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Abstract. We propose sanitizer, a framework for secure and task-agnostic
data release. While releasing datasets continues to make a big impact
in various applications of computer vision, its impact is mostly realized
when data sharing is not inhibited by privacy concerns. We alleviate these
concerns by sanitizing datasets in a two-stage process. First, we introduce
a global decoupling stage for decomposing raw data into sensitive and
non-sensitive latent representations. Secondly, we design a local sampling
stage to synthetically generate sensitive information with differential pri-
vacy and merge it with non-sensitive latent features to create a useful
representation while preserving the privacy. This newly formed latent
information is a task-agnostic representation of the original dataset with
anonymized sensitive information. While most algorithms sanitize data
in a task-dependent manner, a few task-agnostic sanitization techniques
sanitize data by censoring sensitive information. In this work, we show
that a better privacy-utility trade-off is achieved if sensitive information
can be synthesized privately. We validate sanitizer’s effectiveness by out-
performing state-of-the-art baselines on the existing tasks and demon-
strating tasks that are not possible using existing techniques. Our code
and benchmark is available at https://github.com/splitlearning/sanitizer

1 Introduction

Releasing datasets has resulted in methodological advancements in computer
vision [14, 62] and machine learning (ML). However, the advancement is still
limited by datasets that comply with modern privacy standards. The goal of
this work is to alleviate privacy concerns in dataset release when it contains
sensitive information. Since datasets are released independently of downstream
tasks, we focus on the problem of protecting sensitive information in a task-
agnostic manner. We refer to this problem as sanitization. Releasing sanitized
datasets could galvanize the research community to make progress in the areas
where raw data access is not feasible.

As a motivating example, consider a hospital with a dataset of face images
where “ethnicity” and “age” of every face is a sensitive detail. The hospital is
enabled to share the dataset with untrusted parties for several applications if
we can sanitize all images in the dataset. To understand the benefit of sharing
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Fig. 1: Sanitizer pipeline First, we learn a latent model (global decoupler) of the data
distribution using non-sensitive auxiliary dataset (in green). Next, we use the latent
model to decouple sensitive (in red) and non-sensitive (in blue) information from the
sensitive dataset to learn the distribution of sensitive latents. We synthetically generate
sensitive latents by sampling from the distribution. Finally, we get the sanitized dataset
by combining non-sensitive and synthetically generated sensitive latents.

the dataset, we list the following use-cases that also motivate our experiments
in Section 4.
UC1: A crowd-sourcing company can build a facial recognition model for medi-
cal diagnostics [36, 61, 10] from the sanitized dataset. This model will be deployed
on cloud, therefore the prediction will be performed over sanitized images.
UC2: A group of researchers can develop a model of capturing keypoints from
face images. Unlike UC1, they want the model to predict over unsanitized images.
Hence sanitized images should be photo-realistic to prevent a domain mismatch.
UC3: The hospital wants to share a sanitized dataset with a company to build an
ML model to predict “age”. Similar to UC2, the hospital would perform predic-
tion on unsanitized images hence the sanitized dataset should be photo-realistic.
However, unlike UC2, prediction attribute “age” is also a sensitive attribute
requiring privacy.

Since there can be many such use-cases, it is impractical to assume that the
hospital knows all use-cases in advance before releasing the dataset. Therefore,
the goal of Sanitizer is to transform the dataset by anonymizing sensitive in-
formation without the knowledge of the downstream use-cases. In addition to
learning ML models, being task agnostic allows sanitizer to do inference queries
on sensitive datasets such as counting the number of faces with “smiling” at-
tribute, or counting X-ray images with “lung cancer”. Trivially cropping the
sensitive parts from the image is not feasible because the pixels that reveal the
sensitive information are present everywhere in a face image. Furthermore, un-
like face images, identifying sensitive information visually may not be possible.
For instance, several recent works [29, 30, 5, 4, 73] show ways in which sensitive
demographics can be leaked leak from biomedical images using ML models.

Many works in sanitizing data have a different scope from the one considered
here. Typically identity [17] of individuals is treated as sensitive information.
While this notion protects privacy, we only focus on a specific set of sensi-
tive attributes. For example - in UC1, it is acceptable to share face images as



Decouple-and-Sample 3

long as “ethnicity” and “age” can be protected. In works that do consider spe-
cific sensitive attributes, their notion of utility is typically task-dependent as in
[46, 44, 33]. Although sanitizer can be used for such problems due to its task-
agnostic approach, not exploiting the knowledge about downstream tasks comes
at the expense of a relatively lower utility. Existing works specifically in sanitiza-
tion [23, 31] protect sensitive information by censoring it. Unlike censoring based
approaches, our main idea is to share synthetically generated sensitive informa-
tion. While the data receiver can not infer the original sensitive information, our
approach allows them to learn from anonymized sensitive information.

