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Abstract. There have been growing interest in algorithmic fairness for
biased data. Although various pre-, in-, and post-processing methods are
designed to address this problem, new learning paradigms designed for
fair deep models are still necessary. Modern computer vision tasks usually
involve large generic models and fine-tuning concerning a specific task.
Training modern deep models from scratch is expensive considering the
enormous training data and the complicated structures. The recently
emerged intra-processing methods are designed to debias pre-trained
large models. However, existing techniques stress fine-tuning more, but
the deep network structure is less leveraged. This paper proposes a novel
intra-processing method to improve model fairness by altering the deep
network structure. We find that the unfairness of deep models are usu-
ally caused by a small portion of sub-modules, which can be uncovered
using the proposed differential framework. We can further employ sev-
eral strategies to modify the corrupted sub-modules inside the unfair
pre-trained structure to build a fair counterpart. We experimentally ver-
ify our findings and demonstrate that the reconstructed fair models can
make fair classification and achieve superior results to the state-of-the-
art baselines. We conduct extensive experiments to evaluate the different
strategies. The results also show that our method has good scalability
when applied to a variety of fairness measures and different data types.
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1 Introduction

Recently, machine learning models have been increasing in usage in different
applications. However, evidence shows that ML models can be biased just as hu-
man decision-makers, resulting in serious problems in some high-stakes decision-
making, such as awarding loans, deciding probationers’ risks, or detecting fraud.
The bias in machine decision has two main sources, the intrinsic algorithm de-
sign, and the flawed training data collection. For example, people found some
gender bias in Amazon’s resume screening tool [11] and the credit limits of Ap-
ple Card [39]. Algorithmic fairness is gaining growing interest to alleviate this
issue. Usually, some features used for the decision-making data indicate the un-
derprivileged groups in the population. The classifiers learned with algorithmic
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fair-awareness are insensitive to these features, a.k.a. protected attributes. For
example, a machine learning model is usually trained w.r.t. award loans based on
user profiles, where gender and ethnicity are protected attributes. Algorithmic
fairness prevents decision-making from being associated with gender or ethnic-
ity. To fit into different application scenario, researchers proposed various defi-
nitions for algorithmic fairness, including individual fairness [13], demographic
parity [8], equal odds and equal opportunities [21], disparate treatment, impact,
and mistreatment [49]. Among the works attempting to achieve fairness com-
mitments for classification models, some try to address a substantial source of
the bias, i.e., the dataset itself. Alternatively, many methods try to rectify bias
that manifests in models during training, which can be categorized into pre-,
in-, or post-processing frameworks. Although these methods achieve great suc-
cess in many tasks, some scenarios prevent their application. Due to the rapid
growth of the size of modern machine learning problems, it is common to adopt
some pre-trained backbone models and fine-tune them for some specific tasks.
In real-world applications, the models are usually trained with the accumula-
tion of data, and the potential data distribution may vary with time. In these
cases, pre-processing and in-processing methods are expensive since they require
retraining from scratch each time, and state-of-the-art models may require thou-
sands of GPU hours. Post-processing methods sometimes cannot fully use the
models since they are viewed as black boxes.

Recently, intra-processing algorithms have emerged to address these prob-
lems. An intra-processing approach has access to a pre-trained model and a
dataset (typically differing from the biased training dataset). It outputs a debi-
ased model by updating or augmenting the weights.

However, existing intra-processing methods are usually designed for general
machine learning models, thus cannot fully use the deep network structure. This
paper proposes a novel intra-processing framework to address this limitation—
we alter the structure of an unfair model to recover a fair counterpart. Our
contributions are summarized as follows,

• We propose a conjecture that the unfairness of a deep network is caused by
only a small portion of its sub-modules. We design a differentiable scheme to
identify those model weights corrupted by unfairness. We verify our findings
empirically and show that the percentage of corrupted weights is quite low.

• We propose several strategies to reconstruct the fair classification model by
modifying the corrupted networks. First, we can obtain a slim network by
removing the unfair weights and applying off-the-shelf intra-process methods.
Second, we can graft informative filters into the corrupted weights. And third,
we can refine the slim network via network augmentation.

