
An Impartial Take to the CNN vs Transformer Robustness Contest 17

A Additional experimental details

A.1 About the evaluation metrics

All metrics are reported in percentage terms. The out-of-distribution detection
metrics leverage the entropy. For the misclassification detection tasks, we use the
confidence score (i.e. the maximum probability of the softmax) as uncertainty
metric, as we find it to be the most effective for the task.

A.2 The impact of the input preprocessing pipeline

Clean Data Domain-Shift OOD
ImageNet-1K (Test) ImageNet-R ImageNet-A ImageNet-V2 ImageNet-Sk ImageNet-O

Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) AUROC (↑)
BiT-R50x1 80.05 1.58 1.76 38.98 10.01 10.01 26.89 19.73 19.67 67.98 1.75 1.74 24.72 18.39 18.39 67.01
BiT-R50x3 83.59 2.65 2.51 47.25 8.51 8.51 46.72 11.66 11.63 72.36 6.30 6.08 32.81 19.00 19.00 77.99
BiT-R101x1 82.04 1.16 1.06 43.65 7.49 7.49 38.32 15.79 15.72 70.97 4.33 4.29 29.10 18.28 18.28 73.62
BiT-R101x3 84.19 3.78 3.72 50.14 9.10 9.10 53.12 10.90 10.93 73.36 7.85 7.71 36.29 21.15 21.15 80.44
BiT-R152x2 84.17 2.96 2.71 51.02 8.51 8.51 52.97 10.37 10.13 73.46 6.30 6.12 36.96 19.22 19.22 80.72
BiT-R152x4 84.49 6.28 6.26 54.06 11.50 11.50 58.52 12.17 12.14 74.36 10.94 10.94 41.17 25.47 25.47 85.58

ConvNeXt-B 85.53 2.87 2.82 62.46 2.57 2.51 52.63 8.28 8.31 75.43 2.91 2.78 48.62 8.87 8.86 85.72
ConvNeXt-L 86.29 2.27 2.34 64.57 3.00 3.08 58.23 7.57 7.26 76.77 3.72 3.85 50.06 10.31 10.31 89.07
ConvNeXt-XL 86.58 2.40 2.29 66.01 2.92 2.90 61.11 7.54 7.21 77.20 4.00 4.24 52.67 11.15 11.15 90.04

ViT-B/16 77.85 1.39 1.38 43.09 5.28 5.28 23.31 23.51 23.51 65.94 4.67 4.53 18.33 12.74 12.74 79.93
ViT-L/16 84.33 1.72 1.70 61.75 2.88 2.88 46.36 12.55 12.39 74.15 5.52 5.43 46.21 10.56 10.56 90.63

Swin-B 84.81 8.52 8.52 59.81 2.11 2.14 49.88 8.57 8.40 75.07 5.11 5.06 45.43 7.50 7.50 83.94
Swin-L 85.95 5.65 5.65 64.44 2.29 2.19 58.96 6.82 6.83 76.49 3.24 3.02 49.06 8.73 8.72 87.66

Fine-tuned at resolution 384×384

ConvNeXt-B-384 86.51 3.16 3.15 64.12 3.36 3.47 63.25 7.70 7.58 77.03 2.49 2.65 50.31 7.84 7.84 87.11
ConvNeXt-L-384 87.14 2.39 2.38 66.09 3.27 3.16 66.52 7.01 6.90 77.97 3.51 3.31 51.68 9.60 9.60 90.45
ConvNeXt-XL-384 87.45 2.37 2.49 67.24 3.22 3.35 69.59 7.28 7.29 78.34 3.03 2.87 53.80 8.69 8.67 91.12

ViT-B16-384 79.43 1.53 1.60 40.62 6.49 6.49 33.63 17.46 17.46 68.37 4.45 4.45 14.54 15.75 15.75 81.75
ViT-L16-384 85.80 2.09 1.93 63.26 3.31 3.31 63.07 6.11 5.86 76.47 5.29 5.25 46.10 12.38 12.38 92.42

SWIN-B-384 86.29 6.78 6.78 63.41 2.29 2.28 62.20 6.57 6.52 76.65 3.80 3.83 48.43 8.43 8.43 86.46
SWIN-L-384 87.01 6.58 6.58 66.40 3.40 3.50 67.92 7.37 7.29 77.51 3.89 3.79 50.29 7.62 7.62 89.25

Table 6: Analogous of Tables 3 and Table 4 but using the prepocessing pipeline
suggested suggested by the timm library for each model. The conclusions of the
main paper do not change.

