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Abstract. Here, we provide additional experimental setup and results
for “An Invisible Black-box Backdoor Attack through Frequency Do-
main” in ECCV 2022.

1 Evaluation Metrics

Here, we provide the definitions of the three fidelity evaluation metrics for com-
pleteness.

PSNR is the ratio of the maximum possible power of a signal to the destruc-
tive noise power that affects its accuracy. It is defined as

PSNR = 10 log10(
MAX2

I

MSE
) (1)

where MSE is defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(x(i, j)− y(i, j))2. (2)

In the equations, x is the original image, y is the poisoning image, m and n are
the width and height of the image. MAXI is the maximum possible pixel value
of the image (255 for 8-bit images).

SSIM is an index to measure the similarity of two images. It is calculated
based on the luminance and contrast of local patterns. Given two images, x
and y, let L(x, y), C(x, y), and S(x, y) be luminance, contrast, and structural
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measures defined as follows,

L(x, y) =
µxµy + C1

µ2
x + µ2

y + C1

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

S(x, y) =
σxy + C3

σxσy + C3

(3)

where µx, σx, and σxy are weighted mean, variance, and covariance, respectively,
and Ci ’s are constants to prevent singularity. where C1 = (K1L)

2 and L is the
dynamic range of the pixel values (255 for 8-bit images), K1 = 0.01; C2 =
(K2L)

2, K2 = 0.03; C3 = C2/2. It should be noted that the above x and y are
all calculated in the RGB space. Then, the SSIM index is defined as

SSIM(x, y) = L(x, y)C(x, y)S(x, y). (4)

IS (inception score) is first proposed to measure the quality of images gener-
ated from GANs. It mainly considers two aspects, one is the clarity of generated
images, and the other is the diversity of images. Here we mainly focus on the
difference between images containing triggers and the original images. It uses
features of the InceptionV3 network trained on ImageNet classification dataset
to mimic human visual perception. Inputting two images into InceptionV3 will
output two 1000-dimensional vectors representing the discrete probability dis-
tribution of their categories. For two visually similar images, the probability
distributions of their categories are also similar. Given two images x and y, the
computation of IS can be expressed as follows,

IS(x, y) = KL(ϕ(x), ϕ(y))

KL(ϕ(x), ϕ(y)) =

N∑
i=1

ϕ(x)i log
ϕ(x)i
ϕ(y)i

(5)

where ϕ(·) represents the discrete probability distribution of the predicted labels
of InceptionV3, and KL(·, ·) represents Kullback-Leibler divergence.

2 Color Channel Transform and Discrete Cosine
Transform

Next, we provide the details of color channel transform and discrete cosine trans-
form in the proposed attack for completeness. Specifically, pixels in RGB chan-
nels can be converted to and back from YUV channels with the linear transfor-
mations in Eq (6) and Eq. (7), respectively. In the equations, (R, G, B) and (Y,
U, V) stand for the channel values of a pixel in the RGB space and the YUV
space, respectively.
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Y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B,

U = 0.596 ∗R− 0.272 ∗G− 0.321 ∗B,

V = 0.212 ∗R− 0.523 ∗G− 0.311 ∗B, (6)

R = Y + 0.956 ∗ U + 0.620 ∗ V,
G = Y − 0.272 ∗ U − 0.647 ∗ V,
B = Y − 1.108 ∗ U − 1.705 ∗ V. (7)

DCT expresses an image as a set of cosine functions oscillating at different
frequencies. Compared with discrete Fourier transform (DFT), DCT is better in
terms of energy concentration and is widely used in processing images. Specifi-
cally, we use the 2-D Type-II DCT transform [1] as follows,

X(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)c1(n1, k1)c2(n2, k2),

ci(ni, ki) = c̃i(ki) cos(
π(2ni + 1)ki

2Ni
),

c̃i(ki) =

{
1√
Ni

ki = 0
2√
Ni

ki ̸= 0
i = 1, 2, (8)

which transforms the size N1 × N2 input image in spatial domain to its fre-
quency domain with the same size. Here, (k1, k2) stands for the index in the
frequency map, k1/k2 ∈ {0, 1, . . . , N1/N2}, X(k1, k2) is the frequency magni-
tude at (k1, k2), and x(n1, n2) is the pixel value in position (n1, n2) of the image
in spatial domain. To transform the image from frequency domain back to spatial
domain, we can use the inverse DCT transform [6] whose equations are similar
to Eq. (8) and thus omitted for brevity.

3 More Experimental Results

Next, we provide more experimental results.