To design sanitizer, we posit that sensitive data can be anonymized by re-
placing sensitive information with a synthetic one. However, for images, this
synthetic replacement is not trivial to perform since the sensitive information is
not localized in a region and sensitive attributes and non-sensitive attributes can
share the same parts of data (ex. - race and gender). Therefore, we introduce a
latent model that exclusively isolates sensitive information into a smaller sub-
space. We learn the latent model using publicly available datasets and then use
the model to isolate the sensitive information from the sensitive dataset. Next,
we learn a generative model of the isolated sensitive information and synthesize
sensitive latents by sampling from the model. We merge these samples with the
non-sensitive latent representation to obtain sanitized data. We visualize the
whole pipeline in Figure 1.

Contributions: First, we introduce a joint optimization framework for iso-
lating sensitive information from data. Second, we design a mechanism for anonymiz-
ing sensitive image datasets. Third, we empirically demonstrate various applica-
tions of sanitization to show the benefit of sanitizer over existing approaches,
Fourth, we release a benchmark and dataset of sanitized representations obtained
from baselines for rigorous attacks and defense evaluation in the future.

2 Problem Formulation

Terminology: Consider a data holder A with access to a dataset DA = {X,Y}
with N data points. Let x ∈ X and y ∈ Y represents a pair of sample and set
of labels (x,y) describing distinct attributes of x. For instance, if x is a face
image of an individual, the set y may include the age, gender, and ethnicity of
the individual. For A, certain attributes in the label set y represent sensitive
information (called yS) while others are non-sensitive (yNS) such that y =
{yS∪yNS}. These sensitive attributes areA’s secrets that preventA from sharing
DA. While A can release (x,yNS), an attacker can guess yS using x by exploiting
correlation between x and yS . Hence, to release DA for arbitrary downstream
tasks, sanitization techniques transform every sample in DA from (x,y) to (x̃, ỹ)

resulting in sanitized dataset D̃A that can be shared with untrusted parties. The
key challenge is anonymizing sensitive information while maximally retaining the
utility. We assume that an auxiliary dataset Daux from the same distribution as
DA is publicly accessible to all parties.
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Sanitizer Overview: We perform sanitization in a two stage process: i)
Global decoupling and ii) Local sampling. Global decoupling stage learns a latent
model (parameterized by θ, ϕ) of data using Daux for decoupling raw data (x)
into sensitive (zS) and non-sensitive (zNS) latents. We assume that the auxiliary
dataset and the sensitive dataset come from the same distribution p(x,y). This
stage does not require access to A’s dataset (DA) and hence can be performed
independently making this stage global since the same model can be utilized by
different sensitive-data owners. We discuss the design of the global decoupler in
Section 3.1. Local sampling stage learns a generative model (f(ψ, ·)) of sensitive
latents in DA. We obtain the sensitive latents in DA using the global decoupler
from the first stage. Finally, we obtain the sanitized dataset by merging every
non-sensitive latent with independently sampled sensitive-latent. We discuss the
local sampling stage in Section 3.2.

Threat Model: We assume that the untrusted data-receiver can act as an
attacker by utilizing auxiliary datasetDaux, parameters of global decoupler (θ, ϕ)
and local sampler (f(ψ, ·)) as a side information. The side information allows the
attacker to generate a mapping between Daux and its sanitized version D̃aux.
The attacker’s goal is to recover A’s sensitive attribute yS from the sanitized
dataset D̃A. Since Daux and DA come from the same distribution, the attacker
can model the problem of inferring the sensitive attributes as an ML problem.
By learning a mapping between sanitized samples (x̃ ∈ X̃aux, ỹ ∈ Ỹaux) and
sensitive attributes (yS ∈ Yaux

S ) using Daux, the attacker can attempt inferring

sensitive attributes from D̃A. This threat model is different from differential
privacy [17] which seeks to protect identifiability.

Defining information leakage: Information leakage for sanitization has
been typically defined statistically [15, 37, 57]; however, estimating these statis-
tics requires estimation of probability distributions making it intractable for non-
linear queries over higher-dimensional datasets (images). Alternatively, leakage
can be quantified by simulating an attacker’s performance by making some as-
sumptions. The goal of sanitization is to minimize the distinguishability of the
original sensitive attributes yS from other possible values (domain(yS)) sensi-
tive attributes can take. For example, if “ethnicity” is a sensitive attribute then,
informally, leakage is the likelihood of the attacker’s correct estimate about the
race of the sanitized face image. Formally, this can be modeled by a change
in belief over the sensitive attribute before (prior p(yS)) and after (posterior
p(yS |x̃)) observing the sanitized sample (x̃, ỹ). A similar notion is formalized in

the pufferfish framework [26] where the quantity
p(ysj

|x̃,θ)
p(ysi |x̃,θ)

/
p(ysj )

p(ysi )
for all possi-

ble sets of secrets (ysi , ysj ) and for all possible priors on data θ is bounded by
eϵ where ϵ is a privacy parameter. Note that satisfying this definition requires
modeling various possible data evolution and attacker scenarios. We focus only
on a single type of attacker described in the threat model and therefore use
a data-driven approach to quantify leakage. This data-driven adversary learns
the joint distribution p(X̃,YS) using the side information. Finally, the leakage
of the sanitized datasets is evaluated as the difference between the accuracy of
the adversary to correctly estimate the sensitive information p(yS |x̃, θ) and the
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estimation of an uninformed adversary p(yS |θ). We note that existing works in
sanitization [31, 23] use the same criterion to evaluate information leakage.

