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Abstract. Several papers have rightly included minority groups in arti-
ficial intelligence (AI) training data to improve test inference for minority
groups and/or society-at-large. A society-at-large consists of both minor-
ity and majority stakeholders. A common misconception is that minority
inclusion does not increase performance for majority groups alone. In this
paper, we make the surprising finding that including minority samples
can improve test error for the majority group. In other words, minority
group inclusion leads to majority group enhancements (MIME) in per-
formance. A theoretical existence proof of the MIME effect is presented
and found to be consistent with experimental results on six different
datasets. Project webpage: https://visual.ee.ucla.edu/mime.htm/.
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1 Introduction

Inclusion of minorities in a dataset impacts the performance of artificial intel-
ligence (AI). Recent research has presented the value of inclusive datasets to
improve AI performance on minorities and also for society-at-large [21, 11, 34,
44, 35, 37, 29, 23, 30]. A society-at-large consists of both majority and minority
stakeholders. However, an objection (often silently posed) to minority inclusion
efforts, is that the inclusion of minorities can diminish performance for the ma-
jority. This is based on a “rule of thumb” that AI performance is maximized
when one trains and tests on the same distribution. A devil’s advocate position
against minority inclusion might be presented as: “In a fictitious society where
we are absolutely certain that only blue-skinned humans will exist in the test
set, why include out of distribution orange-skinned humans in the training set?”.

In this paper, we make the surprising finding that inclusion of minority sam-
ples improves AI performance not just for minorities, not just for society-at-large,
but even for majorities. We refer to this effect as Minority Inclusion, Majority
Enhancement (MIME), illustrated in Figure 2. Specifically, we note that in-
cluding some minority samples in the train set improves majority group test
performance. However, continued addition of minority samples leads to perfor-
mance drop. The effect holds under statistical conditions that are represented
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Fig. 1. This paper proves* that including minorities improves majority per-
formance. *When do the provable guarantees hold? The guarantees are certifiable
for fixed backbone binary classification (e.g. one uses a head network with pretrained
weights and fine-tunes a downstream layer for classification). The fixed backbone ML
is far from a toy scenario (it is considered SoTA by some authors [31]) and also enables
provable certification - ordinarily it is hard to prove things for neural network settings.

in traditional computer vision datasets including FairFace [32], UTKFace [56],
pets [22], medical imaging datasets [40] and even non-vision data [9]. Although
deep learning is used for these problems, the flattening layer of a network can
be empirically approximated to elementary distributions like Gaussian Mixture
Models (GMMs). A GMM facilitates closed-form analysis to prove the existence
of the MIME effect. Additionally, we show existence of MIME on general distri-
butions. Classification experiments on neural networks validate using Gaussian
mixtures: complex neural networks exhibit feature embeddings in flat layers, dis-
tributed with approximately Gaussian density, across six datasets, in and beyond
computer vision, and across many realizations and configurations.

Fairness in machine learning is an exceedingly popular area, and our results
benefit from several key papers published in recent years. Sample reweighting
approaches recognize the need to preferentially weight difficult examples [18, 43,
14]. Active and online learning benefit from insights into sample “informative-
ness” (i.e. given a budget on the number of training samples, which would be
the best sample to include [13, 16]). Domain randomization literature indicates
that surprising perturbations to the training set can improve generalization per-
formance [47, 54, 27]. We extend some of these theoretical insights to the sphere
of analyzing benefits of minority inclusion on majority performance.

1.1 Contributions

While some works [24, 34] have observed related phenomena for isolated tasks,
to the best of our knowledge, characterizing benefits to majority groups by in-
cluding minority data is largely unexplored theoretically. Our contributions are
as follows:

– We introduce the Minority Inclusion Majority Enhancement (MIME) effect
in a theoretical and empirical setting.
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Fig. 2. Inclusion of minorities can improve performance for majorities.
We theoretically describe an effect called Minority Inclusion, Majority Enhancement
(MIME). The figure depicts test classification of blue mimes, and an initial training
stack, also of blue mimes. If allowed to add one more training sample, it can be better
to push an orange mime onto the training stack rather than a blue mime. Test accuracy
can increase by pushing orange, even though the test set consists of blue mimes alone.

