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Ethics Statement

This work proposed a novel method for certifying the individual fairness of
models operating on high-dimensional data. Progress on this challenging problem
could enable fairness auditing for high-risk computer vision applications, such
as facial recognition. Recent work [74] argues that facial recognition algorithms
can have undesirable, socially toxic, and divisive consequences. For instance, it
was demonstrated that they may perpetuate and reinforce racial and gender
bias [7,13]. Therefore, they must be applied carefully, considering the social
dynamics and context in which they occur. Accordingly, following prior work [13],
we refrained from using unstable social constructs, such as gender, or normatively
judgemental attributes, such as “attractive” or “chubby”, in our research.

One way to limit the potential harms of facial analysis technologies is to
control and regulate their usage. Our work aims to help fill this gap by presenting
a methodology for enforcing individual fairness via certification. As highlighted
in our paper, we acknowledge that the quality of the generative models is a
significant bottleneck of our certificates. For example, they may encode various
biases present in the data. Another possible source of bias is the human perception
and social constructs which can potentially impact the validity of our similarity
specifications. Nevertheless, we believe that we can still leverage generative
models and their latent space to construct more meaningful individual fairness
specifications on high-dimensional data than those allowed by prior work. More
broadly, developing rigorous, standardized processes for auditing and certifying
facial recognition models (including human inspection, e.g., by considering the
reconstructed images in App. G) should complement the contributions presented
in our work. Finally, future quality advancements in generative modelling and
normalizing flows can directly translate into stronger guarantees of our method,
enabling certified fair application of models using rich, high-dimensional data.

A Proof of Thm. 1

This section provides a formal proof of the following:

Theorem 1. Assume that we have a bijective generative model G = (E,D)
used to define the similarity set Sin (x) for a given input x. Let Alg. 1 perform
center smoothing [44] with confidence 1 − αcs and randomized smoothing [10]
with confidence 1− αrs. If Alg. 1 returns Certified for the input x, then the
end-to-end model M = Ĉ ◦ R̂ ◦E is individually fair for x with respect to Sin (x)
with probability at least 1− αcs − αrs.

To prove Thm. 1, we will make use of the following randomized and center
smoothing theorems proved in the literature:

Theorem 2 (Adapted from [10]). Let C : Rk → Y be a classifier and let
ε ∼ N (0, σ2

rsI). Let Ĉ be defined such that Ĉ (r) = argmaxc∈Y Pε(C(r+ ε) = c).
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Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

Pε(C(r + ε) = cA) ≥ pA ≥ pB ≥ max
cB 6=cA

Pε(C(r + ε) = cB). (7)

Then Ĉ(r + δ) = cA for all δ satisfying ‖δ‖2 < drs, where drs := σrs

2 (Φ−1(pA)−
Φ−1(pB)).

Here, Y denotes the set of class labels, Φ is the cumulative distribution function
(CDF) of the standard normal distribution N (0, 1), and Φ−1 is its inverse.

Theorem 3 (Adapted from [44]). Let g : Ra → Rk and ĝ : Ra → Rk is an
approximation of the smoothed version of g, which maps t ∈ Ra to the center
point ĝ (t) of a minimum enclosing ball containing at least half of the points
ri ∼ g(t+N (0, σ2

csI)), i ∈ {1, . . . ,m}. Then, for ε > 0, with probability at least
1− αcs we have,

∀t′ s.t. ‖t− t′‖2 ≤ ε, ‖ĝ(t)− ĝ(t′)‖2 ≤ dcs. (8)

We now proceed to proving Thm. 1:

Proof. Assume that Alg. 1 returns Certified for the input x. We need to show
that with probability at least 1− αcs − αrs

∀x′ ∈ Sin (x) :M (x) =M (x′) , (Eq. 6)

where M = Ĉ ◦ R̂ ◦E. By the definition of Sin (x) and E being the inverse of D,
we have for all x′ ∈ Sin (x), z′ = E(x′) ∈ S (x), hence it suffices to prove

∀z′ ∈ S (x) : Ĉ ◦ R̂ (zG) = Ĉ ◦ R̂ (z′) , (9)

where zG = E (x).
Next, recall the definition of gz (t) := R (z + t · a) and note that for z′ =

z + t′ · a, the center smoothing of

ĝz′ (t): samples from gz′
(
t+N (0, σ2

cs)
)
= R

(
z′ +

(
t+N (0, σ2

cs)
)
· a
)
;

ĝz (t+ t′): samples from gz
(
t+ t′ +N (0, σ2

cs)
)
= R

(
z +

(
t+ t′ +N (0, σ2

cs)
)
· a
)
.