Desiderata: In both stages of sanitizer, we have two desirable properties cor-
responding to privacy and utility; in total, we get four desirable properties that
we elaborate on now. The first stage is global decoupling where we learn to sepa-
rate a sample x into sensitive and non-sensitive latent zS and zNS respectively.
Therefore, the desirable property P1 requires (zS , zNS) to be independent. In
other words, P1 requires non-sensitive latent zNS does not leak information
about zS . This property can be achieved trivially by sharing all zeroes therefore
to enforce utility, we desire property P2 that requires p(x|zS , zNS) to be maxi-
mum. Property P2 requires (zS , zNS) to be useful enough for describing the orig-
inal sample x. This completes the privacy-utility desiderata for the global decou-
pling stage. The local sampling stage focuses only on transforming the sensitive
latent, therefore, both privacy and utility desideratum only focus on zNS . For
the privacy desiderata P3 in this stage, we require that sanitized sensitive latents
z̃S and z̃′S obtained from x,x′ ∈ X respectively are indistinguishable from each
other. P3 enforces that identifying original data sample based only on the sen-
sitive information should not be possible, i.e. p(z̃S ∼ fψ(zS)) = p(z̃S ∼ fψ(z

′
S)).

For the example of a face image with sensitive ”ethnicity”, P3 requires syn-
thetically generated z̃S should be independent of the original ”ethnicity” of the
sample. We can trivially solve P3 by sharing only zeroes, therefore to ensure
utility, we introduce property P4 that requires the distribution of original sen-
sitive and synthetic sensitive latents to be the same. Specifically, the property
implies p(zS) = p(z̃S). Next, we model these desiderata to design our technique.

3 Method

Aligner

DecoderEncoder

Adversary

Fig. 2: Architecture for the proposed global-
decoupler. The encoder samples z ∼ qϕ(z|x)) parti-
tioned into (zS , zNS). Aligner encourages zS to carry
information relevant to yS . We use adversary to re-
duce information between zNS and yS . Finally, we
minimize distance correlation between zS and zNS .

We sanitize a sensitive dataset
in a two-stage process. The
first stage is global decoupling
where we learn a latent model
of the data distribution using
auxiliary dataset Daux. Our
goal is to learn a latent model
of data that maximally decor-
relates zS and zNS for every
sample x (P1) and preserves
all details of the sample in z
(P2). We achieve this goal by
designing global-decoupler in
Section 3.1. The second stage
is local sampling where we
learn the distribution of the
sensitive portion ZS of our sensitive dataset DA. Our goal is to sample from
the distribution Z̃S such that estimating original sensitive attribute YS is not
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feasible (P3) and the distribution of p(ZS) and p(Z̃S) is similar (P4). We achieve
this goal by designing DP-sampling mechanism in Section 3.2. We summarize
the overall pipeline in Figure 1.

3.1 Global decoupling for isolating sensitive information

Our goal is to design a latent model of the data distribution p(x,y) such that
x can be decoupled into latents zS and zNS . We call this latent model as global
decoupler. We design it by integrating four components - i) generative model, ii)
aligner, iii) decorrelator and iv) adversarial training. We describe the architec-
ture of global-decoupler in Figure 2. Generative models ( [18, 28, 52]) are being
increasingly used to perform such latent modeling . Specifically, we build upon
VAE [28] since they provide the flexibility of modeling data with constraints on
the probability density of the latent space p(z). Given a dataset X, VAEs [28,
53] model the distribution of samples p(x),∀x ∈ X by learning parameters ϕ of
approximate posterior qϕ(z|x) and θ for the likelihood pθ(x|z). β-VAE [21] im-
proves the disentanglement between the components of z sampled from qϕ(z|x)
by regularizing the KL divergence between the prior p(z) and approximate pos-
terior qϕ(z|x). To improve disentanglement between every zi, existing works such
as Factor-VAE[27] and TCVAE[9] regularize the total correlation of q(z) mea-
sured by KL(q(z)||

∏m
i=1 q(zi)) where KL refers to the KL divergence and m is

the total number of components of z. However, high degree of disentanglement
between every component can hinder the reconstruction quality [21]. Therefore,
instead of disentangling every pair of (zi, zj), we propose a new regularized
global-decoupler to focus on the disentanglement of (zS , zNS) instead.