3.1 Poisoning images by FTrojan

Figure 1 shows more poisoning images by FTrojan. All the images are stamped
with triggers in UV channels of each block. The original clean images are in the
first column, and the rest columns contain the poisoning images. The fifth column
stands for our default setting, with triggers in mix mode (indexed by (15, 15) and
(31, 31)) of magnitude 50. We can observe that when the triggers reside in either
mid-frequency or high-frequency bands with moderate magnitude (e.g., no more
than 100), the poisoning images are perceptually similar to the corresponding
clean images and difficult to visually detect.
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mid-frequency  with 
magnitude 30 in UV

Original image high-frequency  with 
magnitude 30 in UV

mix-frequency  with 
magnitude 30 in UV

mix-frequency  with 
magnitude 50 in UV

mix-frequency  with 
magnitude 100 in UV

mix-frequency  with 
magnitude 30 in RGB

Fig. 1. Poisoning images by our FTrojan attack. Mix-frequency mixes triggers in both
mid- and high-frequency components. We can observe that when the triggers reside
in the high-frequency and mid-frequency components with moderate magnitude, the
poisoning images are difficult to visually detect.

Table 1. Fidelity results of FTrojan variants. Larger PSNR and SSIM, and smaller
IS are better. Triggering at UV channels achieves better results than at YUV and RGB
channels. Triggering at high-frequency only is slightly better than at mid-frequency and
mix-frequency.

FTrojan Variant GTSRB CIFAR10 ImageNet PubFig

PSNR SSIM IS PSNR SSIM IS PSNR SSIM IS PSNR SSIM IS

No Attack INF 1.000 0.000 INF 1.000 0.000 INF 1.000 0.000 INF 1.000 0.000

UV+mix 40.9 0.995 0.017 40.9 0.995 0.135 37.7 0.727 0.020 37.7 0.802 0.213
UV+mid 43.3 0.995 0.011 43.5 0.997 0.098 40.5 0.775 0.014 40.5 0.861 0.176
UV+high 43.3 0.995 0.007 43.5 0.997 0.049 40.5 0.796 0.009 40.5 0.870 0.019
YUV+mix 25.7 0.943 0.458 36.5 0.985 0.279 25.7 0.670 0.258 21.3 0.806 1.571
RGB+mix 45.8 0.995 0.012 45.7 0.997 0.046 40.4 0.784 0.045 41.3 0.861 0.282

3.2 Fidelity Results of FTrojan Variants

The fidelity results of FTrojan variants are shown in Table 1. We exclude the
results on MNIST in the table as it contains only one channel. First, we can
observe that although as effective as the default FTrojan, injecting triggers
into YUV channels instead of UV channels results in worse fidelity results as
indicated by Table 1 (the fifth row). Second, injecting triggers at RGB channels
is less effective than at UV channels, and it also results in lower fidelity (sixth
row in Table 1). This is probably due to that the frequencies are more messy in
RGB channels.
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Table 2. Performance vs. trggier frequency. All the results are percentiles. Triggering
at mid- or high-frequency components generally results in better BA and ASR results.

Frequency Index GTSRB CIFAR10

BA ASR BA ASR

(2, 6) 94.60 81.49 84.12 84.16
(4, 4) 94.79 44.71 84.59 70.85
(8, 8) 95.77 77.11 82.79 13.72
(8, 20) 96.11 94.63 85.49 96.91
(12, 12) 97.11 96.65 86.44 90.36
(12, 16) 96.69 91.75 86.95 99.36
(20, 20) 96.60 95.21 85.95 99.71
(24, 24) 96.62 94.27 86.76 99.58
(28, 28) 96.66 98.73 86.95 99.94

Table 3. Performance vs. block size. Different block sizes result in similar efficacy,
specificity, and fidelity results.

Block Size GTSRB CIFAR10

BA ASR PSNR SSIM IS BA ASR PSNR SSIM IS

8 × 8 96.83 99.95 30.4 0.985 0.226 85.10 100.00 30.3 0.954 0.656
16 × 16 96.76 98.64 36.2 0.993 0.047 85.08 100.00 36.1 0.985 0.319
32 × 32 96.63 99.25 40.9 0.995 0.017 86.05 99.97 40.9 0.995 0.135

3.3 Performance versus Trigger Frequency

For trigger frequency, we study different frequency indices while keeping the
other settings as default. Specifically, we place the trigger on several randomly
chosen low-frequency (i.e., (4,4), (8,8), (8,16)), mid-frequency (i.e., (8, 20), (12,
12), (12, 16)), and high-frequency (i.e., (20, 20), (24, 24), (28, 28)) components,
and the results are shown in Table 2. It can be seen that the backdoor attack
is effective for all the triggers that are placed on mid- and high-frequency com-
ponents. In this work, we choose a mix mode by default, i.e., triggering one
mid-frequency index and one high-frequency index.