Since z′ = z + t′ · a, the sampling distributions are the same, hence ĝz′ (t) =

ĝz (t+ t′), and in particular R̂ (z′) = ĝz′ (0) = ĝz (t
′).

Now, let us get back to Eq. (9). By definition of S (x), for all z′ ∈ S (x),
z′ = zG + t′ · a for some t′ ∈ [−ε, ε]. Moreover, rcs = R̂ (zG) = ĝzG

(0) and
R̂ (z′) = ĝzG

(t′). Thm. 3 tells us that with probability at least 1− αcs

∀t′ ∈ [−ε, ε] . ‖ĝzG
(0)− ĝzG

(t′) ‖2 ≤ dcs
⇐⇒ ∀z′ ∈ S (x) . ‖rcs − R̂ (z′) ‖2 ≤ dcs,

(10)



22 M. Peychev et al.

provided that the center smoothing computation of rcs does not abstain.
Finally, we consider the last component of the pipeline – the smoothed

classifier Ĉ. Provided that Ĉ does not abstain at the input rcs, Thm. 2 provides
us with a radius drs around rcs such that with probability at least 1− αrs

∀δ s.t. ‖δ‖2 < drs, Ĉ (rcs) = Ĉ (rcs + δ)

⇐⇒ ∀r′ s.t. ‖rcs − r′‖2 < drs, Ĉ (rcs) = Ĉ (r′) .
(11)

If Alg. 1 returns Certified, that is dcs < drs, combining Eq. (10) and (11) and
applying the union bound, we obtain that with probability at least 1− αcs − αrs
we have Ĉ (rcs) = Ĉ

(
R̂ (z′)

)
for all z′ ∈ S (x). That is,

∀z′ ∈ S (x) : Ĉ ◦ R̂ (zG) = Ĉ ◦ R̂ (z′) , (12)

as required by Eq. (9). The same proof technique can also be extended to the
multiple attribute vectors case. ut

B Datasets and Dataset Statistics

In this section we provide further information and statistics about the datasets
used in this work. CelebA1 [52] is restricted to non-commercial research and
education purposes and its authors [52] do not own the copyrights. FairFace [34] is
licensed under CC BY 4.0. Tab. 5 contains statistics about the sensitive attributes
and their corresponding attribute vectors. The lengths of the CelebA attribute
vectors are computed for 64×64 images.

In Tab. 6 we report the base accuracies of two standard classifiers trained
on the Smiling and Earrings CelebA tasks. The first classifier is a ResNet-18
network trained directly on the original images. The other one is a fully connected
network operating on their Glow latent representations, zG = E (x). We remark
that none of these classifiers involves representation learning. We report the
means and standard deviations, averaged over 5 runs with different random seeds,
on the validation and test sets, where the test set is the same subset on which
we report the results in the main paper. The base accuracies on the downstream
tasks used for the transfer learning experiments are reported in App. D.

In order to estimate the relative “unfairness” associated with each sensitive
attribute, in Tab. 7 we compute the empirical individual fairness of the two
classifiers. For each data point x, we sample 9 points from Sin (x) evenly (15
points for Pale+Young+Blond). If all samples are classified the same, we add the
original data point x to the empirical fairness counter. Note that this procedure
cannot certify that all points from Sin (x) are classified the same. Therefore,
these results come with no provable guarantees and serve as upper bounds of the
certified individual fairness of the classifiers.
1 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 5: Sensitive attribute statistics. The positive and negative sample ratio is
reported for the training set, as the attribute vectors are computed on it.

Dataset Sensitive attribute Pos (%) Neg (%) ‖zG,pos − zG,neg‖2

CelebA

Pale_Skin 4.3 95.7 11.5
Young 77.9 22.1 7.8
Blond_Hair 14.9 85.1 15.8
Heavy_Makeup 38.4 61.6 11.9

FairFace Race=Black 14.1 85.9 10.9

Table 6: Baseline accuracies for the Smiling and Earrings CelebA tasks. The
ResNet-18 classifier takes the original images as an input, while the zG classifier
is a fully connected network classifying their Glow latent representations. Neither
of these classifiers involves representation learning.