A key characteristic of VAE is that the decoupled latent representations are
unordered. Hence, there is no explicit control on which dimensions encode what
semantic attributes. This is a challenge for our work that ideally requires that
representations encoding the sensitive attributes be contiguous for decoupling.
Intuitively, we decouple the vector z ∼ qϕ(z|x) into zS and zNS with addi-
tional regularization constraints that encourage independence between zS and
zNS . Formally, we reformulate the original VAE objective with an aligner gu(·)
parameterized by u to estimate yS from zS , the intuition is that the aligner ’s
gradient flow will encourage qϕ(·) to maximize relevant information between
yS and zS . Since all latents are known to be correlated with each other to a
certain extent, we need to prevent leakage of yS in zNS ∼ q(zNS |x). Unlike
FactorVAE [27] or TCVAE [9] that regularize the total correlation disentangling
each dimension, we propose to regularize correlation between sensitive(q(zS))
and non-sesntive(q(zNS)) latents. We re-formulate the objective for qϕ(·) to
minimize distance correlation [63] between q(zS) and q(zNS). To motivate the
use of distance correlation, we note that directly estimating probability den-
sity is intractable for high dimensional representations, various measures such as
HSIC [19], MMD [6] and distance correlation [67] are used. Distance correlation
between n samples of two vectors x and y can be obtained as following:

dcorr(x,y) =
dcov(x,y)√

dcov(x,x) ∗ dcov(y,y)
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where dcov() is the sample distance covariance analogue of covariance defined as
dcov(x,y) = 1

n2

∑n
j=1

∑n
k=1 x̂j,kŷj,k. Here x̂ and ŷ are obtained by computing

double centered euclidean distance matrices of x and y. In particular, we use dis-
tance correlation (dcorr) because it can measure nonlinear correlations between
samples from random variables of arbitrary dimensions (zS and zNS can have
different dimensionality), allows for efficient gradient computation and does not
require any kernel selection or parameter tuning, unlike HSIC and MMD. We
do note that dcorr is measured as a sample statistic and hence larger sample
size is desirable for the unbiased sample statistic to represent the population
notion of the distance correlation. To prevent information leakage of yS from
zS , we use a proxy attacker network hv(·) that is trained adversarially to learn
parameters v which constrains zNS to not carry information relevant to yS . The
final objective can be summarized as:

L1(θ, ϕ, β) = Eqϕ(z|x)[logpθ(x|z)]− βDKL(qϕ(z|x)||p(z)) (1)

L2(ϕ, u) = ℓ1(gu(zi ∼ qϕ(x)|i≤k),yS) (2)

L3(ϕ) = dcorr(zi ∼ qϕ(x)|i≤k, zi ∼ qϕ(x)|k<i≤m) (3)

L4(ϕ, v) = ℓ2(hv(zi ∼ qϕ(x)|k<i≤m),yS) (4)

Here k and m are the dimensionalities of vectors zS and z, respectively. L1 is
the β-VAE [21] formulation of VAE’s evidence lower bound where the parame-
ter β encourages disentanglement between every component of z. Increasing β
favors the property P1 (by encouraging independence) but hurts the property
P2 (by reducing reconstruction). L2 is the objective for training the parameters
of the aligner model. However, L1 does not prevent zNS from leaking infor-
mation about yS . Hence, we optimize L4 adversarially to prevent information
leakage. Finally, we minimize distance correlation between zS and zNS to pre-
vent yNS from encoding information about zS and encourage decoupling zS and
zNS . Jointly optimizing L1, L2, L3 and L4 helps achieve properties P1 and P2.
We validate each component’s benefit via ablation studies in Section 5.

ℓ1, ℓ2 can be cross-entropy or ℓp-norm (often p = 2) depending upon yS . The
parameters ϕ, θ, u, v are trained jointly with following objective:

min
θ,ϕ,u

α1L1(θ, ϕ, β) + α2L2(ϕ, u) + α3L3(ϕ)− α4 min
v
L4(ϕ, v) (5)

where β, α1, α2, α3, α4 are scalar hyper-parameters that yield a trade-off between
the privacy (property P1) and utility (property P2). We reiterate that this stage
only accesses auxiliary dataset Daux for the training and evaluation. Hence the
parameters of the global-decoupler do not leak any sensitive information.

3.2 Local sampling for synthesizing sensitive latents

In this stage, we design the DP-sampling mechanism to sanitize every sample
in the sensitive dataset. A sanitized sample (x̃, ỹ) is obtained from (x, y) ∈ DA
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by extracting the sensitive and non-sensitive latents (zS , zNS) from the global-
decoupler and replacing the sensitive latent with a synthetic one (z̃S). To satisfy
the privacy desiderata of our second stage P3, z̃S is sampled independently of zS .
In contrast to prior works [22, 32, 34] that focus on censoring sensitive attributes,
a key benefit of our mechanism is in anonymizing the sensitive information for
individual data points while enabling downstream tasks that may benefit from
joint distribution p(zS ,yS). Motivated by the use-case UC3, we demonstrate in
Section 4 under experiment E5 on how to train an ML model on a sanitized
dataset that predicts the sensitive attributes of unsanitized images. To moti-
vate our DP-sampling mechanism, we first discuss a trivial suppression-based
mechanism and a naive DP mechanism.

a) Suppression: The key is to explicitly remove sensitive information by
replacing zS with a zero vector (i.e. z̃S is a zero vector). While this approach
censors the sensitive latent, it is not possible to learn the distribution p(x,yS)
under this mechanism resulting in a violation of our desired property P4. There-
fore, we sanitize the sensitive information zS using DP mechanisms.

