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Abstract. Existing pruning techniques preserve deep neural networks’
overall ability to make correct predictions but could also amplify hid-
den biases during the compression process. We propose a novel prun-
ing method, Fairness-aware GRAdient Pruning mEthod (FairGRAPE),
that minimizes the disproportionate impacts of pruning on different
sub-groups. Our method calculates the per-group importance of each
model weight and selects a subset of weights that maintain the rela-
tive between-group total importance in pruning. The proposed method
then prunes network edges with small importance values and repeats
the procedure by updating importance values. We demonstrate the ef-
fectiveness of our method on four different datasets, FairFace, UTK-
Face, CelebA, and ImageNet, for the tasks of face attribute classification
where our method reduces the disparity in performance degradation by
up to 90% compared to the state-of-the-art pruning algorithms. Our
method is substantially more effective in a setting with a high pruning
rate (99%). The code and dataset used in the experiments are available
at https://github.com/Bernardo1998/FairGRAPE

1 Introduction

Deep neural networks (DNNs) are widely used in applications running on mobile
or wearable devices where computational resources are limited [62]. A common
strategy to improve the inference efficiency of deep models in such environments
is model compression by pruning and removing insignificant nodes or connections
between nodes, resulting in sparser networks than the original ones [4, 13, 14,
19, 34, 50]. These methods have been known to reduce the computational cost
significantly with almost negligible loss in prediction accuracy [7].

Despite the prevalence of model compression, recent studies have also re-
ported that compressed models may suffer from hidden biases, i.e. accuracy
disparity, more severely than the original models [3, 25, 26]. The pruned models
may be accurate overall or on some sub-groups (e.g. White males), while result-
ing more severe performance decrease from the original model on specific sub-
groups. This bias is particularly problematic for model pruning methods, which
attempt to identify and remove insignificant parameters. The parameter-wise
significance considered in such methods is estimated from in-the-wild datasets,
which are typically unbalanced and biased [30, 51]. The societal impact of this
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Fig. 1: Illustration of our proposed model compression method for face attribute
classification. Since the compressed model pruned by a regular pruning method
shows disparity results over different groups, our proposed pruning method aims
to fairly treat all groups by preserving important nodes for sensitive attributes
(e.g. race, gender) in networks.

bias is also huge because the compressed models are commonly used in consumer
devices for daily use such as mobile phones and personal assistant devices.

To address this critical issue, we propose a novel model pruning method,
Fairness-aware GRAdient Pruning mEthod – FairGRAPE. Our method aims
at preserving per-group accuracy as well as overall accuracy in classification
tasks. Figure 1 illustrates the fundamental idea of our proposed method. Existing
pruning methods disregard demographic groupings and prune the nodes with the
smallest weights to preserve the model’s overall accuracy. However, some nodes
may be critical only for a sub-population underrepresented in the dataset and
consequently pruned, leading to a biased compressed model. In contrast, our
method considers each node’s importance to each sub-group separately so that
it can retain important features for all groups.

Specifically, our method computes the group-wise importance of each param-
eter to get the distribution of the total importance of each group in a model.
It then iteratively selects network edges that most closely maintain both the
magnitude and share of importance for each group. By selecting such edges,
our method equalizes the importance loss across groups, reducing performance
disparity.

To evaluate the effectiveness of our method, we conduct extensive exper-
iments on the face attribute classification tasks where demographic labels are
readily available. We use four popular face datasets, FairFace [30], UTKFace [63],
CelebA [38], and the person subtree in the ImageNet [56]. The experimental
results show that FairGRAPE not only preserves the overall classification accu-
racy but also minimizes the performance gap between sub-groups after pruning,
compared to other state-of-the-art pruning methods. We summarize our contri-
butions as follows.

– We show that existing pruning methods disproportionately prune important
features for different demographic groups, leading to a more considerable
accuracy disparity in the compressed model than in the original model.
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– We propose a novel, simple, and generally applicable pruning method that
maintains the layer-wise distribution of group importance.

– We evaluate our method on four large-scale face datasets compared to four
widely used pruning methods.

2 Related Work

2.1 Model Compression via Pruning

Compression of deep models involves various methods to reduce computation
cost without significant loss in model performance. Major categories of compres-
sion techniques include Parameter pruning [13,20]; Parameter quantification [19];
Lower-rank factorization [47]; knowledge distillation [24]. In this paper, we focus
on examining the first one: parameter pruning, which reduces the number of
weights associated with nodes or edges in a network.

