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A Experimental Setup

We implement the based models and self-supervised probing framework in Py-
torch (GPU) 1.10.1+cu113 and train them on a server with Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz and a GeForce RTX 3090 graphics card. The
implementation is based on the publicly released codes1.

B Dataset

We conduct experiments on the benchmark image datasets: CIFAR-10 [11],
CINIC-10 [3] and STL-10 [1]. We use the default validation split from CINIC-10
and split 20% data from the labeled training data as the validation sets for
CIFAR-10 and STL-10, respectively. All the models and baselines share the same
dataset setting for fair comparison.

– CIFAR-10 [11]: CIFAR-10 consists of 50000 training images and 10000 testing
images at a resolution of 32× 32. The dataset covers ten object classes, with
each class having an equal number of images. We split 10000 images out of
the training images as the validation set.

– CINIC-10 [3]: CINIC-10 dataset is designed to be a middle option relative to
CIFAR-10 and ImageNet [4]: it contains images at a resolution of 32 × 32
as CIFAR10 but at a large scale total of 270000 images, which is closer to
that of ImageNet. The dataset has default data splits: equal 90000 images
for training, validation and test set.

– STL-10: STL-10 is an image dataset derived from ImageNet with a resolution
of 96×96. It contains 100000 unlabeled images and 13000 labeled images from
10 object classes. Among the labeled images, 5000 images are partitioned
for training while the remaining 8000 images are for testing. We split 1000
images for each class from the training images as validation data.

1 https://github.com/google/TrustScore

https://github.com/valeoai/ConfidNet

https://github.com/markus93/NN_calibration

https://github.com/google/TrustScore
https://github.com/valeoai/ConfidNet
https://github.com/markus93/NN_calibration
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C Classification Network Architecture

For classification, we adopted the architectures VGG16 [10] and ResNet-18 [6].
The specific architectures we used are publicly released2. To enable comparing
with the MCdropout baseline, we add dropout after each block in the ResNet
models. The VGG16 models are trained using the Adam optimizer with learning
rate 1× 10−4 and (β1, β2) = (0.9, 0.99). As the adopted public VGG16 models
can not support the images with 96×96 resolution directly, we only train VGG16
for CIFAR-10 and CINIC-10. The ResNet models are trained using the SGD
optimizer with cosine annealing scheduler beginning with learning rate of 0.1.
The models for CIFAR-10 and CINIC-10 are trained for 300 epochs and the
model for STL-10 are trained for 100 epochs as training with the dataset at a
smaller scale can reach convergence faster. We choose the model at the final
epoch as our base trained classification model. The test accuracies for the trained
model are reported in the Table 1.

Table 1: Test accuracies (%) for each trained classification model.

CIFAR-10
VGG16

CIFAR-10
ResNet-18

CINIC-10
VGG16

CINIC-10
ResNet-18

STL-10
ResNet-18

Test Accuracy (%) 92.02 93.34 82.10 84.75 69.30

D Evaluation

D.1 Misclassification Detection

FPR at 95% TPR measures the False Positive Rate (FPR) when the True
Positive Rate (FPR) is equal to 95%. True Positive Rate is computed by TPR =
TP/(TP + FN), where TP and FN denote the occurrences of true positives and
false negatives, respectively. The False Positive Rate can be computed by FPR =
FP/(FP+ TN), where FP and TN denote the occurrences of false positives and true
negatives, respectively. One can interpret the metric as the probability that a
sample is misclassified when the True Positive Rate (TPR) is equal to 95%.

AUROC measures the Area Under the Receiver Operating Characteristic curve
(AUROC). It is a threshold-agnostic performance evaluation metric, as the curve
shows the trade-off between TPR and FPR across different decision thresholds.

2
https://github.com/valeoai/ConfidNet/blob/master/confidnet/models/vgg16.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/resnet.py

https://github.com/valeoai/ConfidNet/blob/master/confidnet/models/vgg16.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/resnet.py
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AUPR measures the Area Under the Precision-Recall (PR) curve. The PR
curve is a graph showing precision = TP/(TP + FP) versus recall = TP/(TP
+ FN) across different decision thresholds. Similar to AUROC, AUPR is also a
threshold-agnostic performance evaluation. In our tests, AUPR-SUC indicates
that correct predictions are used as the positive class, while AUPR-ERR indicates
that errors are used as the positive class.

For we train our probing framework only on train set and select hyperparam-
eter λ on validation set, our baselines are also implemented on train data except
that we train TCP for CIFAR10 with validation set as TCP [2] relies on a larger
absolute number of errors while our obtained classifiers can achieve nearly 100%
accuracy on a training set and get less errors compared to using validation set.

D.2 OOD

For Out-of-Distribution Detection (OOD), we use SVHN [8], ImageNet [4] and
LSUN [12] -related datasets as OOD datasets and use CIFRA-10 and CINIC-10
as the normal datasets. We use SVHN from the Pytorch library; and all the other
datasets are publicly released3. As our goal is to verify that the self-supervised
probing can benefit the existing commonly used OOD methods, we compare with
the Maximum Softmax Probability (MSP) and the entropy. We adopt AUROC
as our general OOD performance evaluation metric.

D.3 Calibration

ECE measures Expected Calibration Error. We partition predictions into M
equally spaced bins and compute the accuracy for each bin. ECE is the average
of the bins’ accuracy/confidence difference. We use M = 15 in our experiments.