Majority class Acc (ResNet-18) Acc (zG)

Task Valid Test Valid Test Valid Test

Smiling 51.7 52.6 92.1 ± 0.2 90.9 ± 0.7 89.4 ± 0.1 87.2 ± 1.1
Earrings 80.9 78.2 86.2 ± 0.8 88.2 ± 1.1 84.7 ± 0.1 85.2 ± 0.9

Table 7: Empirical individual fairness of the base classifiers evaluated via sampling.
These results come with no provable guarantees and serve as upper bounds of
the certified individual fairness.

Emp. Fair (ResNet-18) Emp. Fair (zG)

Task Sensitive attribute(s) Valid Test Valid Test

Smiling

Pale_Skin 74.1 ± 1.0 75.2 ± 1.1 75.8 ± 0.6 79.9 ± 1.2
Young 87.7 ± 0.5 90.1 ± 0.7 95.2 ± 0.6 96.8 ± 0.9
Blond_Hair 89.1 ± 1.1 89.4 ± 1.5 81.9 ± 1.6 84.6 ± 2.9
Heavy_Makeup 82.3 ± 1.0 82.5 ± 1.2 74.9 ± 1.6 78.2 ± 2.3
Pale+Young 71.5 ± 0.9 72.6 ± 1.1 75.8 ± 0.6 79.9 ± 1.2
Pale+Young+Blond 70.3 ± 0.5 70.6 ± 0.9 72.5 ± 0.6 76.9 ± 1.1

Earrings

Pale_Skin 92.8 ± 0.9 90.4 ± 1.2 91.5 ± 1.0 91.5 ± 1.6
Young 90.6 ± 1.8 87.7 ± 1.5 93.0 ± 1.2 94.7 ± 1.0
Blond_Hair 89.7 ± 2.2 86.9 ± 2.5 88.3 ± 1.9 89.7 ± 2.2
Heavy_Makeup 85.8 ± 3.4 82.2 ± 3.3 74.4 ± 4.4 73.3 ± 3.8
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C Hyperparameter Tuning

In this section, we perform an extensive hyperparameter search in order to select
suitable values for the hyperparameters. We evaluate on 311 samples from the
validation set of CelebA (again, every 64-th), on the Smiling task with sensitive
attributes Pale_Skin and Young. Afterwards, we reuse the same hyperparameter
values for all tasks with very minor changes (which we verify by running the
experiments on the validation set first). The tunable hyperparameters, as well as
the range of values that we consider about them, are as follows:

– Adversarial loss weight:
λ2 ∈ {0, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25}

– Gaussian noise added during center smoothing of R:
σcs ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75}

– Gaussian noise added during randomized smoothing of C:
σrs ∈ {0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25}

Tuning σcs and the baselines We begin with selecting the value for σcs. It is
not used during the training of R and C, but is an integral part of the center
smoothing computation which is performed during inference and is the most time-
consuming component of the model pipeline. More concretely, both rcs = R̂ (zG)
and dcs depend on σcs, in turn affecting both the accuracy and the certified
individual fairness. We evaluate the Naive model with all candidate values for σcs
and show the results in Tab. 8. We observe very little variation in accuracy, while
the best certified individual fairness and the smallest average center smoothing
radii are obtained at σcs = 0.6 and 0.65. While there is no significant difference in
performace between these two configurations, we expect that the slightly larger
value for σcs would generally produce smaller center smoothing radii, leading
to increased certified fairness. Therefore, we set σcs = 0.65 for all experiments
(except for FairFace, where we use ε = 0.5 and scale σcs correspondingly, i.e.,
σcs = 0.325). Using the same σcs values for both the baselines and LASSI
allows us to attribute the improvements of the results to the additional training
mechanisms that we apply and not merely to different hyperparameter values.

We perform a similar evaluation on the validation set of the other baseline,
DataAug, and from the results in Tabs. 8 and 9 we set σrs = 10 for both Naive
and DataAug. Although σrs = 5 seems to work slightly better for Young, we
remark that Young is also the fairest of all considered sensitive attributes, so we
choose a more conservative value that would be suitable for all of them.