• We experimentally verified our findings and demonstrated that our algorithm
outperforms state-of-the-art intra-processing baselines, and our approach gen-
eralizes well to various settings, e.g., tabular and vision datasets. We also
conducted extensive experiments to study the corrupted weights and different
model altering strategies.
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2 Related Works

2.1 Fairness in Machine Learning

At a high level, algorithmic fairness can be mathematically defined by the group
or individual, and various formal definitions of fairness have been proposed. In-
dividually fair models [13] are based on the intuition that similar users deserve
similar treatments. They map input metric spaces to output metric spaces, where
individual fairness is defined as Lipschitz continuity of the models. Individual
fairness has a preferable property that the Lipschitz continuity naturally implies
statistical parity between subgroups of the population. On the other hand, group
fairness (sometimes referred to as statistical parity) considers the invariance of
the machine learning models on the protected non-overlapping subsets. Group
fairness sometimes makes the computation simpler than individual fairness since
it is compliant with statistical analysis. The core research problem for fairness
is to identify the sources of unfairness and design the corresponding solutions.
Imbalanced data concerning the protected attributes usually lead to an unfair
model, i.e. the unfairness from the data. To address this problem, some works,
including BUPT-Balancedface/RFW [40] and Fairface [27], try to build balanced
data. Alternatively, some recent research finds that sometimes data imbalance
doesn’t necessarily lead to unfairness [17], which makes the problem more in-
triguing. Meanwhile, some methods aims at learning a fair classifier on top of the
biased data [48,53,34,6,28]. Many debiasing algorithms can be split into three
categories based on the processing of data and model. Pre-processing methods
directly change the data. In-processing approaches train machine learning mod-
els tailored to making fairer prediction. Post-processing techniques refine the
potentially biased predictions outputted by a fixed model. Our method is an
intra-processing method [37] identifying the critical parts of the models causing
the unfairness, while previous related methods promote the fairness via finetun-
ing using partial knowledge of the models.

2.2 Fine-tuning Over-parameterized Network

Modern deep neural networks typically achieve higher performance from larger
model scales. The model scales mainly come from two sources: the layer width
and the network topology. Recent research shows that both the network weights
and the network topology have redundancy concerning the model utility. For
example, [22] benefits from huge convolution filter numbers. Some works show
that carefully dropping part of network weights makes only a slight performance
decrease [18], even when a substantial amount of the weights are removed. Many
pruning methods are proposed to identify what weights are redundant. Magni-
tude pruning [20] removes weights with small norm values. Lottery ticket hy-
pothesis (LTH) [15] shows that a sparse sub-network exists at the initialization
time that can reach the performance of the full model. Moreover, the weight drop
can be conducted at a different level, e.g., channel-wise [31,52,16] and weight-
wise [20]. On the other hand, people found that long-distance connections can
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improve the model performance [24]. However, there is some inefficiency be-
cause the deeper layers consider the early features as “obsolete” ones and ignore
them while learning new representations. CondenseNet [45] and ShuffleNet [51]
alleviate this inefficiency through strategically pruning redundant connections
and exponentially discarding cross-layer connections, respectively. One expla-
nation for this phenomenon is that a deep neural network can be viewed as a
large ensembled model, and only some sub-structures play a vital role in pre-
diction performance. This argument is empirically supported by some network
refinement methods [19,38]. Part of our framework is motivated by this body of
research. Instead of refining special sub-structures, one can also train potential
sub-networks with different sizes and use larger networks to help the training of
smaller ones. A typical case is slimmable neural networks [47], which train sub-
networks with different widths at the same time. On top of slimmable networks,
universally slimmable networks [46] proposed enhanced training techniques that
distill knowledge from larger sub-networks (including the full model) to smaller
sub-networks. Recently, network augmentation [7] put small models into large
models to improve the training of the small model.

Of note, our work is not directly related to the fair differentiable neural
architecture search. FairDARTS [10] and FairNas [9] define Expectation Fairness
(EF) and Strict Fairness (SF) to alleviate supernet bias and avoid the unfair
advantage of skip connections for residual modules. They use the terminology
“fairness” totally different from our paper (our work considers the classification
fairness).