Prior research in pruning has focused on the following aspects: how to main-
tain certain structural elements of the original model [23, 35, 53], how to rank
the importance of individual features [11, 34, 37, 40, 41, 50, 60], whether pruning
should be done at once or across several steps [13, 59], and how many pruning
and retraining iterations are required [4, 20].

2.2 Fairness in Computer Vision

Fairness has received much attention in the recent literature on computer vision
and deep learning [5, 6, 16, 21, 29, 36, 39, 48, 49, 51, 52, 55, 57]. The most common
goal in these works is to enhance fairness by reducing the accuracy disparity of
a model between images from different demographic sub-groups. For example,
a face attribute classifier may yield a disproportionately higher error rate on
images of non-White or females [5, 30]. Another line of work has investigated
biased or spurious associations in public image datasets and models between
different dimensions of sensitive groups and non-protected attributes such as
semantic descriptions, facial expressions, and age [1, 6, 28, 64, 65]. Our paper
focuses on the former: the mitigation of accuracy disparity.

The cause of demographic bias can be demographically imbalanced datasets
and the design choice of learning algorithms or network architectures [10, 32].
Prior works have found that a face dataset dominated by theWhite race produces
a poor performance for other races, while a face dataset with balanced group
distribution, from either real or synthesized data, can enhance fairness [15, 17,
18,30,52,58]. Algorithmic bias can be mitigated through either explicit fairness
constraints [31,61], matching learned representations to a target distribution or
group-wise characteristics [8, 44, 45], or adversarial mitigation and decoupling
to disconnect representation and sensitive groups that attempts to decorrelate
sensitive attributes and model outputs [1,2,12,33,43,54]. Our method estimates
the importance of each connection weight toward each sub-group and maintains
between-group ratios in pruning.
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2.3 Fairness in Model Compression

Only a few studies have been concerned with fairness in the compression of deep
models. [25] reported that pruned models tend to forget specific subsets of data.
It is examined in [26, 46] that pruning can impact demographic sub-groups dis-
proportionately in face attribute classification and expression recognition. An-
other recent work [3] showed that knowledge distillation could reduce bias in
pruned models. All these studies focus on measuring pruning-induced biases be-
tween output categories. To the best of our knowledge, our paper is the first to
separate the pruning impact on output classes and sensitive groups and propose
a pruning algorithm to mitigate biases in both dimensions.

3 Fairness-aware GRAdient Pruning mEthod

3.1 Problem Statement and Objective

Consider a neural network f parameterized by θ ∈ Rm and a dataset D =
{(xi,yi, ki)}ni=1, where xi ∈ X is an input vector, yi ∈ Y is a target output,
and ki ∈ K is a sensitive attribute. The goal of network pruning is to find the
following parameter set:

θ′ = argmin
θ

L(D,θ) = argmin
θ

1

n

n∑
i=1

ℓ(f(θ,xi),yi), subject to ||θ||0 ≤ c ·m

(1)

Here ℓ(·) denotes a loss function, and c ∈ (0, 1) is the desired sparsity level.
We further examine the network’s performance on different subsets of D. Let

Dk = {(xi,yi, ki)|ki = k} denote the subset of instances from a sensitive group
k ∈ K. Given a performance metric A(Dk;θ), the difference in performance on
Dk between the full model f and a compressed model f ′ is:

∆A(Dk;θ
′) = A(Dk;θ

′)−A(Dk;θ) (2)

The mean of all group-wise performance differences is:

∆Ā(D;θ′) =
1

|K|
∑
k∈K

∆A(Dk;θ
′) (3)

Our goal is to minimize the variance of performance differences in a pruned
model. This task can be formulated as finding the following θ∗:

θ∗ = argmin
θ′

[V ar(∆A(Dk;θ
′))] = argmin

θ′
[
1

|K|
∑
k∈K

(∆A(Dk;θ
′)−∆Ā(D;θ′))2]

(4)

Note that the actual task of the model determines the choices of the per-
formance metric A(θ;Dk). This paper focuses on classification tasks and thus
uses accuracy, false positive rate (FPR), and false negative rate (FNR) as per-
formance metrics. The output space Y and sensitive groups K can be either
overlapping or disjoint, and this paper examines both cases.
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Fig. 2: Illustration of the proposed node selection method. FairGRAPE first com-
putes the importance score of each individual weight for all groups layer-wise.
Based on the total scores from the current layer, FairGRAPE selects a node with
the highest score from the group with the greatest loss in importance score to
minimize the variance of performance changes.