The standard pre-processing pipeline For the results reported in the
main paper, we apply the standard ImageNet-1K test pre-processing pipeline:
we first rescale the image at resolution 256 × 256 then extract the center crop
of 224 × 224 and normalise with respect to the mean and standard deviation of
the training set.

Model-specific pre-processing pipelines However, it should be noticed
that the timm library suggests using a different pre-processing pipeline for each
architecture. We do not follow this procedure for the results in the main paper
as fine-tuning the test pre-processing pipeline hyperparameters would require
a cross-validation procedure to not overfit the test set and we want to have a
fair comparison using the same evaluation procedure for all models. We report
the results applying the timm-proposed preprocessing pipelines in Tables 6 and
7. All the conclusions drawn in the main paper about ConvNeXts, ViTs and
SwinTranformers do not change. The only case in which altering the pipeline
dramatically changes the performance is on BiT models. With respect to the
performance with the default pre-processing pipeline, BiT models become:

◦ significantly more accurate on in-distribution data. For instance, BiT-
R152×4’s accuracy jumps from 78.16% to 84.49%.
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Clean Data Domain-Shift
ImageNet-1K (Test) ImageNet-A ImageNet-R ImageNet-SK ImageNet-V2

PRR (↑)
BiT-R50x1 72.48 23.31 -25.84 56.68 68.08
BiT-R50x3 73.41 -19.39 -8.67 62.41 67.39
BiT-R101x1 74.04 16.70 -22.27 60.64 68.12
BiT-R101x3 73.39 15.32 -8.64 62.54 66.61
BiT-R152x2 73.24 48.97 -20.76 61.36 66.81
BiT-R152x4 71.82 23.89 -35.15 62.15 64.54

ConvNeXt-B 73.43 16.03 -39.91 67.48 69.84
ConvNeXt-L 73.48 40.56 -23.60 69.04 69.50
ConvNeXt-XL 74.36 35.96 -19.32 69.29 70.07

ViT-B16 74.12 49.46 -33.53 64.59 70.89
ViT-L16 76.24 5.92 -31.09 69.70 72.61

Swin-B 71.99 17.10 -16.70 63.98 67.61
Swin-L 72.70 -10.78 -25.43 63.83 68.91

Fine-tuned at resolution 384×384

ConvNeXt-B-384 74.06 36.79 -22.39 67.37 68.75
ConvNeXt-L-384 74.12 32.74 -10.88 68.47 69.16
ConvNeXt-XL-384 74.71 55.16 -12.21 69.05 70.27

ViT-B/16-384 74.35 46.47 -32.97 66.18 71.13
ViT-L/16-384 76.89 -9.48 -20.06 69.41 72.76

Swin-B-384 72.53 69.93 -42.21 63.73 67.58
Swin-L-384 71.73 27.26 -17.02 63.04 66.71

Table 7: Analogous of Table 5 but using the preprocessing pipeline suggested
by the timm library for each model. The conclusions of the main paper do not
change.

◦ significantly more accurate on covariate shifted inputs. Particularly
remarkable is the improvement when exposed to ImageNet-A. For instance,
the accuracy of BiT-R50×1 jumps from 10.97 to 38.98 (which renders the
smallest BiT model better performing than ViT-B/16!). Similarly, larger ca-
pacity BiT models can outperform ViT-L/16 and BiT-R152×4 is as competi-
tive as the top-performing transformer (Swin-L). It is important to recall that
ImageNet-A samples were selected to produce low accuracy on ResNets. This
selection bias obviously makes comparisons between ResNets and any other
architecture unfair. However, already changing the pre-processing pipeline
at test time is enough to significantly weaken the adversarial effectiveness
of the selection process on ResNet inspired architectures. Similarly, on other
data-shift datasets, BiTs become extremely more competitive, and can out-
perform or be almost comparable to smallest transformer variants in many
cases.

◦ significantly better at out-of-distribution detection (e.g. the mini-
mum gap between BiT models and ViT-L/16 passes from almost 11% to less
than 7%)

◦ significantly more calibrated on both in-domain and covariate shifted
inputs. (e.g. the ECE is approximately halved in most cases on in-distribution
data)
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◦ significantly better at performing in-domain misclassification de-
tection and most distribution-shift experiments. It increases (in most
cases) on ImageNet-R, ImageNet-SK and ImageNet-V2. On ImageNet-A the
performance decreases. This is another interesting case in which the cali-
bration and misclassification detection provide complementary information:
while the calibration error decreases on ImageNet-A, the misclassification
detection performance gets worse, indicating the problem of being overcon-
fidently wrong becomes more pronounced.

