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Abstract. Trustworthy machine learning is of primary importance to
the practical deployment of deep learning models. While state-of-the-art
models achieve astonishingly good performance in terms of accuracy,
recent literature reveals that their predictive confidence scores unfortu-
nately cannot be trusted: e.g., they are often overconfident when wrong
predictions are made, or so even for obvious outliers. In this paper, we
introduce a new approach of self-supervised probing, which enables us to
check and mitigate the overconfidence issue for a trained model, thereby
improving its trustworthiness. We provide a simple yet effective frame-
work, which can be flexibly applied to existing trustworthiness-related
methods in a plug-and-play manner. Extensive experiments on three
trustworthiness-related tasks (misclassification detection, calibration and
out-of-distribution detection) across various benchmarks verify the effec-
tiveness of our proposed probing framework.

1 Introduction

Deep neural networks have recently exhibited remarkable performance across
a broad spectrum of applications, including image classification and object
detection. However, the ever-growing range of applications of neural networks has
also led to increasing concern about the reliability and trustworthiness of their
decisions [32,17], especially in safety-critical domains such as autonomous driving
and medical diagnosis. This concern has been exacerbated with observations
about their overconfidence, where a classifier tends to give a wrong prediction
with high confidence [27,18]. Such disturbing phenomena are also observed on
out-of-distribution data [16]. The overconfidence issue thus poses great challenges
to the application of models in the tasks of misclassification detection, calibration
and out-of-distribution detection [18,14,16], which we collectively refer to as
trustworthiness.

Researchers have since endeavored to mitigate this overconfidence issue by
deploying new model architectures under the Bayesian framework so as to
yield well-grounded uncertainty estimates [3,22,12]. However, these proposed
frameworks usually incur accuracy drops and heavier computational overheads.
Deep ensemble models [24,6] obtain uncertainty estimates from multiple classifiers,
but also suffer from heavy computational cost. Some recent works [21,8] favor
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Fig. 1: Left : Positive correlation between probing confidence and classification
accuracy. Right : Images with lower probing confidence can be visually hard
to detect and cause errors, while the images with higher probing confidences
are sharp and clear, and lead to successful predictions. The visualized probing
confidence is calculated from the self-supervised rotation task on CIFAR-10.

improving misclassification detection performance given a trained classifier. In
particular, Trust Score [21] relies on the training data to estimate the test
sample’s misclassification probability, while True Class Probability [8] uses an
auxiliary deep model to predict the true class probability in the original softmax
distribution. Like these methods, our approach is plug-and-play and does not
compromise the performance of the classifier, or require retraining it. Our method
is complementary to existing trustworthiness methods, as we introduce the use
of probing as a new source of information that can be flexibly combined with
trustworthiness methods.

Probing [2,20] was proposed as a general tool for understanding deep mod-
els without influencing the original model. Specifically, probing is an analytic
framework that uses the representations extracted from an original model to
train another classifier (termed ‘probing classifier’) for a certain designed probing
task to predict some properties of interest. The performance (e.g., accuracy) of
the learned probing classifier can be used to evaluate or understand the origi-
nal model. For example, one probing framework proposed in [20] evaluates the
quality of sentence embeddings using the performance on the probing task of
sentence-length or word-order prediction, while [2] uses probing to understand
the dynamics of intermediate layers in a deep network.

Though probing has been utilized in natural language processing for linguistics
understanding, the potential of probing in mitigating the overconfidence issue in
deep visual classifiers remains unexplored. Intuitively, our proposed framework
uses probing to ‘assess’ a classifier, so as to distinguish inputs where it can be
trusted from those where it cannot, based on the results on the probing task. To
achieve this goal, we need both 1) well-designed probing tasks, which should be
different but highly related to the original classification task, and 2) a framework
for how to use the probing results.

So the first question is: what probing tasks are related to the original visual
classification problem yet naturally available and informative? We relate this
question with the recent advancement of self-supervised learning. Existing litera-
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ture suggests that a model that can tell the rotation, colorization or some other
properties of objects is expected to have learned semantic information that is
useful for downstream object classification [11,28,13,36]. Reversing this, we may
expect that a pretrained supervised model with good classification performance
can tell the properties of an object, e.g., rotation degrees. In addition, recently
[10] observes a strong correlation between rotation prediction accuracy and
classification accuracy at the dataset level, under a multi-task learning scheme.
This observation suggests that self-supervised tasks, e.g., rotation or translation
prediction, can help in assessing a model’s trustworthiness.