3.2 FairGRAPE: Fairness-aware Gradient Pruning Method

The common idea behind model pruning methods is estimating the importance
of edges and pruning less important ones. While the existing methods focus on
measuring the importance to the whole dataset, our method aims to preserve
important weights for each sensitive group to mitigate biases.

To this end,we propose to compute the group-wise importance score of each
weight with respect to each sensitive group, and then use a greedy algorithm
to select weights based on the scores. At each step, the method compares the
current ratio of importance scores with the target ratio (i.e. , the ratio in the
model before the current pruning step). Then the group that has the largest
difference will be selected, and the method adds one weight with the highest
importance for the selected group to the selected network. Once the desired
number of weights is selected, the remaining weights are pruned. FairGRAPE
compresses all layers of the model with this node selection process, which is
illustrated in Figure 2.

Group-wise Importance Let w ∈ θ′ denote a parameter in f ′ and L(Dk,θ
′)

denote the loss on sensitive group k. The gradient of L(Dk,θ
′) with respect to

w is gw = ∂L(Dk,θ
′)

∂w . Then the importance of w with respect to group k and the
total model importance score for a group k are:

Ik,w = (L(Dk,θ
′)− L(Dk,θ

′|w = 0))2 Ik =
∑
w∈θ′

Ik,w (5)

Computing the importance defined in equation 5 requires evaluating a differ-
ent network for every parameter, which is often impractical. Alternatively, Iw,k

could be approximated by its first-order Taylor expansion, as explained in [41]:

Ik,w = (gww)
2 (6)
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Algorithm 1 FairGRAPE

1: c← desired sparsity
2: r ← % of parameters to prune per iteration
3: Iters← ⌈logr(c)⌉; i← 0
4: f ← pre-pruning network with parameter set θ
5: while i < Iters do
6: for θlayer in θ do
7: θ′

layer ← ∅
8: while |θ′

layer| < ||θlayer||0 × (1− r) do

9: k̃ ← mink(∆Pk,θ′
layer

) ▷ Find the greatest importance loss

10: w̃ ← argmaxw∈θ′
layer

(Ik̃,w) ▷ Find the highest importance for k̃

11: θ′
layer ← θ′

layer

⋃
{w̃}

12: ∆Pk,θ′
layer

←
Pk,θ′

layer
−Pk,θlayer

Pk,θlayer
, ∀k ∈ K ▷ Update importance losses

13: end while
14: θprune ← {w|w ∈ θlayer ∧ w /∈ θ′

layer}
15: θprune ← 0 ▷ Prune weights that are not selected
16: end for
17: f ← Train (θ;D); i← i+ 1
18: end while

Maintaining Share of Importance Based on the group importance scores,
we compute the share of the importance of group k as follows:

Pk =
Ik∑
K Ik

(7)

The share of importance in the original model f is used as a target. In the
pruned model f ′ with parameter set θ′, the percentage change in the importance
score compared to full model f is:

∆Pk,f ′ =
Pk,θ′ − Pk,θ

Pk,θ
(8)

As weights are pruned, the importance scores for each group would inevitably
decrease. However, the disparate loss of importance across groups leads to an
imbalanced loss in classification performance. Thus, we apply a layer-wise greedy
algorithm to select the parameters that minimize the difference of ∆Pk,f ‘ be-
tween the sensitive groups, as explained in Algorithm 1.

FairGRAPE iteratively prunes and fine-tunes a network: given a desired spar-
sity c and a step size r, the percentage of remaining weights to be pruned at each
iteration, the total number of iterations is Iters = ⌈(logr(c)⌉. In each iteration,
the network is pruned layer by layer for all layers with weight attributes (e.g.
convolutional and linear layers). Before pruning a layer, Pk,θ for each group k
is calculated with all unpruned parameters θ. At the very beginning of the al-
gorithm, θ′ has not included any weights yet, and all group importance values
are 0. So Pk,θ′ are initialized to 1/|K|. Then weights in θ are added to θ′ one
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Dataset Images White Black Hispanic
East
Asian