Tuning λ2 Next, we incorporate the adversarial loss weight λ2 to the training
and explore its impact on the model in Tab. 10. The certified individual fairness in-
creases with increasing λ2, until λ2 = 0.05, and stays at the same level afterwards.
Interestingly, the accuracy is mostly unaffected. We set λ2 = 0.05 and σrs = 2.5
for LASSI, as they give most of the fairness boost obtained from adversarial
training, while keeping the accuracy high. Notably, the hyperparameter tuning
demonstrates that LASSI successfully enforces and certifies individual fairness
for a wide range of hyperparameter values and is not highly sensitive to them.
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Table 8: Results of Naive on the validation subset of CelebA for different values
of σcs and σrs. The third column contains the mean center smoothing radii
corresponding to the different σcs values. Smaller is generally better for certified
individual fairness (see the condition in Alg. 1).

σrs

Sens. attribute σcs Mean dcs Metric 0.1 0.25 0.5 1 2.5 5 10 25

Pale_Skin

0.5 42.25 Acc 87.8 87.8 87.5 88.4 89.1 88.7 88.7 84.6
Fair 0 0 0 0 0 0 0 0

0.55 34.19 Acc 87.8 87.8 87.8 88.4 88.7 88.7 88.4 84.6
Fair 0 0 0 0 0 0 0 0

0.6 33.34 Acc 87.8 87.5 87.8 88.4 88.7 88.7 88.7 84.6
Fair 0 0 0 0 0 0 1.0 0

0.65 33.37 Acc 87.5 87.5 87.8 88.4 88.8 88.7 88.4 84.6
Fair 0 0 0 0 0 0 1.0 0

0.7 33.72 Acc 87.5 87.5 87.5 88.4 88.4 88.7 88.1 84.6
Fair 0 0 0 0 0 0 1.0 0

0.75 34.18 Acc 87.8 88.1 88.1 88.4 88.7 89.1 88.1 84.6
Fair 0 0 0 0 0 0 1.0 0

Young
0.6 8.16 Acc 88.1 88.1 87.8 87.8 88.7 88.7 88.1 85.2

Fair 0 0 0 5.1 36.3 58.8 58.5 39.9

0.65 8.16 Acc 88.1 88.1 87.8 87.8 88.7 88.7 88.1 84.9
Fair 0 0 0 4.8 36.3 58.8 58.2 39.5

Table 9: Results of the DataAug baseline on the validation set of CelebA for
σcs = 0.65 and different values of σrs.

σrs

Sens. attribute σcs Mean dcs Metric 0.1 0.25 0.5 1 2.5 5 10 25

Pale_Skin 0.65 14.52 Acc 87.5 87.5 87.8 87.8 88.7 89.4 88.7 84.9
Fair 0 0 0 0 0 28.3 31.5 10.0

Young 0.65 7.09 Acc 87.5 87.8 87.8 89.1 88.7 88.7 88.7 84.9
Fair 0 0 0 1.6 46.6 65.6 65.0 48.9
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Table 10: Results of LASSI on the validation subset of CelebA for different values
of λ2 and σrs, while keeping σcs = 0.65. The certified individual fairness increases
with increasing λ2, until the λ2 = 0.05 level.