In our work, we first present a novel empirical finding that the ‘probing
confidence’, or the confidence of the probing classifier, highly correlates with
the classification accuracy, as shown in Figure 1 and Figure 3. Motivated by
this finding, we propose our self-supervised probing framework, which exploits
the probing confidence for trustworthiness tasks, in a flexible and plug-and-play
manner. Finally, we verify the effectiveness of our framework by conducting
experiments on the three trustworthiness-related tasks.

Overall, the contributions and benefits of our approach are as follows1:

– (Empirical Findings) We show that the probing confidence highly correlates
with classification accuracy, showing the value of probing confidence as an
auxiliary information source for trustworthiness tasks.

– (Generality) We provide a simple yet effective framework to incorporate the
probing confidence into existing trustworthiness methods without changing
the classifier architecture.

– (Effectiveness) We verify that our self-supervised probing framework achieves
generally better performance in three trustworthiness related problems: mis-
classification detection, calibration and OOD detection.

2 Related Work

2.1 Trustworthiness in Deep Learning

The overconfidence issue [18,16] raises major concerns about deep models’ trust-
worthiness, and has been studied in several related problems: calibration, mis-
classification detection, and out-of-distribution (OOD) detection [18,14,16].

Calibration algorithms aim to align a model’s predictive confidence scores
with their ground truth accuracy. Among these methods, a prominent approach
is to calibrate the confidence without changing the original prediction, such as
Temperature Scaling [14] and Histogram Binning [4].

For misclassification and OOD detection, a common approach is to incorpo-
rate uncertainty estimation to get a well-grounded confidence score. For example,
[25,5] attempt to capture the uncertainty of every sample using a Dirichlet distri-
bution. Ensemble-based methods such as Monte-Carlo Dropout [12] and Deep
Ensembles [24] calculate uncertainty from multiple trials either with the Bayesian

1 Our code is available at https://github.com/d-ailin/SSProbing.

 https://github.com/d-ailin/SSProbing
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formalism or otherwise. However, these uncertainty estimation algorithms have
a common drawback that they involve modifying the classification architecture,
thus often incurring accuracy drops. Besides, ensembling multiple overconfident
classifiers can still produce overconfident predictions.

The practical demand for uncertainty estimation on pretrained models has
led to a line of research developing post-hoc methods. Trust Score [21] utilizes
neighborhood information as a metric of trustworthiness, assuming that samples
in a neighborhood are most likely to have the same class label. True Class
Probability [8] aims to train a regressor to capture the softmax output score
associated with the true class.

Compared to these works, we introduce probing confidence as a valuable
additional source of information for trustworthiness tasks. Rather than replacing
existing trustworthiness methods, our approach is complementary to them, flexibly
incorporating them into our self-supervised probing framework.

2.2 Self-Supervised Learning

Self-supervised learning leverages supervisory signals from the data to cap-
ture the underlying structure of unlabeled data. Among them, a prominent
paradigm [11,28,11,36] is to define a prediction problem for a certain property
of interest (known as pretext tasks) and train a model to predict the property
with the associated supervisory signals for representation learning. For example,
some works train models to predict any given image’s rotation degree [13], or
the relative position of image patches [28], or use multi-task learning combining
supervised training with pretext tasks [19]. The core intuition behind these
methods is that the proposed pretext tasks are highly related to the semantic
properties in images. As such, well-trained models on these tasks are expected to
have captured the semantic properties in images. Motivated by this intuition but
from an opposite perspective, we expect that the supervised models that perform
well in object classification, should have grasped the ability to predict relevant
geometric properties of the data, such as rotation angle and translation offset.