– Theoretically: we derive in closed form, the existence of the MIME effect
both with and without domain gap (Key Results 1 and 2) and for general
sample distributions (Key Result 3).

– Empirically: we test the MIME effect on six datasets, as varied as animals to
medical images, and observe the existence of MIME consistent with theory.

1.2 Outline of Theoretical Scope

Figure 1 describes the theoretical scope. Through three key results (Theorem 1,
Theorem 2 and Theorem 3), this paper offers an existence proof of the MIME ef-
fect. An existence proof can leverage a tractable setting. As in Figure 2, training
data is a stack of K − 1 majority samples. Test data is all majority samples. We
can push one additional training sample to increase the stack size to K. We are
allowed the choice of having the K-th sample drawn from the minority or major-
ity group. Theorem 1 proves that, under the assumptions in Section 3, pushing
a minority sample is superior for majority group performance improvements.
Theorem 2 generalizes this result to a more realistic scenario, with domain gap.
Theorem 3 extends the existence proof to general sample distributions. Empir-
ical results on real-world AI tasks offer validation for theoretical assumptions.

2 Related Work

Debiasing and fairness: It has been widely reported that biases in training
data lead to biased algorithmic performance [10, 26, 11]. Work has been carried
out in identifying and quantifying biases [2, 4, 49] and a range of methods exist to
address them [23, 37]. Early approaches suggest oversampling strategies [19, 8].
Other methods propose resampling based on individual performance [35]. Some
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works utilize information bottlenecks to disentangle biased attributes [46]. Still
other methods propose bias mitigation solutions based on adversarial learn-
ing [55] or include considerations like protected class-specific classifiers [50]. Gen-
erative models have also found use in creating synthetic datasets with debiased
attributes [41]. Xu et al. [52] identify inherent bias amplification as a result
of adversarial training and propose a framework to mitigate these biases. Our
goals are different – while these aim to reduce test time performance bias across
groups, we analyze influence of minority samples on majority group performance.
Learning from multiple domains: Domain adaptation literature explores
learning from multiple sources [42]. It could therefore be one potential way to
analyze our problem of training on combinations of majority and minority data.
In our setting, data arising from distinct domains is seen as being drawn from
different distributions with a domain gap [6]. Between these domains, [5] estab-
lishes error bounds for learning from combinations of domains. However, these
error estimates and bounds do not take into account the notion of majority and
minority groups; therefore, describing the MIME effect is outside their scope.
Dataset diversity: An important push towards fairness is through analy-
sis of dataset composition. Several works indicate the importance of diverse
datasets [21, 29]. Ryu et al. [44] note that class imbalance in the training set
leads to performance reduction. Wang et al. [49] highlight that perfectly balanced
datasets may still not lead to balanced performance. For designing medical de-
vices, [30] emphasizes the importance of diverse datasets. Through experiments
on X-ray datasets, [34] observe that imbalanced training sets adversely affect
performance on the disadvantaged group. They also observe that an unbiased
training set shows the best overall accuracy. However, their inferences are related
empirical observations on a few medical tasks and datasets. From an application
perspective, the task of remote photoplethysmography enables analysis of the
bias problem. Prior work notes that camera-based heart rate estimation exhibits
skin tone bias [39], and [1, 51] propose synthetic augmentations to mitigate this.
Additionally, [12, 48] establish that camera based heart rate estimation is fun-
damentally biased against dark skin tone subjects, establishing a notion of task
complexity. While all these works recognize that data composition affects bias,
none to our knowledge describe the effect of varying minority group proportions
on majority group accuracy.