3 Methodology

In this section we first briefly recap the problem formulation of the algorithmic
fairness for the intra-processing scenario to make our paper self-contained. Next,
we describe our method to discover the candidate sub-modules for the model
structure alteration. At last, we discuss several strategies to reconstruct a fair
model with awareness of the corrupted sub-modules.

3.1 Problem Formulation

Intra-processing debiasing Our task is to adjust an unfair model using a
validation dataset. Formally, D = {(Xi, Yi)} denotes a dataset, where Xi is a
data point containing one binary protected attribute A, and Yi is the label.
fθ : Rd → [0, 1] is an unfair neural network with weights θ (we will drop θ when
it is clear from context). Ŷ = {f(Xi)|(Xi, Yi)} is the prediction. ρ(Y, Ŷ) denotes
the performance of f , and we use balanced accuracy in this paper. Specifically,
we assume f is l layers feed-forward neural network, and its ith layer is f (i). We
denote f = f (l) ◦ f ′, so that the first l − 1 layers f ′ = f (l−1) ◦ · · · ◦ f (1) can
be viewed as an encoder to compute data representations. µ(D, Ŷ, A) ∈ [0, 1] is
a bias measure. One typically chooses an appropriate definition of the fairness
measure depending on the applications, which we will discuss later.
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Since there is usually some trade-off between the performance ρ and the bias
µ, we want to decrease the bias µ without significantly sacrifices the performance
ρ. A common practice is to maximize the model performance subject to some
predetermined tolerance ϵ to the bias, and we have the objective function,

Φµ,ρ,ϵ(D, Ŷ, A) =

{
ρ if µ < ϵ

0 otherwise
. (1)

An intra-processing algorithm takes in the validation dataset Dval and a
trained model fθ and outputs a fine-tuned fθ′ with weights θ′ via optimizing the
objective ϕµ,ρ,ϵ. Note that the difference between intra-processing algorithms and
pre-, in-, and post- methods makes these methods useful for different problem
settings because these paradigms have different access to the data and model, i.e.,
pre- methods mainly consider the data, in- mainly consider the model training,
and the post- sometimes cannot access the model details.

Fairness Measures Now we describe the fairness measures used in this work.
We first define the true positive and false positive rates as,

TPRA=a(D, Ŷ) =
|{i|Ŷi = Yi = 1, ai = a}|

|{i|Ŷi = Yi = 1}|
= P(Xi,Yi)∈D(Ŷi = 1|ai = a, Yi = 1),

(2)

FPRA=a(D, Ŷ) =
|{i|Ŷi = 1, Yi = 0, ai = a}|

|{i|Ŷi = 1, Yi = 0}|
= P(Xi,Yi)∈D(Ŷi = 1|ai = a, Yi = 0).

(3)

Next, we describe the fairness measures used in this paper.
Statistical Parity Difference (SPD),

SPD(D, Ŷ, A) = P(Xi,Yi)∈D(Ŷi = 1|ai = 0)− P(Xi,Yi)∈D(Ŷi = 1|ai = 1). (4)

Equal opportunity difference (EOD),

EOD(D, Ŷ, A) = TPRA=0(D, Ŷ)− TPRA=1(D, Ŷ). (5)

Average Odds Difference (AOD),

AOD(D, Ŷ, A) =
1

2

((
FPRA=0(D, Ŷ)− FPRA=1(D, Ŷ)

)
(
TPRA=0(D, Ŷ)− TPRA=1(D, Ŷ)

))
. (6)

3.2 Finding Corrupted Sub-modules

As an intra-processing method, we will use the validation data and the model
structure simultaneously. Here validation data refers to a few data points for fine-
tuning without breaking the test integrity. Note that we only use the validation
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data of limited size instead of the complete training data, and the reasons are
two-folded. First, fine-tuning the unfair model is sometimes prohibitive consid-
ering the size of the full training data, particularly when the model is also large.
Second, the complete training data are usually biased in the protected attribute
distribution. It is more viable to collect a small and unbiased validation set. For
the second point, one implicitly assumes that primarily training on an imbal-
anced dataset is inherently disadvantageous. However, whether the assumption
is valid in some application scenarios is still an open question. For example, in
face recognition, training on only African faces induced less bias than training on
a balanced distribution of faces and distributions biased to include more African
faces produced more equitable models, and adding more images of existing iden-
tities to a dataset in place of adding new identities can lead to accuracy boosts
across racial categories [17]. We believe that this assumption deserves further
investigation concerning the specific tasks. In this paper, we deal with this issue
in a conservative manner and focus on a balanced validation set. Specifically, this
section assumes that we have the unfair model f and the balanced validation
data Dval. In the following, we describe our method to discover the sub-modules
making substantial contribution to unfairness.