2.3 Probing in Neural Networks

Early probing papers [23,30] trained ‘probing classifiers’ on static word embed-
dings to predict various semantic properties. This analytic framework was then
extended to higher-level embeddings, such as sentence embedding [1] and con-
textual embedding [31], by developing new probing tasks such as predicting the
properties of the sentence structure (e.g., sentence length) or other semantic
properties. Apart from natural language processing, probing has also been used
in computer vision to investigate the dynamics of each intermediate layer in
the neural network [2]. However, most probing frameworks are proposed as an
explanatory tool for analyzing certain characteristics of learned representations
or models. Instead, our framework uses the probing framework to mitigate the
overconfidence issue, by using the probing results to distinguish samples on which
the model is trustworthy, from samples on which it is not.



Trust, but Verify: Using Self-Supervised Probing to Improve Trustworthiness 5

3 Methodology

3.1 Problem Formulation

Let us consider a dataset D which consists of N i.i.d training samples, i.e., D =

(x(i), y(i))
N

i=1 where x(i) ∈ Rd is the i-th input sample and y(i) ∈ Y = {1, . . . ,K}
is the corresponding true class.

A classification neural network consists of two parts: the backbone parame-
terized by θb and the linear classification layer parameterized by θc. Given an
input x, the neural network obtains a latent feature vector z = fθb

(x) followed
by the softmax probability output and the predictive label:

P̂ (Y | x,θb,θc) = softmax(fθc(z)) (1)

ŷ = argmax
k∈Y

P̂ (Y = k | x,θb,θc). (2)

The obtained maximum softmax probability (MSP) p̂ := P̂ (Y = ŷ | x,θb,θc)
is broadly applied in the three trustworthiness tasks: misclassfication detection,
out-of-distribution detection and calibration [18,14].

Misclassification Detection is also known as error or failure prediction [18,8],
and aims to predict whether a trained classifier makes an erroneous prediction
for a test example. In general, it requires a confidence estimate for any given
sample’s prediction, where a lower confidence indicates that the prediction is
more likely to be wrong.

For a standard network, the baseline method is to use the maximum softmax
output as the confidence estimate for misclassification detection [14,18]:

P̂ (ŷ ̸= y) := 1− p̂. (3)

Out-Of-Distribution Detection aims to detect whether a test sample is from
a distribution that is different or semantically shifted from the training data
distribution [34]. [18] proposed to use the maximum softmax scores for OOD
detection. By considering the out-of-distribution data to come from a class that
is not in Y (e.g. class K + 1), we can write this as:

P̂ (y ∈ Y) := p̂, (4)

where y is the true label for sample x. The minimum value of this score is 1/K,
so an ideal classifier when given out-of-distribution data is expected to assign a
flat softmax output probability of 1/K for each class [25].
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Fig. 2: Our self-supervised probing framework, which first trains a probing classi-
fier (left); then at test time, combines the probing confidence with the confidence
obtained from the classifier.

Calibration aims to align the predicted confidence P̂ with the ground truth
prediction accuracy. For example, with a well-calibrated model, samples predicted
with confidence of 0.9 should be correctly predicted 90% of the time. Formally,
we define perfect calibration as

P(Ŷ = Y | P̂ = p) = p, ∀ p ∈ [0, 1],

where P̂ is estimated as the maximum softmax probability in the standard
supervised multi-class classification setup. However, these scores have commonly
been observed to be miscalibrated, leading to a line of research into calibration
techniques for neural networks, such as [14,26].

On the whole, the baseline confidence scores (MSP) p̂ have been observed
to be often overconfident, even on misclassified as well as out-of-distribution
samples [14,18,16]. This degrades the performance of the baseline approach
on all three tasks: misclassification detection, OOD detection and calibration.
Our work aims to show that self-supervised probing provides a valuable source
of auxiliary information, which helps to mitigate the overconfidence issue and
improve performance on these three tasks in a post-hoc setting.

3.2 Self-Supervised Probing Framework

Overview. Our self-supervised probing framework computes the probing confi-
dence, and uses it as an auxiliary source of information for the three trustworthi-
ness tasks, given a trained classifier. Our framework involves two steps:

1. Training the self-supervised probing classifier to obtain the probing confidence
for each sample;

2. Incorporating probing confidence into the three trustworthiness tasks. Specif-
ically, for misclassification and OOD detection, we incorporate probing confi-
dence by combining it with the original confidence scores. For calibration,
we propose a simple and novel scheme which uses the probing confidence as
prior information for input-dependent temperature scaling.
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This framework is illustrated in Figure 2.