MCE measures Maximum Calibration Error. Unlike ECE, MCE is the largest
calibration error across all bins. It measures the worse-case deviation between
confidence and accuracy.

NLL is Negative Log Likelihood and a standard measure of a probabilistic
model’s quality [5]. It is also referred to as the cross entropy loss [7].

Brier Score is equivalent to the mean squared error when applied to predicted
probabilities for unidimensional predictions. For multi-class classification, it can
be defined as:

BS =
1

N

N∑
t=1

R∑
i=1

(fti − oti)
2
, (1)

where R is the number of possible classes and N denotes the total number of
instances across all classes. fti is the predictive probability of class i and oti is 1
if the example t has a ground-truth class label i.

3 https://github.com/alinlab/CSI

https://github.com/alinlab/CSI
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E Self-Supervised Probing

In our experiments, we design rotation and translation as the probing tasks. Specif-
ically, we design rotation prediction tasks with 4 degrees {0◦, 90◦, 180◦, 270◦} and
translation tasks with 5 different translated pixels {(0, 0), (−8, 0), (8, 0), (0,−8), (0, 8)}
for both CIFAR-10 and CINIC-10 across different backbone models. As for the
smaller dataset STL-10, we design easier probing tasks: rotation prediction tasks
with 2 degrees {0◦, 90◦} and translation tasks with 3 different translated pixels
{(0, 0), (0,−32), (0, 32)}. To avoid the trivial solution for learning translation
tasks, the translated images’ paddings are interpolated under reflection mode.
The probing classifiers are trained for 10 epochs using the SGD optimizer and
the training learning rate is scheduled with cosine annealing schedulers.

F More Experimental Results

This section provides more experimental results as follows.

F.1 The empirical evidence for probing confidence

Figure 1 shows the correlation between probing confidence and accuracy with
VGG16 backbones trained on the CIFAR-10 and CINIC-10 datasets.

CIFAR-10 CIFAR-10CINIC-10 CINIC-10

Fig. 1: Clear positive correlation between classification accuracy and probing
confidence under the rotation and translation probing tasks with VGG16 models
trained on CIFAR-10 and CINIC-10, respectively.

F.2 Q1: When does self-supervised probing adjust the original
decision to be more (or less) confident?

This section provides the qualitative analysis of our proposed framework. As
observed in the main paper, the images with clear and sharp objects tend to
succeed in both object classification and probing tasks, while the images with
objects intrinsically hard to detect tend to fail in the probing tasks even for object
classification. Going a step further, it is natural to ask whether the classifier has
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Fig. 2: Error and success predictions with activation maps in object classification
and probing tasks. For each sample, the first row shows the original images, the
second row shows the activation maps for object classification and the third row
demonstrates the activation maps for the probing task. The success predictions
tend to have consistent regions in the activation maps, which cover the objects
of interest in the images.

been able to correctly localize the objects in the images such that it can perform
well in both object classification and probing classification. To answer it, we use
a gradient-based visualization algorithm, Grad-Cam [9]4, to show the activation
maps for both object classification and probing task (rotation) classification. As
demonstrated in Figure 2, we observe that, for successful predictions, the resultant
activation maps obtained from two tasks are consistent with the highlighted
regions enveloping the objects of interest. In contrast, the misclassification samples
tend to exhibit the activation maps of different highlighted regions for object
classification and probing tasks.

F.3 Q2: How do different combinations of probing tasks affect
performance?

We have conducted ablation study on the combinations of probing tasks. Specifi-
cally, we have designed varying numbers of transformations in a probing task. For
example, for rotation task, we have designed 2, 4, 6 transformations: {0◦, 90◦},
{0◦, 90◦, 180◦, 270◦} and {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. For translation tasks,

4 https://github.com/jacobgil/pytorch-grad-cam

https://github.com/jacobgil/pytorch-grad-cam
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Table 2: Results (AUROC %) for different transformations in a probing task.

CIFAR-10 CINIC-10 STL-10

#rotations = 2 92.25 88.12 79.43
#rotations = 4 91.97 88.10 78.87
#rotations = 6 91.79 88.14 78.69

#translations = 3 91.11 88.28 79.22
#translations = 5 91.22 88.15 78.90
#translations = 9 91.26 88.11 78.80

we have designed 3, 5, 9 transformations: {(0, 0), (0,−8), (0, 8)}, {(0, 0), (−8, 0), (8, 0),
(0,−8), (0, 8)} and {(0, 0), (−8, 0), (8, 0), (0,−8), (0, 8), (8, 8), (−8,−8), (8,−8), (−8, 8)}.
The results are reported based on the ResNet-18 models trained on different
datasets under misclassification detection settings. We report the results with
AUROC (%) in the Table 2.

F.4 Comparison with the baseline of using randomly initialized
probing head.

Figure 3 displays the correlation between classification accuracy and probing
confidence with randomly initialized head without any training. We obtained the
probing confidence that is almost uniformly distributed and not correlated to the
classification accuracy any more, which further verifies the nontrivial effectiveness
of the SSL learned probing heads. We use normal distribution N (0, 1) for the
random head initialization.
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Fig. 3: The correlation between classification accuracy and probing confidence
with randomly initialized probing head.
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