Modern deep neural networks are over-parameterized. Many works have
shown that there are some redundant sub-structures inside a model regarding
their contribution to the model performance, e.g., carefully removing a large
number of channels or layer shortcuts [25,44] usually will not affect the model
performance significantly. Moreover, deep neural networks are known for that
they can memorize samples with random labels [3], and show some properties of
ensembled models, e.g., dropout, as a frequently used technique, functions similar
as bagging [42]. Motivated by these findings, we make a conjecture that different
modules in a deep network make different contributions to the model prediction
and fairness. With the help of the validation dataset, we can discover the in-
fluential weights leading to unfairness. Specifically, we freeze the unfair network
and assign a mask network to the weights. Then we learn the mask networks
to identify those corrupted weights. We will empirically verify this conjecture
in the experiments. The model alteration will focus on these corrupted weights,
which will be detailed in the next section.

Formally, let M be a binary mask, which has the same size of θ. We first
initialize all entries in M with 1 and construct a masked network f(X; θ ⊙M),
which is identical to f in the prediction ability. We then identify the sub-networks
causing unfairness with θ frozen via solving the following problem,

min
M∈{0,1}N

Lft(f(X; θ ⊙M), y), s.t. ∥M∥0/N ≤ τ. (7)

here Lft is the fine-tune loss, τ is a threshold, and 1 − τ of the weights are
identified as makes little contribution to algorithmic fairness. By solving the
problem in Eq. (7), we can have the optimal mask M∗ and the corresponding
weights θM = M∗ ⊙ θ, which is a fair sub-structure inside the unfair model.

Solving the problem in Eq. 7 directly is difficult because of the constraint of
L0 norm. To overcome this difficulty, we reparameterize masks with continuous
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Algorithm 1: Discover Model Weights Corrupted by Unfairness

Input: validation data Dval, original classifier f , epochs E, parameters τ , β
Output: pruned mode fft

1 freeze θ in f , initialize m;
2 for e := 1 to E do
3 shuffle(Dval)
4 for a mini-batch (x, y) in Dval do
5 obtain masked fM using m and ϵm ∼ N (0,min(1,max(0.05, 0.5m)));
6 compute gradients for m w.r.t. (9) and update it with ADAM;

7 end

8 end

values, which becomes,

M =

{
1 if sigmoid(m̂) ≥ 0.5
0 if sigmoid(m̂) < 0.5

(8)

here m̂ = m + ϵm, which use the reparameterization trick. m is the learnable
relaxed mask, ϵm is randomly drawn Gaussian noise whose variance is adaptive
w.r.t. m. We use ϵm to avoid the discovery stuck in bad local minimum. Eq. (8)
is still not differentiable, to enable gradient calculation, we can use straight
through estimator (STE) [5], and the gradients of m can be calculated by: ∂M

∂m =
∂M

∂sigmoid(m)
∂sigmoid(m)

∂m .

Although binary masks are differentiable, the problem in Eq. 7 is in con-
straint form. To make the optimization easier, we can change the problem to the
following form:

min
m

Lft(f(x;W ⊙M), y) + βR(∥M∥0/N, k), (9)

Where β is a coefficient parameter,R is a regularization term to push ∥M∥0/N to
a pre-defined threshold τ . Applying this regularization term will count the spar-
sity of all weights together. The optimization of binary masks is then more flexi-
ble than using the same sparsity rate for all layers. We choose R(∥M∥0/N, τ) =
log(max(∥M∥0/N, τ)/τ), instead of commonly used regression losses, like MAE
or MSE, because both of them can not reach desired sparsity when τ is small
(for example, τ = 0.01).