Self-Supervised Probing Tasks. Recall that our goal is to use probing tasks
to assess the trustworthiness of the classifier. This requires probing tasks that are
semantically relevant to the downstream classification task (but without using
the actual class labels). The observations made in [13,36,28]

suggest that simple tasks which apply a discrete set of transformations (e.g.
a set of rotations or translations), and then require the model to predict which
transformation was applied, should be suitable as probing tasks.

Formally, we denote the set of probing tasks as T = {T1, T2, . . . , TM}, where
each task Ti consists of ki transformations Ti = {t(0)i , t

(1)
i , . . . , t

(ki−1)
i }, where t(0)i

is the identity transformation. For example, one can create a rotation probing
task defined by four rotation transformations associated with rotation degrees of
{0◦, 90◦, 180◦, 270◦}, respectively.

Training Probing Classifier. As our goal is to provide auxiliary uncertainty
support for a given model, we avoid modifying or fine-tuning the original model
and fix the model’s backbone throughout training. Thus, for a given probing
task Ti ∈ T , we fix the supervised model’s backbone fθb

and train the probing
classifier as a fully-connected (FC) layer with parameters θTi

. Optimization
proceeds by minimizing the cross entropy loss LCE over θTi

only:

P̂ (YTi
| t(x),θb,θTi

) := softmax(fθTi
(fθb

(t(x))) (5)

min
θTi

LTi
:= E(x,y)∼D

∑
t∈Ti

LCE(yTi
, P̂ (YTi

| t(x),θb,θTi
)), (6)

where yTi
is the one hot label for the probing task and LCE denotes the cross

entropy loss.
As the backbone is fixed for all probing tasks and there are no other shared

parameters among probing tasks, the training for all probing tasks are performed
in parallel. After training, we obtain M probing classifiers for the probing tasks
T (|T | = M).

Computing Probing Confidence. During inference, for each test image x
and probing task Ti, we will now compute the probing confidence to help assess
the model’s trustworthiness on x. Intuitively, if the model is trustworthy on x,
the probing classifier should correctly recognize that x corresponds to an identity
transformation (since it is the original untransformed test image). Thus, we probe
the model by first passing the test image through the backbone, followed by
applying the probing classifier corresponding to task Ti. Then, we compute the
probing confidence pTi

(x) ∈ R as the probing classifier’s predictive confidence
for the identity transformation label (i.e. for label 0) in the softmax probability
distribution:

pTi
(x) := P̂ (y

(0)
Ti

| x,θb,θTi
) (7)
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Fig. 3: Clear positive correlation between classification accuracy and probing
confidence under the rotation and translation probing tasks on CIFAR-10, CINIC-
10 and STL-10.

Empirical Evidence. From Figure 3, we observe that for both rotation and
translation probing tasks, and on three datasets, the probing confidence has a
clear positive correlation with the classification accuracy. This empirical evidence
indicates that the samples with higher probing confidence tend to be predicted
correctly in the classification task. This validates our use of probing confidence
for assessing predictive confidence given a sample.

Incorporating Probing Confidence. For the misclassification detection task,
we compute our self-supervised probing score by combining the probing confidence
from the different probing tasks with any existing misclassification score S(x),
which can be the classifier’s maximum softmax probability, entropy, or any other
existing indicator scores [21,8]:

SSSP(x) := S(x) +

M∑
i=1

λipTi
(x), (8)

where λi’s are hyperparameters and are determined corresponding to the best
AUPR-ERR performance on the validation set. The proposed SSSP(x) is the
combined result from the original indicator and the probing confidence scores.

Similarly, we do the same for OOD detection, where S(x) can be any existing
OOD score, e.g. maximum softmax probability or entropy.