Models fine-tuned at resolution 384×384 It should also be noticed that
variants fine-tuned at resolution 348×384 exist (see the lower parts of Table 6
and Table 7). These variants generally outperform the variants fine-tuned at
lower resolution in terms of accuracy, but generally exhibit worse uncertainty
properties. The final conclusions of our paper do not change when considering
these variants. Since we could not find BiT checkpoints fine-tuned at this reso-
lution in the timm library, we reported the performance for models fine-tuned
at 224×224 to have a fair comparison.

A.3 The impact of pre-training

It would be interesting to study the robustness and reliability of models with-
out pre-training on ImageNet-21K. Unfortunately, checkpoints training solely on
ImageNet-1K are often not included in the timm library or in general not pub-
licly available, mostly because some of the models considered do not produce
good performance if trained from scratch on ImageNet-1K.

For completeness, we report the performance results on ConvNeXt-B/L and
Swin-B in Tables 8 and 9 . Notice, in this case the out-of-distribution detection
results are reported using the negative confidence score as a form of uncertainty,
as we find it to be the most effective in this case.

As it can be seen in Table 8, ConvNeXt-B is typically more accurate and
better calibrated than Swin-B except on ImageNet-A and ImageNet-V2 (where
Swin-B is more calibrated). Swin-B produces better out-of-distribution detec-
tion performance. As seen in Table 9, ConvNeXt-L outperforms all other models
at misclassification detection except in one case. However, we cannot draw con-
clusions from these two tables given the lack of comparison with other strong
Transformer architectures and CNNs.

We can however evaluate the difference between with and without pretraining
as follows:

◦ in all cases, in-distribution accuracy is significantly improved by pre-training
◦ for ConvNeXt models, the lack of pre-training harms calibration on in-

domain data and under covariate shift. For Swin-B, the lack of pretraining
improves the calibration on in-distribution data, but harms it under covari-
ate shift.

◦ the lack of pretraining significantly damages the out-of-distribution detection
performance of all models
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◦ the lack of pretraining harms the misclassification detection performance
except in the case of ImageNet-R for ConvNeXt-B and Swin-B. Swin-B per-
formance drops more significantly than ConvNeXt-L models without pre-
training.

Clean Data Domain-Shift OOD
ImageNet-1K (Test) ImageNet-R ImageNet-A ImageNet-V2 ImageNet-Sk ImageNet-O

Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) Acc (↑) ECE (↓) AdaECE (↓) AUROC (↑)
ConvNeXt-B 83.73 3.33 3.43 51.72 8.18 8.14 35.79 22.55 22.51 73.69 5.55 6.30 38.27 22.78 22.78 62.64
ConvNeXt-L 84.16 3.86 3.95 53.93 8.50 8.47 40.54 21.42 21.40 74.01 5.74 6.47 40.14 23.40 23.40 62.68

Swin-B 83.08 5.08 5.01 47.20 8.72 8.71 34.39 20.43 20.45 72.10 5.29 4.99 32.62 22.83 22.83 64.01

Table 8: Analogous of Table 6, but checkpoints are not pre-trainined on
ImageNet-21K.

Clean Data Domain-Shift
ImageNet-1K (Test) ImageNet-A ImageNet-R ImageNet-SK ImageNet-V2

PRR (↑)
ConvNeXt-B 70.45 -7.13 -11.43 65.16 65.31
ConvNeXt-L 69.71 36.21 -30.27 64.04 65.93

Swin-B 68.20 34.16 -2.43 59.58 63.18

Table 9: Analogous of Table 7, but checkpoints are not pre-trained on ImageNet-
21K.

B Further discussion on why the practice of comparing
models based on parameter count might be misleading

In this section we provide additional examples explaining why the parameter
count is not really a representative of a model’s capacity and its generalizability
i.e., the ability of a model to capture better approximations of the function
underlying the relationship between inputs and outputs that generalise better.

One might wonder whether ways to quantify this aspect of a model exist. For
this reason, we resort to the known complexity measures in the literature and
show that these are no better than parameter count for the purpose of comparing
models belonging to different families of architectures. This advocates for the
need of measures that allow to compare models independently of their kinship.

B.1 Practical examples indicating why parameter count is not a
good proxy to compare model capacity and generalization

It is important to observe that all the considered models have significantly
more parameters than the number of training samples (even when considering
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ImageNet-21K as training set). Therefore, from a theoretical point of view, all
the considered models can interpolate the training set. These models differ in the
way in which their learning procedures can leverage the data and the available
parameters to learn solutions that generalise better. How overparametrization
is related to the extraordinary generalization properties of Neural Networks is
still an open area of research, and out of the scope of this paper. Consider the
following examples (refer Table 10 for parameter counts):

◦ consider BiT-R152×2 and BiT-R152×4. It is evident that although the latter
has about 4 times the number of parameters of the former, the performance
improvements observed in our tables are often marginal. This implies the
training procedure is not capable of leveraging the additional number of
parameters to boost the performance. It will be interesting if the future
literature investigates how much BiT-R152×4 can be pruned before it looses
its advantage over BiT-R152×2.