Fig. 3: Latent space visualiza-
tion of ZS by plotting its two
components with the color of their
sensitive attribute. We keep sensi-
tive attributes as “race” and “gen-
der” for the plots in the first
and second row respectively using
UTKFace [76].

b) DP-Obfuscation: The key idea is to
add privacy calibrated noise to zS . This cal-
ibration can be formalized using DP where a
mechanism M is ϵ-differentially private [17]
if for every neighboring datasets X,X ′ and
every output set S ⊂ Range(M), the fol-
lowing inequality holds: P(M(X) ∈ S) ≤
eϵP(M(X ′) ∈ S). Here, we use the laplace
mechanism [15] that adds noise sampled from
a laplace distribution with variance as the ℓ1-
sensitivity of the query q. In the context of our
work, the ℓ1 sensitivity is defined as an iden-
tity function. Hence, to bound the sensitivity,
we fix a pre-defined range [a, b] ∈ R in which
zS can lie, giving us sensitivity as ||a − b||1.
Any data sample x that results in zS /∈ [a, b] is
truncated to the closest vector in the range. To
summarize, the mechanism can be described
as f(zS) = zS+∆ where ∆ is sampled from a

laplace distribution, i.e. ∆ ∼ Lap(0, ||a−b||1ϵ ).
While this approach allows us to have a trade-off between the privacy property
P3 and utility property P4 by controlling ϵ, we get a sub-optimal trade-off due to
two reasons: i) truncation step discards the values outside the range [a, b] ii) the
noise is added independently to every component of zS therefore throwing away
the structure present in the distribution of zS as shown in Figure 3. This moti-
vates developing a more utility conducive mechanism that can utilize structure
in the latent space of zS .

c) DP-Sampling: Our goal is to utilize the structure present in the distri-
bution of sensitive latents p(zS) as shown in Figure 3. We can observe the points
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to be clustered around their respective sensitive attribute. Therefore, instead
of adding uniform and independent noise, we propose to learn the distribution
of zS and sample from it. Since the data is low dimensional, learning a Gaus-
sian mixture model [39] suffices to model the distribution. However, sampling
from the mixture model could leak sensitive information since our threat model
considers the parameters of the sampling model are accessible to the attacker.
Therefore, we learn the covariance matrix of ZS and perturb it in a differentially
private manner before sampling from it. If the learned model of the data satisfies
DP then due to the post-processing invariance property [17] of DP, the samples
obtained from this model would also satisfy DP. We learn the GMM model (pa-
rameterized by ψ) using the sensitive dataset (ZS ,YS). Such a sampling scheme
also provides the benefit of sampling labeled pairs (Z̃S , ỸS) which is required for
performing supervised learning. We utilize RONGauss mechanism [8] to learn
a differentially private covariance matrix of the sensitive latent dataset ZS . For
each zS ∈ ZS , the mechanism performs random orthonormal projection to a
lower-dimensional. We learn the mean and covariance for each category in a
differentially private manner. Low dimensional projection improves utility by
reducing the perturbation required for the same amount of privacy. Finally, we
obtain synthetic sample z̃S by sampling from the Gaussian model and reproject-
ing it back to the original dimensionality of zS . Formally, this can be written as
z̃S , ỹS ∼ fψ(z̃S , ỹS), here ψ is learned using original sensitive dataset ZS . We
note that, unlike standard GMM, here we use only a single mode from the GMM
for every unique class. This is a more accurate description of the data since every
sample zS is uniquely associated with a single sensitive attribute yS . While the
RONGauss mechanism learns and samples the whole data space for providing
a uniform privacy guarantee, we only sample sensitive latents zS instead of z
since the goal is to protect sensitive attributes and not uniform privacy. We note
that this DP-sampling does not give a uniform privacy guarantee on Z̃S since
information about sensitive attributes can leak from ZNS too. We developed
global-decoupler to address this specific issue. Our proposed sampling scheme
can be extended to synthetic data release [64] by treating every component in z
as sensitive (i.e. k = m) and presents interesting future work.

Remark: In this section, we presented our two-stage sanitization process.
The main advantage of separating sanitizer as a two-stage process is that devel-
oping global decoupling is a one-time procedure and can be performed by a third
party that distributes the trained model to different data owners A’s which can
apply sanitizing mechanisms individually. This modular process is an efficient
way to release sensitive datasets if there are multiple A’s involved. Furthermore,
we believe that future works can improve either of the two stages independently.

4 Experiments

In this Section, we compare sanitizer with different baselines under multiple
experimental setups. Each experimental setup is focused on simulating a unique
use case. For all experiments, we use CelebA [35], UTKFace [76] and Fairface [25].
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Fig. 4: E1: Privacy-utility trade-off evaluation on different datasets: We plot
sensitive information leakage as a proxy for privacy and one of the task attributes
as a measure of utility for the sanitized dataset. Each point in this plot corresponds
to training a sanitizer model and then evaluating its performance by training the
adversary model and utility model on the sanitized dataset. Sanitizer performs better
than all existing methods on all three datasets. Solid line represents the pareto-optimal
curve for different methods. The dotted lines are extrapolation towards lowest and
highest utility and leakage that is achievable trivially.