3 Statistical Origins of the MIME Effect

For more concise exposition, we make assumptions in the main paper derivation
and defer extended generality to the supplement. Assumptions include:

– Assumption 1: one-dimensional data samples and binary labels, x ∈ R,
y ∈ {1, 2}. This is relevant to modern classification problems since the final
classification decision is based on a one dimensional projection of the feature
representation of the sample with respect to the learnt hyperplane (discussed
in Figure 1, Section 4). Additionally, existence proof of MIME holds for more
general vectorized notation, as discussed in the supplement.
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– Assumption 2: the binary classifier used is a perceptron: this assumption
relates to real neural networks since the last layer is perceptron-like [38].

We now introduce some key definitions that follow from these assumptions.
Definition 1: (Task complexity): For binary classification we define task com-
plexity for a group of data θ as a continuous variable in [0, 1], such that,

θ = argmin
h∈H

ϵ(h), (1)

where ϵ(h) is the classification error for hypothesis h (the classifier), H is the
space of feasible hypotheses. It is noted later that this is empirically equivalent
to distributional overlap. This definition is not new. Hard-sample mining [18]
establishes the of use performance measures as an indicator of difficulty.
Definition 2: (Majority Group): Group class (i.e. group label g = major) on
which the task performs better. Quantified by training a network only with ma-
jority group data and evaluating test performance: θmajor = argmin

h∈H
ϵmajor(h).

Definition 3: (Minority Group): Group class (i.e. group label g = minor) on
which the task performs worse. Quantified by training a network only with mi-
nority class data and evaluating test performance: θminor = argmin

h∈H
ϵminor(h).

Definition 4: (Minority Training Ratio (β)): Ratio of minority to majority sam-
ples in the data under consideration (training set, in the context of this paper).
Definition 5: (MIME Domain Gap): Measure of how classification differs for
minorities and majorities. Quantified as a difference between ideal hyperplanes.
Note that this definition for domain gap could be different from other definitions.
In this work, domain gap should be taken to mean MIME domain gap.
Empirical observations on cutting-edge machine learning tasks demonstrate the
real-world applicability of the assumptions above. We now discuss three key re-
sults. For ease of understanding, we make two simplifying assumptions for Key
Results 1 and 2: (i) simplified distributions that follow a symmetric Gaussian
Mixture Model, and (ii) equally likely class labels, i.e. Pr(y = 1) = Pr(y = 2).
These assumptions are relaxed in Key Result 3.

Key Result 1: A minority sample can be more valuable for majority
classifiers than another majority sample

Our first key result shows that it can benefit performance on the majority group
more if one adds minority data (instead of majority data). Consider a binary
classification setting with data samples x ∈ R and labels y ∈ {1, 2}. Samples
from the two classes are drawn from distributions with distinct means:

x|y = 1 ∼ p1(x|µ1, σ1)

x|y = 2 ∼ p2(x|µ2, σ2).
(2)

Maximum likelihood (ML) can be used to estimate the label as

ŷ = argmax
y

L(x|y). (3)
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Visualizing domain gap and overlap in minority and majority distributions
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Fig. 3. Visualizating of Gaussian Mixture Model parameters. We plot GMMs
with different task complexities. The domain gap δ is visualized as the difference in the
ideal threshold locations. The overlap/task complexity metric can be visually seen.

An ideal hyperplane for ML Hideal is a set of data samples such that:

Hideal =
{
x
∣∣ L(x|y = 1) = L(x|y = 2)

}
. (4)

We consider the hyperplane’s geometry to be linear in this one dimensional
setting. Therefore the hyperplane can be represented as a normal vector: hideal.
The normalized hyperplane is represented by a two dimensional vector, h =
[1 b]T . Here, b is the offset/bias. In general, a hyperplane h may not be ideal.
The accuracy of a hyperplane is based on a performance measure P

{
h
}
, where

the operator P takes as input the hyperplane and outputs the closeness to the
ideal hyperplane hideal. A goal of a learning based classifier is to obtain:

ĥ = argmin
h

P
{
h
}
= argmin

h
∥h− hideal∥, (5)

where ĥ is the best learnt estimate of the ideal hyperplane. The ideal hyperplane
is the global minimizer of this objective. Now, assume we are provided a finite
training set of labelled data DK−1 = {(xi, yi)}K−1

i=1 . Let the estimated hyperplane
be hK−1, denoting that K−1 samples have been used to learn the hyperplane. If
one additional data sample is made available, then the learnt hyperplane would
be hK . From Equation 2, the k-th sample is drawn from one of two distributions:

xk|y = 1 ∼ p1(x|µ1, σ1)

xk|y = 2 ∼ p2(x|µ2, σ2).
(6)

We now introduce the notion of majority and minority sampling.
Introducing Majority/Minority Distributions: Suppose that the k-th data
sample could be drawn for the same classification task from a minority or major-
ity group. Let g ∈ {major,minor} denote the group label (for the group class).
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Equation 2 can now be conditioned on the group label, such that there are four
possible distributions from which the k-th sample can be drawn:

xk|g = major, y = 1 ∼ pmajor
1 (x|µmajor

1 , σmajor
1 )

xk|g = major, y = 2 ∼ pmajor
2 (x|µmajor

2 , σmajor
2 )

}
Majority
group

xk|g = minor, y = 1 ∼ pminor
1 (x|µminor

1 , σminor
1 )

xk|g = minor, y = 2 ∼ pminor
2 (x|µminor

2 , σminor
2 )

}
Minority
group

(7)

Overlap: Let the ideal decision hyperplane be located at x = dideal. Then,
given equal likelihood of the two labels for y, the overlap for the majority group
is defined as the probability of erroneous sample classification:

Omajor = 0.5

∫ dideal

x=−∞
pmajor
2 (x)dx+ 0.5

∫ ∞

x=dideal

pmajor
1 (x)dx. (8)

The same definition holds true for the minority class as well. Therefore, by def-
inition, Omajor < Ominor. The task complexities θmajor and θminor are empirical
estimates of the respective overlaps. Hereafter, we assume that all four marginal
distributions are Gaussian and symmetric (this is relaxed later for Key Result
3). Figure 3 visually highlights relevant parameters. Ominor > Omajor occurs
through the interplay of component means and variances.
The expectation over the class label yields majority and minority sampling:

xmajor
k ≜ xk|g = major ∼ Ey

[
xk|g = major, y

]
xminor
k ≜ xk|g = minor ∼ Ey

[
xk|g = minor, y

]
,

(9)

where we have defined xmajor
k or xminor

k as having the k-th sample come from the
majority or minority distributions.
Armed with an expression for the k-th sample, we can consider a scope similar
to active/online learning [20, 28, 45, 33, 17, 7, 16, 3]. Suppose a dataset of
K − 1 samples has been collected on majority samples, such that there exists

a dataset stack Dmajor
K−1 =

{
(xmajor

i , ymajor
i )

}K−1

i=1
. A hyperplane hK−1 is learnt

on this dataset and can be improved by expanding the dataset size. Consider
pushing sample index K, denoted as xK onto the stack. Now we have a choice
of pushing xmajor

K or xminor
K , to create one of two datasets:

D+
K = {Dmajor

K−1 , xmajor
K }

D−
K = {Dmajor

K−1 , xminor
K },

(10)

where D−
K represents the interesting case where we choose to push a minority

sample onto a dataset with all majority samples (e.g. adding a dark skinned
sample to a light skinned dataset). Denote h+

K and h−
K as hyperplanes learnt on

D+
K and D−

K . We now arrive at the following result.
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Theorem 1: Let Pmajor
{
·
}
be the performance of a hyperplane on the majority

group. Let ∆ = Pmajor
{
hK−1}. Assume that the minority group distribution has

an overlap Ominor while the majority group has an overlap Omajor < Ominor.
Both have the same ideal hyperplane hideal. Under the definitions of h−