◦ consider ConvNeXt-B and BiT-R152×4. Although the first contains almost
10× less parameters than the latter, and both rely on convolutional inductive
biases, ConvNeXt-B significantly outperforms BiT-R152×4 almost always.
This comparison shows that parameter count is not representative of the
generalisation properties of a model even when comparing models sharing
convolutional inductive biases. Several other design choices that are often
neglected in existing literature comparing the robustness and reliability of
Transformers and CNNs (e.g. quantity and types of activations or normaliza-
tion layers, kernel sizes, proportions between the block sizes etc.) can greatly
influence the ability of a model to produce robust and reliable predictions.

B.2 Can complexity measures do better than parameter count?

A natural question that arises from the above observations is whether it is pos-
sible to find a measure that quantifies the generalization properties of a model
as a function of its input-output behaviour, training dynamics, the properties of
the mappings it has learned, or all these combined together. A recent study col-
lected and compared the most popular measures in this regard [16]. We consider
the two most popular ones and show how they cannot be used to compare the
generalization properties of models belonging to different families, and therefore,
for this purpose, are no more useful than parameter count.

◦ Path-Norm [26], defined as:

PN =
∑
i

fw2(1)[i]

where fw2 represents a network whose parameters have been squared, 1
indicates an input (of adequate shape, in this case we apply the same shape
of ImageNet inputs) for which each entry is set to 1, fw2(.)[i] represents the
logit associated to class i.
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◦ (logarithm of) Spec-Fro [27], defined as:

log SF = log

L∏
i=1

||Wi||22
L∑

i=1

srank(Wi)

where L is the total number of layers in the network, Wi represents the
weight matrix of the i-th linear layer, srank(Wi) represents the stable rank
of Wi, i.e. srank(Wi) = ||Wi||2F /||Wi||22 [33]. The logarithm is taken for
numerical stability reasons.

As shown in Table 10, both these metrics are inadequate in comparing models
belonging to different families (e.g. Path-Norm and Spec-Fro of BiT are evidently
at another scale with respect to those of other models; also, no inter-family
consistent sorting based on generalization on the in-domain test set seems to
emerge). Also for the same architecture, the behaviour of these metrics is in-
consistent when comparing models pre-trained on ImageNet-21K and then fine-
tuned on ImageNet-1K with respect to those trained only on ImageNet-1K. For
instance, in the case of ConvNeXt these metrics remain almost unchanged, while
for Swin-B the change is dramatic. They also produce inconsistent behaviours
within a family, for instance, they do not sort based on generalisation properties
the ViT-B and L models with patch sizes 16 and 32. For these reasons, for the
purposes of this analysis, these metrics are no more useful than the parameter
count. Future research should address this issue.

# params Path-Norm log-Spec-Fro

BiT-R50×1 25 71.90 101.179
BiT-R50×3 217 211.21 103.10
BiT-R101×1 44 75.43 197.44
BiT-R101×3 387 224.96 199.62
BiT-R152×2 232 151.50 295.13
BiT-R152×4 936 298.22 296.47

ConvNeXt-B 88 0.51 2.23
ConvNeXt-L 196 0.75 55.60
ConvNeXt-XL 348 -0.28 80.75

ViT-B/16 86 0.34 46.77
ViT-L/16 304 -0.44 118.72
ViT-B/32 88 0.17 46.20
ViT-L/32 306 0.86 118.17

Swin-B 87 0.04 34.11
Swin-L 195 -0.95 84.72

Trained on ImageNet-1K only

ConvNeXt-B 88 0.50 2.22
ConvNeXt-L 196 0.76 55.60

Swin-B 87 -314.96 381.30

Table 10: Path-Norm and Spec-Fro Complexity measures for each of the
considered models (checkpoints pre-trained on ImageNet-21K and fine-tuned on
ImageNet-1K, except for the bottom part of the table
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C Samples of the ImageNet-9 and Cue-Conflict dataset

To provide better context, in Figures 3 and 4 we show a few samples from the
ImageNet-9 mixed-same and mixed-random splits. In Figure 5 we show samples
from the Cue-Conflict dataset.