After we obtain the mask θM , we can obtain the corresponding fθM . In the
next part, we will discuss several strategies to refine the fair classification model
on top of fθM . The full algorithm is described in Algorithm. 1.

3.3 Strategies to Recover the Fair Classification Model

A straightforward method to reconstruct the fair model is to remove all cor-
rupted weights and only use the left structures. In this case, we no longer need
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Fig. 1: Illustration of three strategies. The corrupted sub-modules are denoted
by dashed circles and lines. The prune and fine-tune strategy builds a pruned
model via removing all corrupted weights. The grafting strategy build a model
via grafting the unfair weights using two independently discoveries (denoted by
different color). The network augmentation strategy maintains the unfair model
and refine the augmented fair subnetwork.

the mask network. Rather, fθM can be viewed as a fair subnetwork inside the un-
fair model, which is related to model compression to some degree. However, the
fair subnetwork may lose some generalization ability to the classification prob-
lem. This phenomenon is also confirmed in the model pruning literature—the
prediction accuracy decrease is usually non-negligible and grows with the prun-
ing rate. Besides, training the pruned network from scratch instead of fine-tuning
may lead to worse performance. In this section, we describe several strategies to
reconstruct a fair model on top of the fair subnetwork. Figure. 1 illustrates the
three strategies.

Adversarial Fine-tuning Pruned Model A straightforward process to refine
the fair subnetwork is to adjust the pruned fθM using off-the-shelf in-processing
methods. More specifically, we remove all zero weights in fθM and run the adver-
sarial fine-tuning [37]. Since the unfair full model can be processed similarly, we
can compare the fine-tuning results between the fair subnetwork and the unfair
full model to demonstrate the necessity of pruning for a better performance—in
other words, verify our conjecture on the existence of the fair subnetwork. We
will show the results in the experiments.

Network Grafting Network grafting is a learning paradigm related to pruning.
Model pruning attempts to improve the model efficiency via removing unimpor-
tant filters. Alternatively, network grafting aims to improve the representation
capability of deep neural networks via grafting the external information into
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unimportant filters. We adopt the terminologies in filter grafting [33,38] and in-
terpret the corrupted weights as the rootstocks. We re-activate these corrupted
weights via grafting, i.e., replacing the corrupted weight values using some scions.
There are three types of scions: noise, internal filters, and external filters. One
can follow the filter grafting [33] for grafting the corrupted weights using noise
and internal filters as scions. Here the noise scions are Gaussian noise having a
larger ell1 norm than the corrupted weights. The internal filters are the weights
in the fair subnetwork with the largest ell1 norms. For the external filters, we
propose a variant. We independently discover two fair subnetworks from the un-
fair model. This step is feasible because the fair subnetwork pruning is to solve
an integer problem using approximate methods, which usually results in different
seeds. We then execute layer-level grafting. Since the location of the corrupted
weights for the two subnetworks are generally different, they can learn mutual
information from each other.

Network Augmentation Training large neural networks usually uses regular-
ization techniques (e.g., data augmentation, dropout) to overcome over-fitting.
Some recent work [7] observes that these techniques might hurt the perfor-
mance of tiny neural networks. Instead of augmenting the data, one should
augment the model to avoid the under-fitting. This strategy maintains a large
network, in which the tiny network is a subnetwork. Augmented nets are sam-
pled from the large network and fine-tuned against the augmented loss function
Laug = L(θM )+

∑
i αiL([θM , θi]), where [θM , θ1] represents an augmented model

that contains the tiny neural network and αi is the scaling hyper-parameters. For
our problem, the construction of the large augmented network is of particular
convenience—we can directly use the unfair full model for that purpose. As such,
we can sample the augmented net i containing the fair subnetwork from the full
unfair model and update the unfair model i progressively using gradient-based
optimization methods.

4 Results

We conduct the experiments on representative image and tabular datasets. The
results demonstrate that our method achieves comparable or superior fairness
compared to related fair algorithms.