Southeast
Asian

Indian
Middle
Eastern

Male Female Categories

FairFace [30] 97,698 18,612 13,789 14,990 13,837 12,210 13,835 10,425 51,778 45,920 -
UTKFace [63] 22,013 10,078 4,526 - 3,434 - 3,975 - 11,631 10,382 -
CelebA [38] 202,599 - - - - - - - 84,434 118,165 39

ImageNet(Person) [56] 10,215 - - - - - - - 6,590 3,625 103

Table 1: Demographic composition of datasets.

at a time. Before each selection, the sensitive group k with the minimum ∆Pk,θ′

is identified, as shown in line 9 of Algorithm 1. Then the weight that has the
highest importance score for group k is added to the set of selected weights to
minimize Pk,θ′ (line 10). Pk,θ′ and ∆Pk,θ′ are updated for all groups k ∈ K
(line 12). The selection for weights continues until (1 − r)% of weights are se-
lected. The weights not selected are removed by setting them to zero and thus no
longer considered in further iterations. Then FairGRAPE proceeds to the next
layer. Once all layers are pruned, the network is retrained for a fixed number of
e epochs to adjust the weights to its current structure. Then the next iteration
begins.

4 Experiments

4.1 Datasets

To evaluate our proposed FairGRAPE, we conducted extensive experiments with
four face image datasets, including FairFace [30], UTKFace [63], CelebA [38], and
the person subtree of ImageNet [56]. Table 1 shows the distributions of races
and genders in all datasets. Images are fairly distributed across the seven race
groups in the FairFace, while the white race is dominant in the UTKFace. This
allows us to validate that the effect of our method remains consistent with the
presence of data bias. In UTKFace, only one “Asian” contains both Asian and
Southeast Asian faces. We excluded the “Other” category in UTKFace due to its
ambiguity. Race/ethnicity information is not provided in CelebA and ImageNet.
FairFace, UTKFace, and CelebA provide annotations for binary genders. While
the ImageNet person subtree contains three gender classes: Male, Female, and
Unsure (non-binary), we only use ImageNet samples with binary genders to
stay consistent with other datasets. Following the practice in [56], Imagenet
samples that are from ”unsafe” categories or have imageability scores ≤ 4 are
also excluded.

4.2 Experiment Settings

Network architectures: To ensure our method applies to different architec-
tures, we use two popular deep networks: ResNet-34 [22] and MobileNet-V2 [27].
ResNet is widely applied for classification tasks, and the MobileNet is a com-
pact network commonly used by mobile devices. All models are pre-trained on
ImageNet [9].
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Hyperparameters: We use a cross-entropy loss function with the ADAM opti-
mizer for all training. All accuracy scores, overall and group-wise, are averaged
across three trials to control for randomness in training. For iterative prun-
ing methods, we retrain five epochs after each pruning iteration. Step size r =
0.9 on FairFace, CelebA and Imagenet and r = 0.975 on UTKFace. The train-
ing/validation/testing percentage is 80%/10%/10% in each dataset.

4.3 Baseline Methods

We deploy the following four baseline methods: Single-Shot Network Prun-
ing (SNIP) [34]: calculates the connection sensitivity of edges by back-propagating
on one mini-batch and prunes the edges with low sensitivity. Weight Selection
(WS) [19]: prunes the weights with magnitudes below a threshold in a trained
model. It is the most commonly used in mobile applications [42]. Lottery Ticket
Identification (Lottery) [13]: records the initial state of the network; resets the
model to its initial state after each pruning iteration. Gradient Signal Preser-
vation (GraSP) [50]: removes the parameters with low Hessian-gradient scores
to maximize gradient signal in the pruned model.

5 Results

To evaluate the effectiveness of our method, we conduct extensive experiments
on three different settings, including (§5.1) gender and race classification tasks,
(§5.2) non-sensitive attribute classification tasks, and (§5.3) model pruning based
on unsupervised clustering. We also perform more in-depth analysis, including
(§5.4) ablation studies, (§5.6) different sparsity levels, (§5.5) pruning on minority
faces, and (§5.7) difference in importance score and structure, to understand the
importance of components in FairGRAPE.

