250 20
Learning rate 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005
Weight Decay 0.08 0.05 0.05 0.05 0.08 0.08
Input Shape/Config. 3x100x100 3x256x256 3x100x100 3x256x256 101x1 3x100x100

for all minority training ratios of a particular trial. A validation set is held out
but given the small sample size of several datasets, we measure trends based on
best test performance. This is to minimize the effect of sample specific perfor-
mance gap in small datasets. Averaging of trends over multiple trials, and hence
multiple train-test splits ensures that the trends do not overfit to a particular
configuration. Each trial is run using a unique random seed. Table C highlights
the random seeds used for our experiments, which were randomly chosen. In-
put images are resized to the chosen input size for each dataset. For the Adult
dataset [1], we use a one-hot encoding scheme for the input. The group class
information is dropped from the input before passing to the network. For all
the datasets, across all minority training ratios for a particular trial, we use a
fixed model initialization to ensure that the changes in accuracy are completely
attributable to the train data configuration.

Table C. Random seeds used for the trials. Seeds were chosen at random for
trials to generate average trends and error bounds.

Dataset DS-1 [10] DS-2 [5] DS-3 [19] DS-4 [16] DS-5 [1] DS-
6 [18, 19]

(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Random
Seeds

0, 1, 3,
5, 7

21, 42, 35,
28, 31

0, 55, 2,
15, 6

33, 42, 24, 36
54, 21, 28

13, 15, 17,
19, 21

0, 1, 3,
5, 9

Dataset Specific Information: To perform experiments on the Pet Images
Dataset, we manually annotate light and dark fur cats and dogs from the
larger dataset used in [5]. For the age classification task on the UTKFace
Dataset [19], we pre-process the age labels to match the annotation format
for the FairFace dataset [10]. For the large domain gap gender classification task
using the UTKFace and Chicken Images Datasets [19, 18], we perform
gender classification over human and chicken groups. Therefore, this experiment
is over a new, composite dataset.
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Fig. B. The MIME effect is complementary to data debiasing methods and
consistent with research aimed at equal representation (ER) datasets. (a)
Training configurations using data debiasing methods [3] show the MIME effect. (b)
While ER datasets are not optimal for the MIME effect (Figure 5 and 6, main paper),
optimal overall performance is observed close to ER.

G Additional Secondary Analysis of MIME

MIME effect with debiasing methods: We now analyze the interaction of
the MIME effect with existing debiasing methods. Specifically, while applying
hard-sample mining [3] (as an exemplary case) across the task classes (y = 1, 2),
we sweep across various minority training ratios. Figure B(a) shows results on
two datasets (implementation details may be found in the following section). The
MIME effect continues to be observed. Debiasing methods act on the task classes
(y = 1, 2) in an effort to improve performance while MIME acts on majority and
minority groups, regardless of the task class. Therefore, MIME is complementary
to debiasing methods, rather than a competitor. In our experiments, hard-sample
mining does not lead to significant performance gains since the task classes are
balanced by experimental design. In other scenarios where this might not be the
case, MIME and hard sample mining might together improve performance.
Reconciling MIME with existing equal representation (ER) datasets:
In this paper, we focus only on majority group performance, for which ER train-
ing datasets are not optimal in general. In contrast, existing efforts [4, 2, 11, 17,
12, 14, 8, 6, 9] focus on ER datasets to maximize overall (majority+minority)
performance. This need not be optimal but is a good thumb rule. This is because
while majority group performance eventually reduces with minority training ra-
tio, minority group performance increases (Figure B(b) highlights this).

H Hard Mining Baseline Implementation

We implement a version of the method proposed in [3]. From a batch of 30
samples, 12 samples (6 of each task class) are retained and used in the training
step. These are the samples with least confidence, with respect to ground truth
targets. Code is shown below. Trial random seeds are the same as shown in
Table C.
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class compute_crossentropyloss_hardMine:

"""

y0 is the vector with shape (batch_size ,C)

x shape is the same (batch_size), whose entries are

integers from 0 to C-1

In our case , C=2.

"""

def __init__(self , ignore_index=-100) -> None:

self.ignore_index=ignore_index

def __call__(self , y0 , x):

loss = 0.

eps = 1e-5

K = 6

n_batch , n_class = y0.shape

pos_score = torch.ones(n_batch).to(device)

neg_score = torch.ones(n_batch).to(device)

ix_pos = 0

ix_neg = 0

for y1 , x1 in zip(y0 , x):

class_index = int(x1.item())

score = torch.exp(y1[class_index])/(torch.exp(y1)

.sum()+eps)

if class_index == 0:

neg_score[ix_neg] = score

ix_neg+=1

else:

pos_score[ix_neg] = score

ix_pos+=1

pos_score ,_ = torch.sort(pos_score ,dim=0)

neg_score ,_ = torch.sort(neg_score ,dim=0)

pos_els = np.minimum(K,ix_pos)

neg_els = np.minimum(K,ix_neg)

for ix in np.arange(pos_els):

loss = loss -torch.log(pos_score[ix])

for ix in np.arange(neg_els):

loss = loss -torch.log(neg_score[ix])

loss = loss/(pos_els+neg_els)

torch.cuda.empty_cache ()

return loss

I Our Code

Our code may be accessed through the project webpage at https://visual.ee.
ucla.edu/mime.htm/. We provide code and guidance to perform experiments

https://visual.ee.ucla.edu/mime.htm/
https://visual.ee.ucla.edu/mime.htm/
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on all six datasets. Due to specific requirements for each dataset, we provide
six Jupyter notebooks. We also include details on setting up file structures and
link to datasets wherever necessary. Please refer to the README file for further
details.

J Negative Impacts and Mitigation

This paper focuses on highlighting the existence of the MIME effect, and not
optimal configurations for performance gain. Nevertheless, potential negative
outcomes may occur if the results are misinterpreted as guidance on dataset
construction with respect to certain stakeholder groups. The rigor of our theo-
retical results emphasizes this nuance to computer scientists, and future work in
diverse venues can extend the notion of minority inclusion for majority group
performance gains to broader audiences.
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