K and
h+
K as above, assuming ∆ is sufficiently small and the group class distribution

variances are not very large,

E
xminor
K

Pmajor
{
h−
K

}
< E

xmajor
K

Pmajor
{
h+
K

}
, (11)

stating that, perhaps surprisingly, expected performance for majorities improves
more by pushing a minority sample on the stack, rather than a majority sample.
Proof (Sketch): A sketch is provided, please see the supplement for the full
proof. The general idea is to show that samples closer to hideal are more benefi-
cial, and minority distributions may sample these with higher likelihood. Without
loss of generality, we assume that hK−1 is located, non-ideally, closer to the task
class y = 2 (arbitrarily called the positive class) than hideal. For our perceptron
update rule, the improvement in the estimated hyperplane due to xK is propor-
tional to the difference between the false negative rate (FNR) and the false posi-
tive rate (FPR) for hK−1, with respect to the distribution of xK . For sufficiently
small ∆, FNR−FPR can be approximated in terms of the likelihood l that xK is
on the ideal hyperplane. The likelihood l is directly proportional to FPR−FNR.
Under the assumptions of the theorem, a direct relation is established between the
overlap and l for each of the group classes. Then, it is shown that an additional
minority sample, with overlap Ominor > Omajor leads to greater expected gains
as compared to an additional majority sample, concluding the proof. ■

Key Result 2: MIME holds under domain gap

In the previous key result we described the MIME effect in a restrictive setting
where a minority and majority group have the same target hyperplane. However,
it is rarely the case that minorities and majorities have the same decision bound-
ary. We now consider the case with non-zero domain gap, to show that MIME
holds on a more realistic setting. Domain gap can be quantified in terms of ideal
decision hyperplanes. If hmajor

ideal and hminor
ideal denote ideal hyperplanes for the ma-

jority and minority groups respectively, then domain gap δ = ∥hmajor
ideal −hminor

ideal ∥.
A visual illustration of domain gap is provided in Figure 3. Next, we define rel-
ative hyperplane locations in terms of halfspaces (since all hyperplanes in the
one dimensional setting are parallel). We say two hyperplanes h1 and h2 lie in
the same halfspace of a reference hyperplane h0 if their respective offsets/biases
satisfy the condition (b1−b0)(b2−b0) > 0. For occupancy in different halfspaces,
the condition is (b1 − b0)(b2 − b0) < 0. We now enter into the second key result.

Theorem 2: Let δ ̸= 0 be the domain gap between the majority and minority
groups. Assume that the minority group distribution has an ideal hyperplane
hminor
ideal ; while the majority group has an ideal hyperplane hmajor

ideal . Then, if δ < ∆,
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δ + ∆ is small enough, and the group class distribution variances are not very
large, it can be shown that if either of the following two cases:

1. hK−1 and hminor
ideal lie in different halfspaces of hmajor

ideal ,
or

2. hK−1 and hminor
ideal lie in the same halfspace of hmajor

ideal , and if

Omajor

Ominor
< (1− δ

∆
)f, (12)

are true, then:
E

xminor
K

Pmajor
{
h−
K

}
< E

xmajor
K

Pmajor
{
h+
K

}
, (13)

where f is a non-negative constant that depends on the majority and minority
means and standard deviations for all the individual GMM components.
Proof (Sketch): A sketch is provided, please see the supplement for the full
proof. We prove independently for both cases.

1. When hK−1 and hminor
ideal lie in different halfspaces of hmajor

ideal , it can be shown
that the expected improvement in the hyperplane is higher for the minority
group as compared to the majority group, using a similar argument as in
Theorem 1. This proves the theorem for Case 1.

2. When hK−1 and hminor
ideal lie in the same halfspace of hmajor

ideal , and assuming
that hK−1 is located closer to the positive class, we approximate the FNR−
FPR value as function of δ, ∆ and the likelihood l as defined for Theorem
1. Then, through algebraic manipulation, constraints can be established in
terms of the two likelihoods lminor and lmajor. Under the assumptions of the
theorem, a relation can be established between the ratios lminor

lmajor
and Ominor

Omajor
.