5.1 Gender and Race Classification

We first perform experiments to verify bias mitigation in classifying sensitive at-
tributes. Table 2 shows classification accuracy and biases on FairFace and UTK-
Face datasets where we compress the ResNet-34 and MobileNet-V2, respectively.
The column ‘Task’ indicates the dataset and classification task. We report overall
classification accuracy, accuracy by sensitive groups, and variances in accuracy
degradation. FairGRAPE consistently produces a substantially higher accuracy,
lower differences in accuracy, and lower variance in performance degradation
than the baseline methods. For example, SNIP sometimes produces accuracy
scores close to our method, but it has a remarkably larger accuracy variance
than FairGRAPE, which implies the potential biases caused by model prun-
ing. In the only cases of FairFace, WS produced a model with a smaller race
classification accuracy gap between male and female images, but at the cost of
drastically worsened accuracy for both groups. These results suggest that our
proposed method successfully equalizes the impact of pruning on the sensitive
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Task Method
Accuracy Bias Accuracy Bias

All Male Female ρ(A) ρ(∆) All White Black Hisp E-A SE-A Indian ME ρ(A) ρ(∆)

FairFace,
Gender

No-pruning 94.6 94.7 94.5 0.14 - 94.6 94.6 90.5 95.9 94.7 94.4 96.3 95.6 1.93 -
Lottery 85.8 86.4 85.2 0.80 0.65 85.8 85.1 80.8 88.4 84.0 85.5 88.1 89.6 3.01 1.55
SNIP 90.4 91.0 89.9 0.78 0.63 90.4 91.0 85.2 92.6 90.0 90.5 91.3 92.6 2.53 0.93
WS 83.8 84.3 83.4 0.62 0.47 83.9 82.9 78.9 87.2 82.2 82.2 86.2 88.3 3.32 2.00

GraSP 87.9 88.4 87.4 0.75 0.60 87.9 87.5 83.1 89.6 87.5 88.0 89.4 90.9 2.49 0.93
FairGRAPE 91.1 91.3 91.0 0.20 0.05 90.5 90.4 85.4 92.3 90.1 90.5 91.9 92.8 2.47 0.77

FairFace,
Race

No-pruning 72.0 71.2 72.9 1.23 - 72.0 73.9 83.2 59.6 77.6 66.9 75.4 66.2 8.02 -
Lottery 57.1 55.3 59.1 2.64 1.42 57.1 69.7 78.8 33.0 74.1 43.5 61.7 30.4 20.0 12.9
SNIP 62.3 60.4 64.3 2.78 1.55 62.3 74.1 80.8 44.5 73.7 53.7 66.0 34.8 17.1 10.7
WS 47.9 47.3 48.5 0.86 0.36 47.9 64.7 77.9 8.61 78.3 31.1 37.8 30.0 26.9 19.9

GraSP 57.9 56.0 60.1 2.88 1.55 57.9 69.6 77.3 38.6 72.0 47.0 62.1 30.7 18.0 11.3
FairGRAPE 66.8 65.3 68.6 2.35 1.12 65.1 72.2 80.3 47.5 75.8 56.3 70.2 48.6 13.4 6.13

UTKFace,
Gender

No-pruning 93.5 92.4 94.8 1.68 - 93.5 94.1 - 95.1 - 89.6 - 93.7 2.45 -
Lottery 83.5 83.7 83.3 0.34 2.01 83.5 84.7 - 85.8 - 75.0 - 85.2 5.15 2.79
SNIP 91.0 91.3 90.6 0.45 2.19 91.0 91.9 - 93.0 - 86.0 - 90.9 3.08 0.67
WS 81.9 81.4 82.6 0.89 1.79 81.9 82.1 - 84.9 - 77.2 - 82.4 3.20 0.92

GraSP 86.8 88.5 84.9 2.51 4.20 86.8 86.7 - 89.8 - 81.4 - 88.3 3.66 1.43
FairGRAPE 92.2 92.0 92.5 0.31 1.36 91.9 92.7 - 94.0 - 87.9 - 91.3 2.61 0.56

UTKFace,
Race

No-pruning 90.8 90.6 90.9 0.24 - 90.8 92.2 - 92.5 - 93.3 - 83.3 4.69 -
Lottery 71.7 69.4 74.2 3.41 3.17 71.7 83.8 - 80.3 - 61.0 - 42.7 19.0 15.6
SNIP 86.8 85.7 88.0 1.64 1.40 86.8 91.6 - 92.5 - 85.8 - 70.1 10.4 6.28
WS 70.7 68.3 73.5 3.68 3.41 70.7 82.7 - 80.8 - 59.2 - 41.4 19.6 16.2