Input-Dependent Temperature Scaling. For the calibration task, we design
our input-dependent temperature scaling scheme to calibrate the original predic-
tive confidence as an extension of temperature scaling [14]. Classical temperature
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scaling uses a single scalar temperature parameter a0 to rescale the softmax
distribution. Using our probing confidence pTi

(x) for each sample x as prior
information, we propose to obtain a scalar temperature τ(x) as a learned function
of the probing confidence:

τ(x) := a0 +

M∑
i=1

aipTi
(x) (9)

P̃ (Y | x) := softmax

(
fθc

(fθb
(x))

τ(x)

)
(10)

Here, P̃ (Y | x) contains our output calibrated probabilities. a0 and ai are
learnable parameters; they are optimized via negative likelihood loss on the
validation set, similarly to in classical temperature scaling [14]. For each sample
x, we obtain τ(x) as its input-dependent temperature. With τ(x) = 1, we recover
the original predicted probabilities p̂ for the sample. As all logit outputs of a
sample are divided by the same scalar, the predictive label is unchanged. In
this way, we calibrate the softmax distribution based on the probing confidence,
without compromising the model’s accuracy.

4 Experiments

In this section, we conduct experiments on the three trustworthiness-related tasks:
misclassification, OOD detection and calibration. The main results including
ablation study and case study focus on the misclassification detection task, while
the experiments on calibration and OOD performance aim to verify the general
effectiveness of probing confidence for trustworthiness-related tasks.

4.1 Experimental Setup

Datasets. We conduct experiments on the benchmark image datasets: CIFAR-
10 [33], CINIC-10 [9] and STL-10 [7]. We use the default validation split from
CINIC-10 and split 20% data from the labeled training data as validation set
for CIFAR-10 and STL-10. All the models and baselines share the same setting.
Further details about these datasets, architectures, training and evaluation metrics
can be found in the supplementary material.

Network Architectures. Our classification network architectures adopt the
popular and effective models including VGG16 [29] and ResNet-18 [15]. For
fairness, all methods share the same classification network. We train each probing
task with a FC layer. The hyperparameters λi’s are selected according to the
best AUPR-ERR performance on the corresponding validation set.

Evaluation Metrics. The evaluation metrics for misclassification, OOD detec-
tion and calibration follow the standard metrics used in the literature [18,8,14].
We relegate the details to the supplementary material.
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Table 1: Comparison of misclassification detection methods. All methods share the
same trained classification network. All values are percentages. +SSP indicates
incorporating our self-supervised probing. Bold numbers are the superior results.

FPR@95% ↓ AUPR-ERR ↑ AUPR-SUCC ↑ AUROC ↑

Dataset Model Base/+SSP

CIFAR-10
VGG16

MSP 50.50/48.87 46.21/46.98 99.13/99.16 91.41/91.53
MCDropout 50.25/49.37 46.64/47.23 99.15/99.17 91.46/91.58
TCP 45.74/45.61 47.70/47.93 99.16/99.19 91.85/91.88
TrustScore 47.87/45.61 46.50/47.65 98.99/99.16 90.47/91.68

CIFAR-10
ResNet-18

MSP 47.01/45.30 44.39/45.48 99.02/99.32 90.63/92.10
MCDropout 43.47/38.18 42.04/52.60 99.53/99.51 93.09/94.05
TCP 40.88/40.88 50.37 /50.36 99.48/99.48 93.74/93.73
TrustScore 31.62/30.77 59.57/60.12 99.46/99.47 94.29/94.38

CINIC-10
VGG16

MSP 67.23/66.49 53.21/54.40 96.67/96.11 86.33/85.53
MCDropout 64.74/64.62 54.02/54.76 94.41/96.19 84.85/86.45
TCP 67.80/65.95 53.19/54.27 96.57/96.58 86.51/86.62
TrustScore 68.36/65.65 51.83/53.66 96.19/96.46 85.25/86.01

CINIC-10
ResNet-18

MSP 62.57/62.48 53.18/53.29 97.73/97.57 88.39/88.04
MCDropout 59.32/58.21 52.55/57.20 98.23/98.23 89.50/90.16
TCP 59.66/58.95 55.08/55.27 97.87/97.89 89.07/89.17
TrustScore 62.26/60.08 53.06/54.53 97.64/97.73 88.07/88.50