We split the dataset into Daux for the first stage and DA for the second stage.
First, we train all techniques using Daux and obtain sanitized dataset. Then we
perform leakage assessment by training an adversary to learn a mapping between
sanitized dataset and sensitive information. We discuss the rationale for such an
adversary in Section 2. Finally, we evaluate the utility of the sanitized data based
upon the experimental setup. Since our goal is task-agnostic data release, the
utility attribute is only used after the sanitized dataset is released.

4.1 Baselines and Evaluation

Baselines: We compare against state-of-the-art visual sanitization techniques
GAP [22] and TIPRDC [32], and introduce new baselines for exhaustive compar-
ison. GAP [22]: is trained adversarially to maximize loss for a proxy adversary
trying to infer sensitive attributes on the sanitized images. We replace the archi-
tecture proposed in the original paper with CNN architecture used in sanitizer to
improve their results for higher dimensional image datasets. ii) Learned Noise:
is built upon the TCNND architecture described in GAP [22] where a small
dimensional noise is fed to a decoder that sanitizes the image by adding the
noise vector. iii) TIPRDC [32]: is used as a baseline without any modification.
iv) Noise: baseline sanitizes data by adding Gaussian noise in the pixel space;
which is equivalent to the DP baseline used in TIPRDC [31].

Evaluation Metrics: We evaluate different techniques by comparing the
privacy-utility trade-off. Here the utility is measured by the data receiver’s test
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Method Fairface-R ↑ CelebA ↑ UTKFace-R ↑ UTKFace-G ↑
TIPRDC [32] 0.441 0.465 0.453 0.443

GAP [22] 0.447 0.442 0.450 0.434

Noise 0.438 0.422 0.435 0.431

Adversarial Noise [22]* 0.432 0.422 0.420 0.439

Ours 0.476 0.483 0.476 0.487

Table 1: E1: Privacy-Utility comparison: We report area under the curve (higher
is better) to compare the privacy-utility trade-offs between sanitizer and baselines.
UTKFace-R and UTKFace-G refer to the setup where race and gender is the sensitive
attribute. Our method outperforms all baselines in all experiments.

accuracy on the downstream task using sanitized dataset. For measuring privacy loss,
we use the technique described in Section 2. Specifically, we quantify informa-
tion leakage from the dataset by comparing the performance of an adversary
inferring sensitive information from the sanitized dataset. We simulate a strong
adversary that dynamically adapts to a sanitization scheme. This adaptation
is modeled by a pretrained adversary model that is finetuned on the sanitized
dataset and then evaluated on the sanitized test set. This privacy loss acts as
a lower bound on the worst-case privacy loss. Since inferring sensitive attribute
is similar to learn an optimal classifier, the difficulty in giving upper bound on
the privacy loss is similar to upper bounding generalization error in ML models.
Hence, our evaluation uses a similar approach of using test set accuracy. Inspired
by [54] we quantify privacy-utility trade-offs curves by different techniques using
area under the pareto-optimal curve (AuC). Higher AuC value denotes a better
privacy-utility trade-off. Fore more experimental details and results, we refer the
reader to supplementary material.

4.2 Experimental Setup and Results

Experiment E1 Multi-category sensitive and Binary utility : We test the use-
case UC1 by evaluating the privacy-utility trade-off on a task where sensitive
information is multi-category “race” (fine-grained) and downstream utility task
is “gender” (coarse). Intuitively, we should get a good trade-off from all tech-
niques that can share coarse-grained data while obfuscating fine-grained sensitive
detail.

Experiment E2 Binary sensitive and Multi-category utility : We use the
setup as E1 but use “race” (coarse) as sensitive attribute and “gender” (fine-
grained) as utility attribute. Intuitively, we expect degradation in an overall
trade-off in comparison to E1. We perform the experiments on UTKFace [76]
dataset and call this configuration UTKFace-G.

Experiment E3 Single sensitive and Multiple utility : We use the same setup
as E1 but evaluate multiple utility tasks. We use CelebA [35] with sensitive at-
tribute as “gender” and utility as “mouth open”, “smiling” and “high cheek-
bone”.

Experiment E4 Learning transferable models: We evaluate the use-case
UC2 by training a ML model on sanitized images and evaluate it on real images
(non-sanitized). This setup is similar to Classification Accuracy Score(CAS) in
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UTKFace CelebA

Utility Leakage Utility Leakage

Uniform Noise 0.667 0.501 0.576 0.712

GAP [22] 0.615 0.499 0.723 0.686

Adversarial Noise [22] 0.801 0.695 0.746 0.663

Ours 0.86 0.474 0.9022 0.6955

Table 2: E4, Classification Accuracy
Score (CAS) evaluation: We train a
classifier on privatized data samples and
evaluate them on non-privatized samples.