This proves the theorem for Case 2, and concludes the proof. ■

Key Result 3: MIME holds for general distributions

We now relax the symmetric Gaussian and equally likely labels requirements
to arrive at a general condition for MIME existence. Let pmajor

1 and pmajor
2 be

general distributions describing the majority group y = 1 and y = 2 classes.
Additionally, Pr(y = 1) ̸= Pr(y = 2). Minority group distributions are described
similarly. We define the signed tail weight for the majority group as follows:

Tmajor(xd) = πmajor

∫ xd

x=−∞
pmajor
2 (x)dx− (1− πmajor)

∫ ∞

x=xd

pmajor
1 (x)dx, (14)

where πmajor = Pr(x = 2) for the majority group. Tminor(·) is similarly defined.
This leads us to our third key result.

Theorem 3: Consider majority and minority groups, with general sample dis-
tributions and unequal prior label distributions. If,

min
{
Tminor(dideal +∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal +∆),−Tmajor(dideal −∆)

}
, (15)
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Fig. 4. The use of Gaussian mixtures to represent minority and majority
distributions is consistent with behaviors in modern neural networks, on
real-world datasets. (top row) The last layer of common neural architectures is a lin-
ear classifier on features. Histograms of the penultimate layer projections are generated
for models with β = 0.5. (middle row) Minority histograms: note the greater difficulty
due to less separation of data. (bottom row) Majority histograms: note smaller over-
lap and easier classification. Figure can be parsed on a per-dataset basis. Within each
column, the reader can compare the domain gap and overlap in the two histograms.

then E
xminor
K

Pmajor
{
h−
K

}
< E

xmajor
K

Pmajor
{
h+
K

}
.

Proof (Sketch): A sketch is provided, please see the supplement for the full
proof. The perceptron algorithm update rule is proportional to FNR − FPR
(if hK−1 is located closer to the positive class) or the FPR− FNR (if hK−1 is
located closer to the negative class). The MIME effect exists in the scenario where
the worst case update for the minority group is better than the best case update
for the majority group (described in Equation 15). This proves the theorem. ■
Generalizations of Theorem 3 to include domain gap are discussed in the sup-
plement, for brevity. Theorems 1 and 2 are special cases of the general Theorem
3, describing MIME existence for specific group distributions.

4 Verifying MIME Theory on Real Tasks

In the previous section, we provide existence conditions for the MIME phe-
nomenon for general sample distributions. However, experimental validation of
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Table 1. Experimental measures of overlap and domain gap are consistent
with the theory in Section 3. Note that the majority group consistently has lower
overlap. Domain gaps are found to be small. DS-1 is FairFace, DS-2 is Pet Images, DS-4
is Chest-Xray14 and DS-5 is Adult. DS-6 is the high domain gap gender classification
experiment. DS-3 is excluded here since it deals with a 9 class classification problem.

Dataset
(Task)

DS-1 [32]
(Gender)

DS-2 [22]
(Species)

DS-4 [40]
(Diagnosis)

DS-5 [9]
(Income)

DS-6 [56, 53]
(Gender)

Major. overlap 0.186 0.163 0.294 0.132 0.09
Minor. overlap 0.224 0.198 0.369 0.208 0.19
Domain gap 0.276 0.518 0.494 0.170 1.62

the phenomenon requires quantification in terms of measurable quantities such
as overlap. Theorem 2 provides us these resources. Here, we verify that the as-
sumptions in Theorem 2 are validated by experiments on real tasks.