STL-10
ResNet-18

MSP 77.12/76.67 58.81/59.19 89.59/89.81 78.99/79.35
MCDropout 74.09/73.86 60.49/61.01 92.20/91.33 81.55/81.59
TCP 79.19/79.07 54.72/54.94 85.18/85.59 74.79/75.17
TrustScore 72.48/71.99 61.36/62.10 90.60/90.81 80.57/80.95

4.2 Results on Misclassification Detection

Performance. To demonstrate the effectiveness of our framework, we im-
plemented the baseline methods including Maximum Softmax Probabilty [18],
Monte-Carlo Dropout (MCDropout) [12], Trust Score [21] and True Class Prob-
ability (TCP) [8]. Our implementation is based on the publicly released code
(implementation details can be found in supplementary materials). To show the
effectiveness of probing confidence for these existing trustworthiness scores, we
compare the performance of models with and without our self-supervised probing
approach (refer to Eq. (8), where we use the existing baseline methods as S(x)).

The results are summarized in Table 1. From the table, we observe that our
method outperforms baseline scores in most cases. This confirms that probing
confidence is a helpful indicator for failure or success prediction, and improves
the existing state-of-the-art methods in a simple but effective way.

Q1: When does self-supervised probing adjust the original decision to
be more (or less) confident? As our goal is to provide auxiliary evidence
support for predictive confidence based on self-supervised probing tasks, we
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investigate what kinds of images are made more or less confident by the addition
of the probing tasks.

MSP=1.0
Probing Conf=0.97

MSP=1.0
Probing Conf=0.98

MSP=1.0
Probing Conf=1.0

MSP=1.0
Probing Conf=0.07

MSP=0.99
Probing Conf=0.03

MSP=0.98
Probing Conf=0.02

MSP=0.87
Probing Conf=0.08

GT: bird
Pred: horse 

GT: deer
Pred: bird 

MSP=1.0
Probing Conf=0.04

GT: dog
Pred: deer 

MSP=0.91
Probing Conf=0.02

GT: bird
Pred: bird 

GT: dog
Pred: dog 

GT: deer
Pred: deer 

GT: bird
Pred: bird 

GT: dog
Pred: dog 

GT: deer
Pred: deer 

Fig. 4: Analysis of the examples in CIFAR-10 for the rotation probing task. The
red box contains the samples that are wrongly predicted on both probing and
classification tasks. The green dashed box contains the samples predicted wrongly
on the probing task but predicted correctly for classification. The green solid box
contains the samples predicted correctly on both probing tasks and classification.
The objects that are visually harder to detect tend to fail in the probing task.

Figure 4 illustrates three cases, demonstrating what kind of images tend to
fail or succeed in the probing tasks. From the figure, we observe that samples
with objects that are intrinsically hard to detect (e.g., hidden, blurred or blending
in with their surroundings) tend to fail in the probing task, whereas samples
with clear and sharp objects exhibit better performance in the probing task.
The former type of samples are likely to be less trustworthy, which validates the
intuition for our approach.

Q2: How do different combinations of probing tasks affect performance?
To further investigate the effect of the probing tasks, we design different combina-
tions of probing tasks and observe how these combinations affect the performance
in misclassification tasks.

We first demonstrate the performance with or without rotation and translation
probing tasks to see how each task can affect the performance. The result is based
on the ResNet-18 model trained on CIFAR-10 and reported in Table 2. The result
shows that the rotation probing task contributes more than the translation task
to the overall improvement. The combination of rotation and translation probing
tasks outperforms each one individually, implying that multiple probing tasks
better identifies the misclassified samples, by combining different perspectives.

To further investigate the influence of the number of transformations for each
probing task, we conduct experiments by varying the numbers of transformations
in the probing task. The details of the experimental setting are provided in the
supplementary material and the result is shown in Figure 5.

We observe that the larger dataset (CINIC-10) shows stable performance
under the probing tasks with varying number of transformations, but the smaller
dataset (STL-10) shows a drop in performance when using the probing tasks with
more transformations. As the number of transformations in a probing task can



12 A Deng et al.

Table 2: The performance of different combinations of probing tasks for CIFAR-10.
Combining both probing tasks outperforms the individual task setting, suggesting
that multiple tasks effectively assesses trustworthiness from multiple perspectives.