4.1 Image Data Classification

We consider two image datasets, CIFAR-10 Skewed and CelebA. CIFAR-10
Skewed is a synthesized dataset serving as a benchmark for comparing intra-
processing methods and the related schemes. We also include the necessary abla-
tion study using this benchmark. CelebA is a real-world dataset to further verify
the advantage of our approach compared to other state-of-the-art methods. We
detail the construction of the two datasets and the experimental evaluation in
the following.
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Table 1: Computational results on CIFAR-10S benchmark. Since the bias toler-
ance is 0.05, some approaches are not considered fair. Our method has the best
accuracy under the fairness constraint.

accuracy bias

Baseline 0.892± 0.004 0.080

Uni.Conf. [2] 0.842± 0.011 0.097
Adv.Debias [50] 0.841± 0.011 0.099
Dom.Disc. [54] 0.904± 0.049 0.043
Dom.Ind. [41] 0.920± 0.009 0.005

RndPert [37] 0.913± 0.021 0.048
LayerwiseOpt [37] 0.898± 0.016 0.043

Adv.Ft [37] 0.917± 0.018 0.051

Prune + AdvFt 0.920± 0.014 0.033
NoiseGraft 0.909± 0.011 0.045
InterGraft 0.918± 0.013 0.013
ExtGraft 0.927± 0.009 0.028
NetAug 0.931± 0.016 0.014

Table 2: The performance of the baseline model and our approach for CIFAR-
10S benchmark under different bias level.

Bias level Baseline
Strategy

Adv.Ft ExtGraft NetAug

80% 0.935 0.941 0.944 0.946

90% 0.917 0.937 0.945 0.943

99% 0.894 0.916 0.912 0.915

Table 3: Computational results on CelebA dataset. The results are based on five
runs and the mean bias column indicates the unfair models.

accuracy bias

Baseline 0.53± 0.00 > 0.05

ROC [26] 0.53± 0.01 < 0.05
EqOdds [21] 0.98± 0.00 > 0.05

CalibEqOdds [36] 0.51± 0.01 < 0.05

RndPert 0.56± 0.03 > 0.05
LayerwiseOpt 0.52± 0.02 < 0.05

Adv.Ft 0.91± 0.00 < 0.05

Prune + AdvFt 0.93± 0.00 < 0.05
ExtGraft 0.94± 0.00 < 0.05
NetAug 0.94± 0.01 < 0.05

Data Description: We use the CIFAR-10 Skewed (CIFAR-10S) bench-
mark [41] to show the effectiveness of the intra-processing scheme compared
to the rest processing schemes. CIFAR-10S is based on CIFAR-10 [30], a dataset
with 50,000 32×32 images evenly distributed between 10 object classes. In CIFAR-
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Table 4: Computational results on Adult dataset. We use AOD and SPD as the
fairness measure and race and sex as the protected attribute. − indicates that
the bias is out of bound so that the accuracy cannot be accepted.

AOD-sex SPD-race

accuracy bias accuracy bias

Baseline 0.86 0.175± 0.016 0.86 0.178± 0.013

ROC [26] 0.79 0.052± 0.009 0.71 0.050± 0.006
EqOdds [21] 0.66 0.081± 0.018 0.51 0.000± 0.001

CalibEqOdds [36] 0.84 0.299± 0.020 0.75 0.178± 0.019
Adv.Debias [50] 0.81 0.008± 0.011 0.65 0.042± 0.008

RndPert 0.73 0.044± 0.009 0.64 0.051± 0.001
LayerwiseOpt 0.62 0.024± 0.010 0.63 0.041± 0.010

Adv.Ft 0.61 0.032± 0.009 0.61 0.033± 0.011

Prune + AdvFt 0.77 0.049± 0.011 0.64 0.042± 0.008
ExtGraft 0.65 0.036± 0.013 0.61 0.028± 0.012
NetAug 0.65 0.036± 0.013 0.61 0.028± 0.012

10S, each of the ten original classes is subdivided into two new domain subclasses,
corresponding to color and grayscale domains within that class. Per class, the
5,000 training images are split 95% to 5% between the two domains; five classes
are 95% color, and five classes are 95% grayscale. The total number of images
allocated to each domain is thus balanced. We create two copies of the stan-
dard CIFAR-10 test set for testing: one in color and one in grayscale. These two
datasets are considered separately, and only the 10-way classification decision
boundary is relevant. The CelebA dataset [32] consists of over 200,000 images
of celebrity headshots, along with binary attributes, but some binary catego-
rization of attributes such as gender, hair color, and age does not reflect true
human diversity and is problematic [41,12]. In this experiments we choose two
models. One predicts whether or not the person is young, and the other predicts
whether the person is smiling. We set the protected attribute to Fitzpatrick skin
tones [14] in the range 4− 6 following [43], and label the attributes and use the
same pre-training setting following [37].