σrs

Sens. attribute λ2 Metric 0.1 0.25 0.5 1 2.5 5 10 25

Pale_Skin

0.001
Acc 86.5 86.8 87.1 87.5 89.1 89.4 88.1 84.9
Fair 0 0 0 0 0 13.2 12.9 1.9

0.0025
Acc 87.8 88.1 88.4 88.7 90.4 89.1 86.5 83.3
Fair 0 0 0 0 15.4 27.3 24.8 5.5

0.005
Acc 87.8 87.8 88.1 87.8 89.7 89.1 87.5 82.0
Fair 0 0 0 0 35.0 40.5 37.0 15.4

0.01
Acc 88.1 88.1 87.8 88.1 89.4 90.0 87.5 82.0
Fair 0 0 0 9.3 46.0 49.5 47.6 27.7

0.025
Acc 88.4 88.1 88.1 88.4 89.1 89.7 87.5 82.3
Fair 0 1.9 9.6 49.2 64.3 66.2 64.0 47.9

0.05
Acc 87.8 87.8 88.1 88.1 89.7 89.4 86.8 83.0
Fair 45.0 97.1 97.7 98.1 96.1 96.1 95.5 93.6

0.1
Acc 86.5 86.5 86.5 86.8 86.5 85.9 83.3 76.8
Fair 57.9 93.6 93.9 94.5 96.8 96.1 94.9 88.1

0.25
Acc 87.1 87.1 87.1 87.5 87.5 85.9 79.4 67.8
Fair 96.8 96.1 96.1 96.1 98.1 97.4 93.2 79.7

Young

0.05
Acc 89.1 89.1 88.1 89.4 89.4 89.1 88.7 84.6
Fair 97.1 97.7 98.4 99.0 99.0 98.7 96.5 96.1

0.1
Acc 88.1 88.7 89.4 89.4 88.7 88.7 87.8 82.6
Fair 58.5 94.9 94.9 96.8 97.1 95.8 96.1 92.3

0.25
Acc 88.4 88.4 88.4 88.7 88.4 88.1 86.8 77.8
Fair 98.4 98.1 98.4 99.4 99.4 98.7 95.2 89.4
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Selected experiment hyperparameters Here, we summarize the hyperpa-
rameter values selected for the final experiments. We use ε = 1 for all similarity
set definitions except the experiments with: (i) the alternative attribute vectors
from [13,48], where ε = 10, and (ii) FairFace, where ε = 0.5. We maintain the
ε/σcs ratio, which impacts center smoothing, setting σcs = 0.65 by default (as
stated in the sections above) and using σcs = 6.5 and 0.325 when ε = 10 and 0.5
respectively. Our smoothing arguments are consistent with prior work [10,44]:
– Randomized smoothing [10]: αrs = 0.001, Nrs = 100,000, N0,rs = 2000.
– Center smoothing [44]: αcs = 0.01, Ncs = 10,000, N0,cs = 10,000.

The rest of the model hyperparameters are listed in Tab. 11. In the CelebA 64×64
and 128×128 setups, we run LASSI with λ2 = 0.25 for the (target=Earrings,
sensitive=Makeup) pair of attributes because of the high correlation between
them. We train the representation R for 20 epochs in the transfer experiments
(CelebA, FairFace) and 5 epochs otherwise. The linear classifier C is trained for 1
epoch. We generally set a lower value to σrs when the task is more difficult and
the downstream classifier is therefore less confident. Overall, we remark that the
hyperparameter values are similar and within the same range for all models and
experiments, meaning that our approach does not require substantial fine-tuning.

Table 11: Hyperparameters used for the different model and experiment setups.

Model /
Dataset Experiment(s) Hyperparameters

CelebA

64×64 and λ1 = 1; λ2 = 0 (Naive, DataAug) and 0.05 (LASSI); λ3 = 0;
128×128 σrs = 10 (Naive, DataAug) and 2.5 (LASSI); s = 10 (DataAug, LASSI).

Transfer λ1 = 0; λ2 = 0.05; λ3 = 0.1; σrs = 0.5; s = 10.

FairFace
Naive λ1 = 1; λ2 = λ3 = 0; σrs = 5 (Age-2) and 0.1 (Age-3, Age (all)).
LASSI λ1 = 1; λ2 = 0.1; λ3 = 0; σrs = 0.25; s = 10.
Transfer λ1 ∈ {0, 0.001, 0.01}; λ2 = λ3 = 0.1; σrs = 0.1; s = 10.

3D Shapes Naive λ1 = 1; λ2 = λ3 = 0; σrs = 5.
(App. F) LASSI λ1 = 1; λ2 = 0.1; λ3 = 0; σrs = 1; s = 100.

D More Experimental Results on CelebA

This section provides further details about the experiments on the CelebA dataset
with the standard attribute vector from [41], a = zG,pos − zG,neg (Sec. 4.1).

64×64 images Tab. 12 contains the means and the standard deviations of the
accuracies and the certified individual fairness of the CelebA 64×64 experiments
summarized in Tab. 1, averaged over 5 runs. The standard deviation of Naive and



28 M. Peychev et al.

DataAug’s fairness is high, while LASSI consistently enforces certified individual
fairness with low variance.

Table 12: Means and standard deviations of the accuracies and the certified
individual fairness reported in Tab. 1, averaged over 5 runs with different random
seeds on the Smiling (rows 1-6) and Earrings (rows 7-10) tasks.