4.1 Verifying Assumptions

Verifying Gaussianity: Theorem 2 assumes that data x is drawn from a Gaus-
sian Mixture Model. At first glance, this quantification may appear to be unre-
lated to complex neural networks. However, as illustrated at the top of Figure 4,
a ConvNet is essentially a feature extractor that feeds a flattened layer into a
simple perceptron or linear classifier. The flattened layer can be orthogonally
projected onto the decision boundary to generate, in analogy, an x used for lin-
ear classification (Figure 1, fixed-backbone configuration). We use this as a first
approximation to the end-to-end configuration used in our experiments.
Plotting empirical histograms of these flattened layers (Figure 4) shows Gaussian-
like distribution. This is consistent with the Law of Large Numbers – linear com-
bination of several random variables follows an approximate Gaussian distribu-
tion. Hence, Theorem 2 is approximately related in this setting. Details about
implementation and comparison to Gaussians are deferred to the supplement.
Verifying minority/majority definitions: The MIME proof linked minority
and majority definitions to distributional overlap and domain gap. Given the
histogram embeddings from above, it is seen that minority groups on all four vi-
sion tasks have greater overlap. There also exists a domain gap between majority
and minority but this is small compared to distribution spread (except for the
high domain gap experiment). This establishes applicability of small domain gap
requirements. Quantification is provided in Table 1. Code is in the supplement.

4.2 MIME Effect Across Six, Real Datasets

Implementation: Six multi-attribute datasets are used to assess the MIME
effect (five are in computer vision). For a particular experiment, we identify a
task category to evaluate accuracy over (e.g. gender), and a group category (e.g.
race). The best test accuracy on the majority group across all epochs is recorded
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Fig. 5. When domain gap is small, the MIME effect holds. On four vision
datasets, majority performance is maximized with some inclusion of minorities. All
experiments are run for several trials and realizations (described in Section 4.2).

as our accuracy measure. Each experiment is run for a fixed number of minority
training ratios (β). For each minority training ratio, the total number of training
samples remains constant. That is, the minority samples replace the majority
samples, instead of being appended to the training set. Each experiment is also
run for a finite number of trials. Different trials have different random train and
test sets (except for the FairFace dataset [32] where we use the provided test
split). Averaging is done across trials. Note that minority samples to be added
are randomly chosen – the MIME effect is not specific to particular samples. For
the vision datasets, we use a ResNet-34 architecture [25], with the output layer
appropriately modified. For the non-visual dataset, a fully connected network
is used. Average accuracy and trend error, across trials are used to evaluate
performance. Specific implementation details are in the supplement.
MIME effect on gender classification: The FairFace dataset [32] is used
to perform gender classification (y = 1 is male, y = 2 is female). The majority
and minority groups g = {major,minor} are light and dark skin, respectively.
Results are averaged over five trials. Figure 5 describes qualitative accuracy. The
accuracy trends indicate that adding 10% of minority samples to the training set
leads to approximately a 1.5% gain in majority group (light skin) test accuracy.
MIME effect on animal species identification: We manually annotate light
and dark cats and dogs from the Pets dataset [22]. We classify between cats
(y = 1) and dogs (y = 2). The majority and minority groups are light and dark
fur color respectively. Figure 5 shows qualitative results. Over five trials, we see
a majority group accuracy gain of about 2%, with a peak at β =10%.
MIME effect on age classification:We use a second human faces dataset, the
UTKFace dataset [56], for the age classification task (9 classes of age-intervals).



Minority Inclusion for Majority Enhancement of AI Performance 13

Male Female

M
aj

or
ity

M
in

or
ity

M
aj

or
ity

 A
cc

ur
ac

y

Minority class fraction in train set

MIME effect is absent when the domain gap is largeDataset 5: Adult (Census Income) Dataset
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Fig. 6. MIME effect is observed in non-vision datasets, and is absent in the
case of large domain gap. (a) The Adult Dataset [9] uses Census data to predict
an income label. (b) On dataset six, gender classification is rescoped to occur in a high
domain gap setting. Majority group is chickens [53] and minority group is humans [56].

We pre-process the UTKFace age labels into class bins to match the FairFace
dataset format. The majority and minority groups are male and female respec-
tively. The proportion of task class labels is kept the same across group classes.
Results are averaged over five trials. Figure 5 shows trends. We observe a smaller
average improvement for the 10% minority training ratio. However, since these
are average trends, this indicates consistent gain. Results on this dataset also
empirically highlight the existence of the MIME effect beyond two class settings.