Comparative Methods: For Cifar-10S, we consider the best-performing in
the benchmarking [41] including uniform confusion loss [2], Adversarial Debias-
ing [50], prior shift inference [54], and domain-independent training [41]. We also
include three intra-processing methods in [37], Random Perturbation, Layer-wise
Optimization, and Adversarial Fine-tuning. For all methods, we use the standard
10-way classifier, following [41]. For CelebA, we focus on the comparison of the
proposed method with the biased baseline model and several related methods,
including the reject option classification post-processing algorithm [26], which
is designed to minimize statistical parity difference; the equalized odds post-
processing algorithm [21] for minimizing equal opportunity differences; the Cal-
ibrated equalized odds post-processing algorithm [36] for equal opportunity dif-
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Table 5: Results on COMPAS dataset.
accuracy bias

Baseline 0.85 0.152± 0.147

ROC [26] 0.50 0.013± 0.028
EqOdds [21] 0.51 0.011± 0.009

CalibEqOdds [36] 0.36 0.023± 0.029
Adv.Debias [50] 0.62 0.081± 0.109

RndPert 0.68 0.084± 0.016
LayerwiseOpt 0.52 0.039± 0.043

Adv.Ft 0.59 0.036± 0.017

Prune + AdvFt 0.61 0.035± 0.014
ExtGraft 0.61 0.044± 0.011
NetAug 0.60 0.041± 0.012

ferences. We also consider Adversarial Debiasing [50] which is an in-processing
method using the adversarial critic to predict the protected attribute and highly
related to the intra-processing methods.

Our setting: Prune + Adv.Ft is adversarial fine-tuning strategy. We fine-tune
the model 90 epochs with 5 warmpup steps and cosine annealing learning rate
scheduler, using ADAM optimizer with starting learning rate 0.01. Noise-, Inter-
, and ExtGraft are grafting using noise, internal scions, and external scions,
respectively. For ExtGraft, we consider two independent discovery and always
use the first run as the final model the since the two perform close to each other.
The model is trained for 100 epochs. NetAug is network augmentation. We use
one augmentation per epoch, and train the network 100 epochs, and the scaling
parameter is 1. We choose a small diversity factor of 0.05, since the prune rate is
low. For both dataset we use a ResNet-18 [22] pretrained on ImageNet from the
PyTorch library [35] as the initial model. We set E = 80, β = 5, and τ = 0.1.

4.2 Additional Results on Tabular Data Classification

Besides image datasets, we also consider two widely-used tabular binary clas-
sification datasets from AIF360 [4] to show that our approach can generalize
to different application scenarios. Each dataset contains at least one protected
feature. For all datasets, we follow [37] and use a feed-forward neural network
with ten fully-connected layers of size 32. A BatchNorm layer follows each fully-
connected layer. We use a dropout fraction of 0.2. For more details, please refer
to [37]. The rest of the settings are similar to the image tasks. The results are
obtained by averaging the fairness metrics on the test sets based on ten random
initialization.

Income Prediction: The Adult dataset [29] is from the Census Bureau, and the
task is to predict whether a given adult makes more than $50, 000 a year based
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on attributes such as education, hours of work per week, etc., for approximately
45, 000 individuals. In this experiment, gender (male or female) is used as the
binary protected attribute. The computational results are presented in Table 4.

Recidivism Prediction: Correctional Offender Management Profiling for Al-
ternative Sanctions (COMPAS) is a commercial tool to assess a criminal defen-
dant’s likelihood to re-offend. The task is to predict the recidivism risk based on
the features for defendants, including the criminal history, jail and prison time,
and demographics. In this experiment, gender (male or female) are used as bi-
nary protected attributes and EOD is the fairness measure.. The computational
results are presented in Table 5.