Naive DataAug LASSI (ours)

Sens. attribs.: Acc Fair Acc Fair Acc Fair

Pale_Skin 86.3 ± 1.5 0.6 ± 0.5 85.7 ± 1.2 12.2 ± 14.7 85.9 ± 1.3 98.0 ± 0.5
Young 86.3 ± 1.8 38.2 ± 23.4 85.9 ± 1.6 43.0 ± 30.7 86.3 ± 1.3 98.8 ± 0.6
Blond_Hair 86.3 ± 1.6 3.4 ± 3.1 86.6 ± 1.0 9.4 ± 10.0 86.4 ± 1.0 94.7 ± 1.5
Heavy_Makeup 86.3 ± 1.1 0.4 ± 0.4 85.3 ± 1.7 13.7 ± 8.8 85.6 ± 1.6 91.3 ± 8.1
P+Y 86.0 ± 1.5 0.4 ± 0.4 85.8 ± 1.4 9.9 ± 12.7 85.8 ± 0.9 97.3 ± 0.9
P+Y+B 86.2 ± 1.7 0.0 ± 0.0 86.4 ± 1.0 3.6 ± 3.8 85.5 ± 0.4 86.5 ± 2.7

Pale_Skin 81.3 ± 2.2 24.3 ± 35.6 81.0 ± 2.3 40.4 ± 32.6 85.0 ± 0.5 98.5 ± 0.9
Young 81.4 ± 2.2 59.2 ± 18.0 79.9 ± 1.4 72.0 ± 24.1 84.5 ± 1.0 98.0 ± 1.1
Blond_Hair 81.4 ± 2.2 9.2 ± 17.5 82.2 ± 2.8 30.5 ± 40.9 84.8 ± 0.5 96.2 ± 2.6
Heavy_Makeup 81.6 ± 1.9 20.5 ± 13.0 80.3 ± 1.9 49.2 ± 37.0 82.3 ± 0.6 98.7 ± 0.7

Table 13: Empirical evaluation of the individual fairness of the models com-
puted by comparing their predictions on the original test samples to the model
predictions on the endpoints of the corresponding similarity sets.

Task Sensitive attribute(s) Naive DataAug LASSI (ours)

Smiling

Pale_Skin 78.4 ± 2.1 90.1 ± 1.9 99.6 ± 0.2
Young 95.3 ± 0.4 96.7 ± 0.5 99.6 ± 0.2
Blond_Hair 83.3 ± 0.7 93.9 ± 1.5 99.2 ± 0.4
Heavy_Makeup 75.8 ± 2.4 88.3 ± 0.8 97.9 ± 1.6
Pale+Young 78.0 ± 2.0 89.0 ± 2.2 99.4 ± 0.5
Pale+Young+Blond 77.9 ± 2.1 87.4 ± 0.9 96.9 ± 0.7

Earrings

Pale_Skin 97.1 ± 1.6 99.1 ± 0.7 99.5 ± 0.4
Young 98.5 ± 1.4 99.5 ± 0.5 99.2 ± 0.4
Blond_Hair 96.7 ± 3.4 98.5 ± 0.4 99.1 ± 0.7
Heavy_Makeup 92.2 ± 6.6 98.1 ± 1.1 99.7 ± 0.3

Moreover, in Tab. 13 we check for what fraction of the test subset the models
classify the similarity set endpoints the same as the original data point. Note
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that this is again another empirical estimate, serving as an upper bound of the
certified individual fairness of the models. Nevertheless, LASSI outperforms the
baselines on that metric as well. More importantly, out of all 150 combinations
of models, tasks and sensitive attributes (3 model types, 10 task-attribute pairs,
5 random seeds), in 8 combinations there is only 1 test sample which we certify
as individually fair but the endpoints classifications mismatch. In all other
combinations, no such situation occurs, serving as another test for the correctness
of our certificates. One test sample out of 312 is 0.32%, which is within our
confidence of 1− αcs − αrs = 98.9%.

128×128 images Keeping all hyperparameters the same, we evaluate LASSI on
images of size 128×128. The results in Tab. 14 indicate that LASSI increases the
certified individual fairness in this setting as well, while also slightly improving
the classification accuracy. We attribute this to the richer and larger latent space
of Glow, which is potentially more easily separable in this case.

Table 14: Evaluation of LASSI on 128×128-dimensional images, demonstrating
that it significantly increases the certified individual fairness for larger images as
well. Evaluated tasks: Smiling (rows 1-6) and Earrings (rows 7-10).