UTKFace CelebA

Utility Leakage Utility Leakage

Suppression 0.208 0.498 0.7042 0.7177

Obfuscation 0.208 0.491 0.62 0.7129

DP-Sampling 0.521 0.474 0.817 0.6955

Table 3: E5, CAS for learning a
model of sensitive attribute. We ex-
periment with different mechanisms in the
local sampling stage.
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Fig. 5: Comparing β-VAE and
global-decoupler by plotting the
privacy-utility trade-off.

Aligner Dcorr Adv Leakage ↓ Utility ↑
✗ ✗ 0.6259 0.5474

✗ 0.6238 0.5394

✗ ✗ 0.6816 0.5137

✗ 0.6318 0.5335

✗ 0.6752 0.5386

0.6132 0.5698

Table 4: Ablation on global-decoupler by cut-
ting its different components. ✓ and ✗ denotes the
presence and absence of the respective components.

the generative modeling community [49]. Note that it is not possible to include
TIPRDC baseline since their output is constrained to embedding space.

Experiment E5 Learn sensitive attribute distribution: We test the use-case
UC3 of learning a ML model over the distribution p(X,YS) while protect-
ing individual sensitive information. We train the data-receiver’s ML model on
(X̃, ỸS) and the attacker on (X̃,YS). We evaluate data-receiver on (X,YS) and
the attacker on (X̃,YS). This setup is not possible for our baselines since they
censor sensitive information.

Results: For E1 and E2, we plot the privacy-utility trade-off for all tech-
niques in Figure 4 and Table 1. Sanitizer obtains a better privacy-utility trade-off
consistently. For E3, we compare trade-off by evaluating on multiple downstream
tasks and observe sanitizer’s consistent better performance. We posit that the
consistent improvement is due to explicit modeling of different privacy-utility
constraints in global-decoupler. We compare the results for E4 in Table 2. Un-
like previous experiments, here sanitizer achieves substantial gap in comparison
to other techniques. We believe that synthetically replacing sensitive informa-
tion allows sanitizer to produce realistic sanitized samples. While the leakage is
slightly larger on CelebA dataset, the relative improvement in utility is much
larger. For E5, we compare three mechanisms proposed in Section 3.2 in Table 3.
Under the same privacy budget, the proposed DP-Sampling technique achieves
much better performance in both utility and leakage. Finally, we emphasize that
E5 is not possible for baselines and is achieved only by the design of sanitizer
and results for E4 and E5 validate that using sanitizer significantly improves
performance for use-cases UC2 and UC3 (Section 1).
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5 Discussion

Here, we analyze the design of global-decoupler by performing ablation study
and discuss architectural limitations associated with it.

i) Ablation study for global-decoupler: We perform ablation on each
of the components described in the architecture in Figure 2. We measure the
sensitive information leakage and utility by comparing performance with and
without each component in the objective given in Section 3. We can interpret
this ablation study as keeping αi = 0 for the i’th component during the global
decoupling stage. We enumerate the results in Table 4. We note that the presence
of all components provides the best trade-off between the leakage and utility.
The global-decoupler is built upon β-VAE; therefore, we compare the trade-off
between the two. We utilize latent space interpolation to randomize the sensitive
attribute. First, we train a β-VAE model and obtain the mean representation of
the sensitive latent by zSi

= 1
ni

∑
j∈Si

zj ∼ qϕ(z|xj) where Si refers to a unique
sensitive attribute category with ni number of samples in the dataset. Finally, to
randomize sensitive information in a given sample x, we transform the original
latent z = qϕ(x) to obtain a sanitized latent z̃ = z − zSi

+ zSj
. For performing

sensitive attribute randomization, i is the sensitive category of z, and j is chosen
uniformly from the set of all categories including i. Finally, we obtain x̃ = pθ(z̃)
as a sanitized transformation of x. We evaluate this technique on UTKFace
dataset [76] with same experimental setup as E2. We model the attacker same
way as explained in Section 4 and show trade-off curves in Figure 5.

ii) Architectural Limitations: The key goal of this work is to introduce
a systematic framework and mechanisms for sanitization that could be useful
for as many downstream tasks as possible under the privacy-utility trade-off.
Here, we note two key limitations of the presented results, emerging from the
generative modeling framework: i) input sample size - This limitation stems
from the need for sufficient data points to learn a latent model of the data that
generalizes between Daux and DA. Designing latent models that can capture the
distribution with a minimum number of samples is an active area of research in
few-shot learning which will improve the impact of our results but is orthogonal
to the scope of our work. ii) output sample quality - This limitation can be
improved using hierarchical latent variable models [66, 51] and we consider this as
part of the future work. We believe that improvement in representation capacity
can improve trade-offs even further for sanitizer.

6 Related Work

First, we discuss prior work in privacy-preserving data release for task-dependent
and task-independent setups. Next, we draw parallels to techniques in fairness
and conditional generation of images.