GraSP 77.7 76.4 79.1 1.94 1.70 77.7 86.1 - 83.3 - 72.2 - 56.4 13.5 9.81
FairGRAPE 88.7 88.2 89.3 0.78 0.54 88.5 90.6 - 92.2 - 88.9 - 79.0 5.93 2.04

Table 2: The group-wise accuracy and biases in gender or race classification tasks.
Hisp, E-A, SE-A and ME stand for Hispanic, East Asian, Southeast Asian and
Middle Eastern. FairFace experiments are conducted on ResNet-34 pruned at
99% sparsity, UTKFace experiment on MobileNet-V2 pruned at 90% sparsity.
ρ(A) and ρ(∆) are the standard deviation of accuracy and accuracy loss across
sensitive groups, respectively.

groups regardless of the classification task, thus achieving a better trade-off be-
tween fairness and overall accuracy.

Furthermore, FairGRAPE shows solid performances in all settings with dif-
ferent architectures and datasets (balanced or imbalanced), proving the proposed
method’s robustness. See supplementary material for results when we jointly
control race and gender groups.

We next visualize the proportion changes of False Negative Rates(FNRs)/False
Positive Rate(FPRs) from the full model after pruning by FairGRAPE and other
baseline methods in Figure 3. Each point in the plot represents normalized FNR
and FPR change of a specific race group in the model produced by one of the
pruning methods, and the ellipses are created by estimating a 95% confidence
region of data points. The results reveal that the proposed FairGRAPE produces
data points closer to the origin than the other data points generated by the base-
line methods. More importantly, FairGRAPE creates the smallest ellipse, which
demonstrates that performance changes for each group are close to each other.
Thus the distribution of induced bias across sensitive groups is fair.
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Fig. 3: Normalized FNR/FPR changes in race classification. Sparsity levels are
99% for ResNet-34 and 90% for MobileNet-V2. Each data point represents the
mean value of a race. The ellipses are created by estimating 95% confidence
ellipses, assuming multivariate t-distribution of points produced by each method.

5.2 Non-Sensitive Attribute Classification

To evaluate the performance of FairGRAPE in more practical cases where output
classes and sensitive groups are disjoint, we experiment with classification on
CelebA and ImageNet datasets. CelebA contains the 39 non-sensitive categories
of facial attributes such as eyeglasses, makeup, and lipsticks. We code each of
these categories as a binary classification task. For the ImageNet experiment, we
use the modified person subtree, which contains 10,215 images in 103 distinct
classes (e.g. , basketball player, rapper) with gender labels [56]. We train the
models to classify the class to which a given image belongs. Note that we use
the ResNet-34 network at 50% sparsity for the ImageNet experiments and the
MobileNet-V2 network at 90% sparsity for the CelebA experiments.

Table 3 shows the overall accuracy, accuracy of each gender, and the standard
deviation of accuracy change. FairGRAPE achieves the highest accuracy on Ima-
geNet. Although GraSP has a smaller accuracy gender gap than our method, its
overall accuracy and variance of performance degradation are drastically worse.
In the CelebA experiment, FairGRAPE has a significantly lower variance in ac-
curacy change than other methods while achieving the highest accuracy. The
results demonstrate that FairGRAPE performs well on sensitive attribute clas-
sification tasks and non-sensitive attributes, thus widely applicable in various
applications.

5.3 Unsupervised Learning for Group Aware in Model Pruning

In practice, labels for sensitive attributes may not always be available. There-
fore, we further examine the performance of our method on a dataset without
demographic group labels through unsupervised group discovery.

Table 4 shows the accuracy and bias of experiments on the FairFace dataset.
In this test, FairGRAPE conducts pruning by calculating the importance score of
parameters for clusters learned from unsupervised learning as sensitive groups.
Then we evaluate accuracy and bias with actual race labels. We labeled the
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Dataset Task Group Methods
Accuracy Bias

All Male Female Diff ρ(∆)

ImageNet
Person
Subtree

(103 classes)
Gender

No-Pruning 50.25 53.03 45.60 7.43 -
Lottery 50.85 54.03 45.98 8.05 2.55
SNIP 47.85 50.89 42.76 8.13 0.49
WS 51.11 54.06 46.16 7.90 0.33