Naive DataAug LASSI (ours)

Sens. attribs.: Acc Fair Acc Fair Acc Fair

Pale_Skin 88.8 ± 1.0 0.0 ± 0.0 89.6 ± 0.5 0.0 ± 0.0 90.0 ± 1.1 70.6 ± 14.2
Young 88.7 ± 0.7 46.0 ± 16.2 88.8 ± 1.0 47.6 ± 20.2 89.7 ± 0.7 97.2 ± 1.6
Blond_Hair 88.8 ± 0.9 0.1 ± 0.1 89.4 ± 1.1 0.0 ± 0.0 90.1 ± 0.8 77.8 ± 10.2
Heavy_Makeup 89.0 ± 0.9 2.5 ± 3.5 89.6 ± 1.1 30.4 ± 20.7 90.2 ± 0.3 87.6 ± 3.9
P+Y 88.8 ± 1.0 0.0 ± 0.0 89.4 ± 1.3 8.7 ± 16.5 90.2 ± 0.5 69.4 ± 9.7
P+Y+B 88.7 ± 0.8 0.0 ± 0.0 89.9 ± 1.5 4.4 ± 9.6 90.2 ± 0.7 72.7 ± 5.0

Pale_Skin 80.1 ± 1.4 0.0 ± 0.0 80.1 ± 2.5 0.1 ± 0.1 84.4 ± 0.9 90.4 ± 2.5
Young 80.2 ± 1.4 73.5 ± 20.4 80.3 ± 1.5 78.2 ± 18.1 85.5 ± 1.4 96.4 ± 1.7
Blond_Hair 80.2 ± 1.4 0.0 ± 0.0 80.6 ± 2.0 0.0 ± 0.0 83.9 ± 0.9 89.7 ± 4.0
Heavy_Makeup 80.3 ± 1.4 42.1 ± 15.9 80.1 ± 1.9 65.1 ± 31.1 81.7 ± 1.3 98.3 ± 1.3

Transfer learning Tab. 15 contains the base standard accuracies on the transfer
tasks. Tab. 16 reports the means and the standard deviations of LASSI on the
Smiling task when solved in a transfer learning setting.
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Table 15: Baseline accuracies on the transfer CelebA tasks. As before, the ResNet-
18 classifier takes as an input the original images, while the zG classifier is a fully
connected network classifying their Glow latent representations. Neither of these
classifiers involves representation learning.

Majority class Acc (ResNet-18) Acc (zG)

Task Valid Test Valid Test Valid Test

Smiling 51.7 52.6 92.1 ± 0.2 90.9 ± 0.7 89.4 ± 0.1 87.2 ± 1.1
High_Cheeks 55.1 51.9 87.2 ± 0.2 86.8 ± 0.4 84.3 ± 0.1 83.8 ± 0.7
Mouth_Open 51.8 53.8 92.7 ± 0.3 92.9 ± 0.7 88.1 ± 0.2 89.6 ± 1.1
Lipstick 55.4 54.8 91.5 ± 0.2 90.5 ± 0.8 89.2 ± 0.1 90.6 ± 1.1
Heavy_Makeup 61.0 58.7 90.2 ± 0.4 89.9 ± 0.4 87.8 ± 0.1 88.6 ± 1.1
Wavy_Hair 72.3 65.1 82.7 ± 1.8 76.3 ± 3.3 80.9 ± 0.5 81.7 ± 0.4
Eyebrows 74.2 71.8 83.5 ± 0.5 81.1 ± 0.6 80.1 ± 0.1 79.4 ± 1.6

Table 16: Mean and standard deviation of the accuracies and the certified
individual fairness of LASSI on Smiling in a transfer learning setting (Tab. 3).

Task Sensitive attribute(s) Acc Fair

Smiling

Pale_Skin 86.2 ± 1.1 93.1 ± 2.4
Young 86.0 ± 1.2 95.4 ± 1.0
Blond_Hair 85.1 ± 1.6 93.8 ± 1.8
Pale+Young 85.9 ± 0.3 92.2 ± 0.7
Pale+Young+Blond 85.1 ± 0.7 87.0 ± 2.3

E Different Attribute Vector Types

In this section, we demonstrate that LASSI is independent of the actual compu-
tation of the attribute vector a and that it can improve the individual fairness
for various attribute vector types.