Task-dependent data release techniques transform data that is conducive
to a particular task. Several techniques use central DP [17] as a formal privacy
definition to answer aggregate queries. The queries can be summary statistics
such as mean, median [16, 17] or learning a ML model [1], sharing gradients
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in federated learning [70]. Recent work in adversarial learning has resulted in
techniques for task-specific latent representation [34, 71, 20, 55, 33, 46, 45, 56, 40,
60]. While we share the same goal of protecting sensitive information, our work
differs in its task-independent formulation.

Task-independent techniques share data in a non-interactive manner. Sim-
ilar to central DP, several works consider identification as sensitive information,
however without a trusted curator. This modified central DP setup is referred to
as local-DP [48]. While variants of local-DP for attribute privacy exist, their focus
is primarily on protecting dataset statistics [75], different rows of a dataset [2] or
task-dependent [12, 43]. Local-DP based generative models [24, 72, 65, 8, 77] learn
data distribution privately to release samples. While we focus on specific sensi-
tive information, we build upon the sampling strategy used in RonGauss [8] to
sample sensitive data. TIPRDC [31] and GAP [23] are task-agnostic techniques
that protect sensitive information by censoring it. While we solve a similar prob-
lem, our sampling-based approach allows performing certain tasks (eg. E5 in
Section 4) that are not possible with the censoring-based approach.

Fairness techniques aim to make predictive models unbiased with respect
to protected groups. Among different approaches [7] used for fairness, works in
censoring information [74, 69, 3, 75] related to protected groups is the closest ap-
proach to our work. However, we differ significantly from the censoring approach
because we release anonymized sensitive information instead of censoring it. Fur-
thermore, the goal of the sanitization problem is to maximally retain original
data insofar that all biases would exist after sanitization. While the objective
and evaluation for the fairness community are different, we note that Sarhan et
al. [58] use a similar objective as sanitizer by utilizing variational inference with
orthogonality constraint for preventing leakage. However, they do not provide
anonymization since two correlated vectors can be orthogonal.

Conditional generation which has a similar problem setup to sanitiza-
tion [59, 11]. While this has led to some relevant work in privacy, the techniques
typically handcraft the objective to be task-specific for identity [13, 42, 41, 47,
50]. In contrast, sanitizer is agnostic of target utility and only depends upon
sensitive attributes. Some recent works utilize uncertainty-based metrics [68,
38] to fuse all sensitive attributes in latent space using adversarial training but
hence, unlike sanitizer, generate highly unrealistic images (hence not being task
agnostic) due to high uncertainty.

7 Conclusion

In this work, we presented sanitizer: a framework for minimizing sensitive in-
formation leakage to facilitate task-agnostic data release. We achieve this goal
through a two-stage process - i) global decoupling for learning a latent model of
data and ii) local sampling for securely synthesizing sensitive information. While
our approach improves the privacy-utility trade-off, future work includes tech-
nique that allow privacy guarantees for the non-sensitive latent.
Acknowledgements: This work was supported by NSF award number 1729931.
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63. Székely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence
by correlation of distances. The annals of statistics (2007)

64. Tao, Y., McKenna, R., Hay, M., Machanavajjhala, A., Miklau, G.: Benchmark-
ing differentially private synthetic data generation algorithms. arXiv preprint
arXiv:2112.09238 (2021)

65. Torkzadehmahani, R., Kairouz, P., Paten, B.: Dp-cgan: Differentially private syn-
thetic data and label generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019)

66. Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. Advances
in Neural Information Processing Systems 33, 19667–19679 (2020)

67. Vepakomma, P., Singh, A., Zhang, E., Gupta, O., Raskar, R.: Nopeek-infer: Pre-
venting face reconstruction attacks in distributed inference after on-premise train-
ing. In: 2021 16th IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2021). pp. 1–8. IEEE (2021)

68. Wang, H.P., Orekondy, T., Fritz, M.: Infoscrub: Towards attribute privacy by tar-
geted obfuscation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3281–3289 (2021)

69. Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are
not enough: Estimating and mitigating gender bias in deep image representations.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 5310–5319 (2019)

70. Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek, T.Q., Poor,
H.V.: Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security 15, 3454–3469
(2020)

71. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition
via adversarial training: A pilot study. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 606–624 (2018)

72. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739 (2018)



Decouple-and-Sample 19

73. Yi, P.H., Wei, J., Kim, T.K., Shin, J., Sair, H.I., Hui, F.K., Hager, G.D., Lin, C.T.:
Radiology “forensics”: determination of age and sex from chest radiographs using
deep learning. Emergency Radiology 28(5), 949–954 (2021)

74. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: International conference on machine learning. pp. 325–333. PMLR (2013)

75. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adver-
sarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society. pp. 335–340 (2018)

76. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversar-
ial autoencoder. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5810–5818 (2017)

77. Zhang, Z., Wang, T., Honorio, J., Li, N., Backes, M., He, S., Chen, J., Zhang, Y.:
Privsyn: Differentially private data synthesis (2021)