CIFAR-10

Rotation Translation FPR@95% ↓ AUPR-ERR ↑ AUPR-SUCC ↑ AUROC ↑

45.30 45.48 99.32 92.10

45.58 45.36 99.28 91.78

46.15 44.61 99.24 91.42

be regarded as the complexity of the probing task, this suggests that on smaller
datasets, the probing tasks should be designed with fewer transformations to
allow the probing classifier to effectively learn the probing task.
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Fig. 5: The performance (AUROC) when using different numbers of transforma-
tions (#Rotations / #Translations) in the rotation and translation probing tasks.
The probing tasks with more transformations decrease the performance in most
case, especially for the small dataset (STL-10).

Q3: Feasibility of other self-supervised tasks than rotation and transla-
tion prediction. Other than rotation and translation, there are self-supervised
tasks such as jigsaw puzzles [28], i.e., predicting the jigsaw puzzle permutations.
Since our self-supervised probing framework can extract the probing confidence
for any proposed self-supervised probing tasks flexibly, we also experiment with
jigsaw puzzle prediction as a probing task. However, we found that the training
accuracy for jigsaw puzzle prediction is low, resulting in less informative probing
confidence scores. This is probably because shuffling patches of an image breaks
down the image semantics, making it challenging for the supervised backbone to
yield meaningful representations for the self-supervised probing task.

In general, probing tasks should be simple yet closely related to visual semantic
properties, so that the probing confidence correlates with classification accuracy.
The rotation and translation tasks assess a model’s ability to identify the correct
orientation and position profile of the object of interest, which are closely related
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Table 3: AUROC (%) of OOD detection trained on in-distribution data (a) CIFAR-
10 and (b) CINIC-10. The baseline methods are Maximum Softmax Probability
and Entropy. +SSP indicates incorporating our self-supervised probing.

CIFAR-10 →

Backbone Method SVHN LSUN ImageNet LSUN(FIX) ImageNet(FIX)

VGG16

MSP 91.05 88.98 88.08 85.64 86.01
MSP+SSP 92.57 90.39 90.08 86.93 87.41

Entropy 91.79 89.55 88.60 86.04 86.46
Entropy+SSP 92.57 90.70 90.09 86.76 87.34

ResNet-18

MSP 88.80 91.17 88.86 85.26 85.75
MSP+SSP 91.71 92.62 91.27 89.71 89.65

Entropy 89.27 91.94 89.44 85.54 86.06
Entropy+SSP 92.13 93.55 92.02 90.04 90.03

CINIC-10 →

Backbone Method SVHN LSUN ImageNet LSUN(FIX) ImageNet(FIX)

VGG16

MSP 81.48 81.17 80.36 76.45 76.76
MSP+SSP 85.25 84.73 83.53 80.92 80.36

Entropy 83.24 82.96 81.92 77.83 77.93
Entropy+SSP 85.07 84.57 83.32 79.90 79.68

ResNet-18

MSP 88.81 86.11 83.03 83.25 81.59
MSP+SSP 90.33 87.87 86.20 83.69 83.43

Entropy 87.65 83.34 80.96 83.59 81.34
Entropy+SSP 89.75 85.46 83.26 85.09 83.31

to the classification task; but more complex tasks (e.g., jigsaw) can lead to greater
divergence between probing and classification. We leave the question of using
other potential probing tasks in the further study.

4.3 Results on Out-of-Distribution Detection

Besides misclassification detection, we also conduct experiments on out-of-
distribution detection with SSSP. All hyperparameters λi share the same setting
as in misclassification detection. Since our goal is to verify that our self-supervised
probing approach can be combined with common existing methods to enhance
their performance, we build upon the most commonly used methods for OOD
detection: Maximum Softmax Probability (MSP) and the entropy of the softmax
probability distribution (refer to Eq. (8)).

The results are reported with the AUROC metric in Table 3, indicating that
our self-supervised probing consistently improves the OOD detection performance
on both MSP and entropy methods.

4.4 Results on Calibration

In this section, we verify our proposed input-dependent temperature scaling as de-
scribed in Section 3.2. Specifically, we compare the common calibration baselines,
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Table 4: The reported performance in calibration. Our approach (Scaling+SSP)
compare with uncalibrated softmax probability (MSP) [18], Histogram Binning
binning (Hist. Binning) [35] and Temperature Scaling (Temp. Scaling) [14].