MIME effect on X-ray diagnosis Classification: We use the NIH Chest-
Xray14 dataset [40] to analyze trends on a medical imaging task. We perform bi-
nary classification of scans belonging to ‘Atelectasis’ (y = 1) and ‘Pneumothorax’
(y = 2) categories. The male and female genders are the majority and minority
groups respectively. Results are averaged over seven trials (due to noisier trends).
From Figure 5, we observe noisy trends - specifically we see a performance drop
for β = 0.2, prior to an overall gain for β = 0.3. The error bounds also have
considerably more noise. However, confidence in the peak and the MIME effect,
as seen from the average trends and the error bounds, remains high.

MIME effect on income classification: For validation in a non-vision set-
ting, we use the Adult (Census Income) dataset [9]. The data consists of census
information with annual income labels (income less than or equal to $50,000 is
y = 1, income greater than $50,000 is y = 2). The majority and minority groups
are female and male genders respectively. Results are averaged over five trials.
Figure 6(a) highlights a prominent accuracy gain for β = 0.6.

MIME effect and domain gap: Theorem 2 (Section 3) suggests that large
domain gap settings will not show the MIME effect. We set up an experiment to
verify this (Figure 6(b)). Gender classification among chickens (majority group)
and humans (minority group) has a high domain gap due to minimal common
context (validated by the domain gap estimates, Table 1). With increasing β, the
majority accuracy decreases. This (and Figure 4, Table 1 that show low domain
gap for other datasets) validates Theorem 2. Note that while this result may not
be unexpected, it further validates our proposed theory.
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Table 2. Additional evaluation metrics provide further evidence of MIME
existence across all datasets. The table highlights: (i) number of trials with MIME
performance gain (i.e. majority accuracy at some β > 0 is greater than majority accu-
racy at β = 0), and (ii) the mean MIME performance gain across trials (in % points).

Dataset DS-1 [32] DS-2 [22] DS-3 [56] DS-4 [40] DS-5 [9]

#MIME trials/Total trials 4/5 4/5 5/5 6/7 4/5
Avg. MIME perf. gain 0.72% 1.84% 0.70% 1.89% 0.98%

5 Discussion

Secondary validation and analysis: Table 2 supplies additional metrics to
analyze MIME. Across datasets, almost all trials show existence, with every
dataset showing average MIME performance gain. Some readers may view the
error bars in Figures 5 and 6 as large, however they are comparable to other
empirical ML works [36, 15]; they may appear larger due to scaling. Reasons for
error bars include variations in train-test data and train set size (Table B and C,
supplement). Further analysis, including interplay with debiasing methods (e.g.
hard-sample mining [18]) and reconciliation with work on equal representation
datasets [21, 11, 34, 44, 35, 37, 29, 23, 30] is deferred to the supplement.
Optimality of inclusion ratios: Our experiments show that there can exist
an optimal amount of minority inclusion to benefit the majority group the most.
This appears true across all experiments in Figures 5, 6. However, beyond a cer-
tain amount, accuracy decreases consistently, with lowest accuracy on majority
samples observed when no majorities are used in training. This optimal β de-
pends on individual task complexities, among other factors. Since identifying it
is outside our scope (Section 1.1, 1.2), our experiments use 10% sampling resolu-
tion for β. Peaks at β = 10% for some datasets are due to this lower resolution;
optimal peak need not lie there for all datasets (e.g. X-ray [40] & Adult [9]).
Future work can identify optimal ratios through finer analysis over β.
Limitations: The theoretical scope is certifiable within fixed-backbone binary
classification, which is narrower than all of machine learning (Figure 1). Should
this theory be accepted by the community, follow-up work can generalize theo-
retical claims. Another limitation is the definition-compatibility of majority and
minority groups. Our theory is applicable to task-advantage definitions; some
scholars in the community instead define majorities and minorities by propor-
tion. Our theory is applicable to these authors as well, albeit with a slight redefi-
nition of terminology. Additional considerations are included in the supplement.
Conclusion: In conclusion, majority performance benefits from a non-zero frac-
tion of inclusion of minority data given a sufficiently small domain gap.
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