3.4 Performance versus Block Size

The default block size is set to 32 × 32 in this paper. Here, we test other choices
include using 8 × 8 and 16 ×16 blocks. We apply the same trigger for each block
for simplicity. For example, for block size 16 ×16, we divide a 32 × 32 image
into four disjoint parts and place the same trigger on each part. Other settings
are consistent with the default FTrojan. The results on CIFAR10 and GTSRB
data are shown in Table 3. As we can see from the table, different block sizes
result in similar efficacy, specificity, and fidelity results.
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Table 4. Performance vs. the number of poisoned blocks. We can have an effective
backdoor attack once we poison a few blocks (e.g., no less than 9 blocks).

Block Number ImageNet PubFig

BA ASR PSNR SSIM IS BA ASR PSNR SSIM IS

4 79.75 15.5 50.4 0.951 0.003 81.38 9.62 50.3 0.981 0.014
9 77.38 90.63 47.2 0.929 0.003 88.12 99.85 47.1 0.972 0.020
16 76.25 98.75 44.5 0.899 0.005 86.01 99.25 44.3 0.955 0.029
25 75.12 99.88 42.3 0.869 0.013 84.38 99.00 42.1 0.926 0.039
36 78.38 98.88 39.0 0.784 0.021 87.00 99.75 38.9 0.856 0.099
49 78.63 99.38 37.7 0.727 0.020 88.62 99.83 37.7 0.802 0.213

Table 5. The results in clean-label setting. FTrojan still achieves good efficacy, speci-
ficity, and fidelity results.

FTrojan Variant BA ASR PSNR SSIM IS

No attack 87.12 - INF 1.000 0.000

UV+mix 84.90 97.69 36.0 0.986 0.374
UV+mid 85.62 53.33 37.8 0.991 0.320
UV+high 85.41 94.89 37.8 0.991 0.219
YUV+mix 84.75 97.31 32.3 0.968 0.448
RGB+mix 85.80 91.42 40.5 0.993 0.137

3.5 Performance versus Number of Poisoned Blocks

ImageNet and PubFig contain 224× 224 images, and our block size is set to 32
× 32. We divide the images into 49 disjoint 32 × 32 blocks, and it is possible to
place triggers on a subset of the blocks. Here, we conduct the experiments on
such choices. In particular, we randomly select 4 block, 9 blocks, 16 blocks, 25
blocks, and 36 blocks to place the trigger, and the results are shown in Table 4.
We can observe that when we poison no less than 9 blocks out of the 49 disjoint
blocks, we could obtain an effective backdoor attack.

3.6 Extending to Clean-Label Setting

Our attack can also be extended to the clean-label setting, which means that it
can directly insert a trigger without changing image labels to make a successful
attack. For brevity, we perform the experiment on CIFAR10 and show the results
in Table 5. Here, we keep the same default setting as the previous change-label
setting, except increasing the trigger magnitude from 30 to 50 as clean-label
backdoor attack is more difficult to succeed [7]. Following [7], we conduct an
adversarial transformation via projected gradient descent [5] before poisoning the
image. The results show that FTrojan still achieves good efficacy, specificity,
and fidelity results under the clean-label setting.
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Fig. 2. The responsible regions for existing backdoor attacks. We can see that these
attacks introduce unusual regions related to their spatial triggers.

(a) GTSRB data (b) CIFAR10 data

Fig. 3. Precision results of anomaly detection in frequency domain. The anomaly de-
tection methods are ineffective in terms of identifying the poisoning images.

3.7 Visual Capture of Existing Triggers by GradCAM

Here, we show some visual capture examples of existing backdoor attacks in
Figure 2. We can observe that these attacks introduce unusual regions related
to their spatial triggers.

3.8 Adaptive Defense of Anomaly Detection in Frequency Domain

We next show the outlier detection results in the frequency domain. Specifically,
we first project the images to their frequency domain, and obtain the frequency
features via standard zero-mean normalization. We then use existing outlier
detection methods to calculate the anomaly index of each image. We rank all
the images according their anomaly indices in the descending order and calculate
the proportion of poisoning samples that are ranked as the top-K anomalies.
The results are shown in Figure 3, in which we consider three anomaly detection
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methods IFOREST [4], VAE [2], and COPOD [3]. Note that the injection rate
is fixed as 5% in this experiment. It is observed that across all the settings, the
proportion of detected poisoning images count for about 5% - 6% of the top-K
samples, indicating that FTrojan cannot be detected by the outlier detection
methods in frequency domain.
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