ECE (%) ↓ MCE (%) ↓ NLL ↓ Brier Score (×10−3) ↓

CIFAR-10
VGG16

MSP (uncalibrated) 5.0 31.43 0.39 13.17
Hist. Binning 1.65 20.68 0.35 12.88
Temp. Scaling 1.03 7.53 0.26 12.03
Scaling+SSP 0.93 9.15 0.26 12.03

CIFAR-10
ResNet-18

MSP (uncalibrated) 4.31 28.16 0.28 11.55
Hist. Binning 1.17 27.95 0.31 10.73
Temp. Scaling 1.40 18.91 0.23 10.72
Scaling+SSP 0.75 7.92 0.22 10.48

CINIC-10
VGG16

MSP (uncalibrated) 9.68 24.29 0.71 27.82
Hist. Binning 2.95 28.40 0.67 26.44
Temp. Scaling 0.62 2.46 0.55 25.34
Scaling+SSP 0.53 3.42 0.55 25.28

CINIC-10
ResNet-18

MSP (uncalibrated) 7.94 23.08 0.55 23.43
Hist. Binning 2.26 21.09 0.56 22.20
Temp. Scaling 1.41 13.30 0.45 21.56
Scaling+SSP 0.77 10.22 0.44 21.51

STL-10
ResNet-18

MSP (uncalibrated) 16.22 26.76 1.18 46.73
Hist. Binning 7.80 17.73 1.92 46.30
Temp. Scaling 1.56 9.08 0.89 42.22
Scaling+SSP 1.17 7.61 0.89 42.15

including Temperature Scaling [14] and Histogram Binning [35]. Temperature
Scaling is the key baseline for verifying the effectiveness of our use of probing
confidence as prior information to obtain a temperature for each sample.

The result is shown in Table 4. We observe that our proposed calibration
method generally outperforms the baseline methods under different evaluation
metrics.

5 Conclusions

In this paper, we proposed a novel self-supervised probing framework for enhanc-
ing existing methods’ performance on trustworthiness related problems. We first
showed that the ‘probing confidence’ from the probing classifier highly correlates
with classification accuracy. Motivated by this, our framework enables incorporat-
ing probing confidence into three trustworthiness related tasks: misclassification,
OOD detection and calibration. We experimentally verify the benefits of our
framework on these tasks. Our work suggests that self-supervised probing serves
as a valuable auxiliary information source for trustworthiness tasks across a wide
range of settings, and can lead to the design of further new methods incorporating
self-supervised probing (and more generally, probing) into these and other tasks,
such as continual learning and open-world settings.
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prediction by learning model confidence. arXiv preprint arXiv:1910.04851 (2019)

9. Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505 (2018)

10. Deng, W., Gould, S., Zheng, L.: What does rotation prediction tell us about
classifier accuracy under varying testing environments? In: International Conference
on Machine Learning. pp. 2579–2589. PMLR (2021)

11. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: Proceedings of the IEEE international conference on
computer vision. pp. 1422–1430 (2015)

12. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In: international conference on machine learning. pp.
1050–1059. PMLR (2016)

13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

14. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: International Conference on Machine Learning. pp. 1321–1330. PMLR
(2017)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

16. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 41–50 (2019)

17. Hendrycks, D., Carlini, N., Schulman, J., Steinhardt, J.: Unsolved problems in ml
safety. arXiv preprint arXiv:2109.13916 (2021)

18. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. Proceedings of International Conference
on Learning Representations (2017)



16 A Deng et al.

19. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning
can improve model robustness and uncertainty. Advances in Neural Information
Processing Systems 32 (2019)

20. Hewitt, J., Liang, P.: Designing and interpreting probes with control tasks. arXiv
preprint arXiv:1909.03368 (2019)

21. Jiang, H., Kim, B., Guan, M.Y., Gupta, M.: To trust or not to trust a classifier. In:
Proceedings of the 32nd International Conference on Neural Information Processing
Systems. pp. 5546–5557 (2018)

22. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems 30 (2017)
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