GraSP 15.36 17.03 12.57 4.47 2.10
FairGRAPE 51.12 54.01 46.16 7.85 0.30

CelebA

Non-sensitive
Facial

Attributes
(39 classes)

Gender

No-Pruning 91.81 91.76 91.86 0.11 -
Lottery 89.31 88.99 89.54 0.55 0.32
SNIP 90.29 90.05 90.46 0.41 0.21
WS 88.57 88.15 88.87 0.72 0.43

GraSP 89.40 89.08 89.63 0.55 0.32
FairGRAPE 90.90 90.74 91.01 0.27 0.11

Table 3: The average accuracy and biases in person category classification and
facial attributes classification on ResNet-34 at 50% sparsity and MobileNet-V2
network at 90% sparsity, respectively. ρ(∆) is the standard deviation of accuracy
loss across genders.

Task Methods
Accuracy Bias

All White Black Hisp E-A SE-A Indian ME ρ(A) ρ(∆)

FairFace,
Race

No-Pruning 72.0 73.9 83.2 59.6 77.6 66.9 75.5 66.2 8.03 -
Lottery 57.1 69.7 78.8 33.0 74.1 43.5 61.7 30.4 20.0 12.9
SNIP 62.3 74.1 80.8 44.5 73.7 53.7 66.0 34.8 17.1 10.7
WS 47.9 64.7 78.0 8.6 78.3 31.1 37.8 30.0 26.9 19.9

GraSP 57.9 69.6 77.3 38.6 72.0 47.0 62.1 30.7 18.0 11.3
FairGRAPE 63.5 69.7 80.4 49.2 74.7 53.7 68.1 42.8 14.1 7.40

Table 4: The average accuracy and biases in race classification, where Fair-
GRAPE pruning is performed based on groups clustered by unsupervised learn-
ing. Hisp, E-A, SE-A and ME stand for Hispanic, East Asian, Southeast Asian
and Middle Eastern. ρ(A) and ρ(∆) are the standard deviation of accuracy and
accuracy loss across sensitive races.

seven clusters using K-means clustering on image embedding generated by the
ResNet-34 network pre-trained on Imagenet. While all baseline methods have
low accuracy and large variance of accuracy as they do not consider the sensitive
groups, the FairGRAPE method consistently results in the lowest performance
variance, suggesting that our proposed method has the potential to compress
the model while reducing biases even in the absence of sensitive attribute in-
formation. The K-means algorithm’s simplicity further reinforced our method’s
generalizability when the precise group partitioning is complex or noisy.

5.4 Ablation Studies: Group Importance and Iterative Pruning

Table 5 shows the performance of FairGRAPE with different group importance
and iterative retraining settings. We first find that group importance is the
essential component in our proposed method. The baseline method, which does
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Group Iterative % Training Accuracy Bias

Importance
retraining (#
iterations/r)

Images All Female Male Diff ρ(∆)

✓ ✓ (22/0.1) 20% 90.90 91.01 90.74 0.27 0.11
✓ ✓ (22/0.1) 100% 90.66 90.81 90.45 0.36 0.18
✓ ✓ (22/0.1) 50% 90.72 90.84 90.54 0.30 0.13
✓ ✓ (22/0.1) 10% 90.84 90.97 90.67 0.30 0.13
✓ ✓ (16/0.2) 20% 90.49 90.62 90.32 0.30 0.20
✓ ✓ (3/0.5) 20% 90.34 90.52 90.10 0.42 0.22
✓ ✗ (1/0.9) 20% 89.26 89.51 88.92 0.41 0.34
✗ ✓ (22/0.1) - 89.31 89.54 88.99 0.45 0.31
✗ ✗ (1/0.9) - 88.57 88.86 88.17 0.69 0.42

Table 5: The accuracy and biases under different pruning settings. The
MobileNet-V2 networks are trained on CelebA attributes classification tasks and
pruned at 90% sparsity. # iter is the number of pruning iterations, determined
by the pruning step r which is the proportion of remain edges removed during
each iteration. % training images represents the percentage of training images
included in calculation of group importance scores. ρ(∆) is the standard devia-
tion of accuracy loss across genders.

not use both group importance and iterative retraining, has remarkably lower
accuracy, gender gap, and variance of accuracy changes than our method, which
utilizes both components. As the pruning step r at each iteration increased, the
accuracy decreased, and the bias increased gradually.