4.3 Discussions

In this experiment, we have several observations. Table 1 shows that our method
works are superior to all the baselines significantly. Table 2 further highlights the
performance evolution w.r.t. bias, and we can find that for extremely high bias
(i.e., 99%), our method still performs well. Our approach can achieve nearly
perfect fairness when the bias is moderately high (i.e., 80%). We also notice
that the model accuracy is relatively stable w.r.t. initialization. However, the
model bias usually has a larger perturbation. The algorithmic design for specific
fairness criteria cannot generalize to different scenarios. These results are consis-
tent with the observation that many group fairness constraints are intrinsically
incompatible so that trade-offs between them shall be considered [1]. Our ap-
proach usually has better-balanced accuracy and comparable (i.e., no statistical
significance) bias than the state-of-the-art intra-processing baselines. This result
indicates that our approach dominates the baselines Pareto-optimally.

We notice that the three recovering strategies show some performance differ-
ence particularly for vision dataset. The Prune+AdvFt strategy consistently out-
performs the related baselines using the full model, which verifies the existence of
the fair subnetwork. The best-performing grafting strategy is via external graft-
ing. NetAug usually performs similar to the grafting strategy. For tabular data,
there is no statistical difference between the naive strategy (i.e., Prune+Adv.Ft)
and the complex strategies (i.e., grafting and NetAug). It should be mentioned
that although grafting and NetAug sometimes yield better fair models, the train-
ing time is significantly longer than the Prune+Adv.Ft strategy. In most cases,
the Grafting strategy and the NetAug strategy have comparable performance.
We recommend the Grafting strategy for general purpose model debiasing con-
sidering the model and training complexity. For large-scale fairness problems,
we expect NetAug is of some use since the network augmentation technique is
designed to avoid under-fitting for tiny models. However, there still lacks such a
benchmark to our best knowledge.
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Table 6: Pruned results guided by different reconstructed fair models. For all
entries, the value denotes accuracy/bias/final pruning rate (if applicable).

Ratio Base
Teacher Strategy

Adv.Ft ExtGraft NetAug

80% 0.912/0.054 0.907/0.040/15% 0.905/0.048/14% 0.900/0.036/17%

90% 0.901/0.072 0.898/0.041/15% 0.899/0.056/16% 0.893/0.044/12%

99% 0.879/0.115 0.874/0.066/13% 0.891/0.082/15% 0.878/0.063/14%

4.4 Further Study: Fair Subnetworks in Unfair Models

The empirical results provide some evidence on the existence of fair subnetwork
in a unfair model. A further question is whether a completely unfair model can
be adjust to become fair? To answer it, we consider the following problem,

min
m

H(fu
t (x,W ⊙M), fr(x)) + γH(fu

t−1(x), f
u
t (x)), (10)

where fu is an unfair model, and fr is a reconstructed fair model. t is the epoch.
H(·) is the entropy function. The first term can be regarded as the knowledge
distillation loss [23] with temperature 1.0. The second term is consistency reg-
ularization between epochs. We let the unfair model mimic the outputs of the
reconstructed fair model instead of the fair sub-networks, since the fair sub-
network is sub-optimal before we apply the intra-process. During pruning, we
fix model weights and only update the binary mask and ignore the pruning rate
constraint in this problem to expand the possible search space of robust sub-
networks. Table. 6 summarizes the results on CIFAR-10S. We alter the ratio of
color and grayscale images, and compute the pruned models concerning the re-
constructed fair models using different strategies. The results show that simply
removing the corrupted weights is adequate to obtain a fair model with accept-
able accuracy. We also notice that the pruning rate is merely around 12% ∼ 17%,
even for a high imbalance ratio. This result indicate that most weights in a non-
robust deep neural network are robust or at least insensitive to unfairness.

5 Conclusion

In this paper, we propose a novel intra-processing fairness framework. Our frame-
work includes two steps. First, we discover the fair sub-structure using model
pruning techniques. Second, we propose several strategies to reconstruct the fair
deep classification model. We benchmark the performance of the intra-processing
method and show the effectiveness of our design. Extensive experiments demon-
strate that our approach is suitable for various application scenarios and has a
comparable performance w.r.t. state-of-the-art methods.
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