Fig. 3: Samples from the ImageNet-9 mixed-same split, in which the foreground
of a class is mixed with a background from the same class.

Fig. 4: Samples from the ImageNet-9 mixed-random split, in which the fore-
ground of a class is mixed with a background from another class.

Fig. 5: Samples from the Cue-Conflict dataset where style transfer is used to
alter the texture of an image using the image from another class as the style
source.
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D Proof that AUROC is invariant to the choice of
positive and negative classes

Here we provide a simple proof to show that for the binary threshold classifier,
AUROC does not vary depending on the choice of positive and negative classes.
We would like to mention that we do not claim any technical novelty here. This
proof is entirely for the purpose of completeness and to theoretically support
our empirical findings in Table 2.

Given a classifier f : x 7→ Rk and a scoring function g : Rk 7→ R (e.g. en-
tropy), let the binary threshold classifier be such that g(f(x)) ≥ t for a given
threshold t implies that the sample x belongs to ‘positive’ class, otherwise neg-
ative. Therefore, given a dataset with M samples, one could simply sort these
samples using the g(.) scores and find an index beyond which all the samples
belong to the positive class. Now, let us define TP as the number of true posi-
tives (similarly, FN , FP , and TP are defined). Total number of positive samples
can then be calculated as P = TP + FN . Similarly, total number of negatives
N = TN + FP . Using these notations, following rates can be defined
◦ TPR = TP/(TP + FN) (True Positive Rate, also called Recall5)
◦ FPR = FP/(FP + TN) (False Positive Rate)
◦ TNR = TN/(TN + FP ) (True Negative Rate)
◦ FNR = FN/(FN + TP ) (False Negative Rate)

By definition, AUROC is the area under the TPR and FPR curve, where
each (TPR(ti), FPR(ti)) point on the curve is specific to a particular threshold
ti that is used for the classification using the score g(.).

Let ti > tj if i > j then, it is simple to observe that the ROC is a monotoni-
cally increasing (not strictly) stair function whose step occur in correspondence
of an input x in the dataset. Since the dataset size is fixed (say M samples), one
can identify at most M values of t at which the ROC value could increase. Let
(TPR(ti), FPR(ti)) be the element of this ordered set. Since the dataset size is
fixed, there are at most M increasing values of the threshold t. Then, the area
under ROC curve can be obtained as

AUROC =

M∑
i=1

(bi − bi−1)hi

where, bi = FPR(ti) and hi = TPR(ti).
Now, let us flip the labels and −g(f(x)) ≥ t is considered as the ‘positive’

class6 (note, this way scoring function reverts the order with which the dataset
can be sorted). Let TP ′ now denote the true-positive in this new scenario. Sim-
ilarly, let’s apply the same convention to the other elements of the confusion
matrix in this scenario. The relation between the confusion matrices of this sce-
nario and the previous is:

5 Precision = TP/(TP + FP )
6 Any strictly monotonically decreasing function applied to g will not change what
follows.
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◦ TP ′ = TN
◦ FP ′ = FN
◦ FN ′ = FP
◦ TN ′ = TP

Therefore,

TPR = TP/(TP + FN) = TN ′/(TN ′ + FP ′) = TNR′ = 1 − FPR′,

FPR = FP/(FP + TN) = FN ′/(FN ′ + TP ′) = FNR′ = 1 − TPR′. (1)

The AUROC can now be computed as:

AUROC′ =

M∑
i=1

(b′i − b′i−1)h′
i.

It is easy to observe that since the sorting of the samples based on their scoring
function values is reversed, harmonising the indexing across these two sorted
sets, then b′i = 1 − hM−i and h′

i = 1 − bM−i (applying Eq. (1)). Replacing these
values in AUROC′ we obtain

AUROC′ =

M∑
i=1

(1 − hM−i − (1 − hM−i+1))(1 − bM−i)

=

M∑
i=1

(hM−i+1 − hM−i)(1 − bM−i) = AUROC

The last equality is obvious with geometric reasoning: while the AUROC
partitions the ROC with vertical rectangles (one for each step) and summates
the area of the rectangles obtained this way, AUROC′ partitions the same ROC
stair using horizontal lines (one for each step) and summates the area of these
rectangles (which is obviously the same). This is further validated by reasoning
geometrically on the mapping implied by the swap of the positive class: this map-
ping moves the origin of the original space to (1, 1), rotates the coordinate axes
of 90° anti-clockwise and flips what used to be the horizontal axis orientation.

Additionally, it is straightforward to observe that when the minority class is
sampled multiple times for rebalancing, TPR and FPR are unchanged, therefore,
AUROC is unchanged.