More specifically, the model suffers from an obvious performance drop and
bias increase when r increased from 0.1 to 0.2. This result agrees with previous
findings [13] that iterative pruning improves performance.

Finally, we examine the percentage of training images used in importance
calculation. FairGRAPE calculates group-wise importance score Iw,k = (gww)

2

for each weight w, where gw is calculated with respect to average loss across
selected mini-batches of the training set. It has been found that the proportion
of training images used in the calculation process affects pruning speed and
accuracy [41]. We compared the performance using 100%, 50%, 20%, and 10%
of training sets. The result indicates that 20% is the ideal ratio that produces
the best performance.

5.5 Pruning on Images from Minority Races

This section examines whether rebalancing the dataset could mitigate pruning-
induced bias. Using the UTKFace dataset, where white faces are dominant, we
tested SNIP and GraSP with their gradient calculation and parameter selection
conducted on non-white examples only (i.e., Black, Asian, Indian) Table 6 shows
the result. Interestingly, using a subset of data did not significantly change overall
accuracy. However, the overall biases increased compared to the case of using all
data. This change shows that the problem of biases in pruned methods cannot
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Fig. 4: Accuracy and biases of race classification across races at different sparsity
levels. Experiments were conducted using ResNet-34 on FairFace dataset.

be solved by simple data rebalancing and our method effectively addresses this
challenging problem.

Methods
Accuracy Bias

All White Black Asian Indian ρ(A) ρ(∆)

No-pruning 93.84 95.08 95.27 89.85 92.70 2.54 -

FairGRAPE 91.72 92.86 94.18 86.88 90.40 3.21 0.78
GraSP (Minority) 89.15 88.73 92.24 83.71 91.19 3.80 2.31
GraSP (All data) 88.33 88.80 91.05 82.47 89.13 3.73 1.77
SNIP (Minority) 90.55 91.60 92.79 83.91 91.19 4.03 1.90
SNIP (All data) 90.95 91.33 94.18 85.44 91.11 3.66 1.62

Table 6: UTKFace gender classification accuracy on minority subsets. ρ(A) and
ρ(∆) are the standard deviation of accuracy and accuracy loss across racs, re-
spectively.

5.6 Analysis on Model Sparsity Levels

We next evaluate the performance of FairGRAPE across different sparsity levels
to understand its effectiveness. Figure 4 shows changes in accuracy and biases
over different sparsity levels. FairGRAPE outperforms the baseline methods by
producing the highest accuracy and lowest disparity of performance degradation
across sensitive groups at various pruning rates. As sparsity changes from 90%
to 99%, most baseline methods exhibit a sharp decrease in accuracy and increase
in bias, while performance change in FairGRAPE is substantially smaller. This
confirms that our method can be widely deployed to real-world systems with
various sparsity levels.
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Fig. 5: The ratio of importance scores on MobileNet-V2. Networks are pruned
to 90% sparsity and trained on UTKFace dataset. M and F indicate race clas-
sification accuracy on male and female images. Accuracy changes between the
pruned models and the full model are shown in parenthesis.

5.7 Layer-wise Importance Scores and Bias

This subsection performs an in-depth structural analysis on pruned networks.
Figure 5 visualizes the ratio of importance scores at each layer for each gen-
der group. Each bar represents a convolutional or linear layer. and the width
of a colored segment indicates the ratio of importance score for the correspond-
ing gender group. FairGRAPE preserves the balanced importance distribution
of the full network, with similar scores for both genders, leading to substan-
tially smaller gaps in accuracy and accuracy change. The group-agnostic prun-
ing methods, including SNIP and Weight Selection, select weights with higher
importance for the female group, which is already showing higher accuracy in
the original model. Consequently, the accuracy of the male group suffered from
a substantially greater loss and the gap is much larger than the model pruned
by FairGRAPE.

6 Conclusion

In this paper, we proposed FairGRAPE, a novel pruning method that prunes
weights based on their importance with respect to each demographic sub-group
in the dataset. Empirical results show that our method can minimize perfor-
mance degradation across sub-groups in different network architectures and
datasets at various pruning rates. We also demonstrated that the association
between distributions of gradient importance and performance biases has an im-
portant implication for understanding information loss during model compres-
sion. Our work will therefore contribute to developing fair light-weight models
that can be deployed on many mobile devices by mitigating hidden biases.
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