Denton et al. [13] First, in Tab. 17 we report the means and the standard
deviations of the accuracies and the certified individual fairness from Tab. 2. The
attribute vector a used here is orthogonal to the decision boundary of the linear
classifier sign(a>zG + b) [13] (Sec. 4.1), with its length set to ε = 10.

Ramaswamy et al. [67] Next, we adapt the attribute vector computation
proposed by [67] by computing sample-specific vectors ai = zG,i − z′G,i for every
xi from the training set, where zG,i = E(xi) and z′G,i is as defined in [67, Eq.
(3)]. All sample-specific ai’s share the same direction, so we can average them to
obtain the global attribute vector a = 1

N

∑N
i=1 ai and set ε = 1.
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Table 17: Means and standard deviations of the accuracies and the certified
individual fairness reported in Tab. 2, averaged over 5 runs with different random
seeds on the Smiling task.

Naive DataAug LASSI (ours)

Sens. attribs.: Acc Fair Acc Fair Acc Fair

Pale_Skin 86.4 ± 1.7 34.0 ± 5.4 85.9 ± 1.5 90.3 ± 3.9 86.5 ± 1.3 98.8 ± 1.2
Young 86.3 ± 1.8 73.1 ± 3.5 86.2 ± 1.5 90.3 ± 3.3 86.8 ± 1.0 97.9 ± 1.2
Blond_Hair 86.2 ± 1.8 71.4 ± 4.0 86.1 ± 1.8 88.8 ± 2.7 86.7 ± 1.4 98.8 ± 0.7
Heavy_Makeup 86.2 ± 1.6 11.5 ± 2.5 86.3 ± 1.1 87.4 ± 1.6 86.8 ± 1.0 98.8 ± 0.9
P+Y 86.2 ± 1.8 28.6 ± 3.4 85.8 ± 1.5 84.7 ± 4.1 86.5 ± 1.2 98.6 ± 1.8
P+Y+B 86.2 ± 1.7 23.7 ± 2.1 85.9 ± 1.8 82.2 ± 5.2 86.4 ± 1.1 98.7 ± 0.5

Li and Xu [48] Finally, [48] discover biased attributes of pre-trained classifiers.
To that end, we train a ResNet-18 on the Smiling task. Then, we run [48]’s opti-
mization procedure to iteratively find 3 biased attribute vectors (each orthogonal
to the target and to the other attribute vectors) for that model using Glow as
the generative model. We use ε = 10 for these vectors.

Tab. 18 shows that LASSI significantly improves the certified individual fairness
while maintaining the same high accuracy level for [67] and [48], as with the
attribute vectors from [13,41], when evaluated on the Smiling task.

Table 18: Evaluation of LASSI on CelebA using sensitive attribute vectors
from [48,67]. We denote [48]’s vectors as a0, a1, and a2 since they are not
necessarily associated with a sensitive attribute (unlike [13,41,67]). As for the
vectors from [13,41] (Tabs. 1 and 2), LASSI significantly increases certified fairness
without affecting the accuracy.

Naive DataAug LASSI (ours)

a Sens. attribs.: Acc Fair Acc Fair Acc Fair

[67]

Pale_Skin 86.3 ± 1.8 89.0 ± 3.9 86.0 ± 1.5 92.4 ± 2.6 86.8 ± 1.2 98.6 ± 1.0
Young 86.3 ± 1.8 95.1 ± 1.5 86.2 ± 1.6 95.6 ± 1.8 86.9 ± 1.2 99.5 ± 0.5
Blond_Hair 86.2 ± 1.8 90.8 ± 3.5 86.2 ± 1.6 89.7 ± 3.0 86.8 ± 1.1 98.8 ± 0.3
Heavy_Makeup 86.3 ± 1.8 92.8 ± 1.4 86.0 ± 1.6 94.4 ± 1.4 86.7 ± 1.2 99.4 ± 0.3
P+Y 86.3 ± 1.8 88.0 ± 3.9 86.2 ± 1.9 91.5 ± 4.1 86.7 ± 1.1 98.8 ± 0.9
P+Y+B 86.3 ± 1.8 85.6 ± 4.3 86.5 ± 1.5 88.7 ± 5.4 86.7 ± 1.3 98.4 ± 0.9

[48]
a0 86.2 ± 1.8 92.3 ± 2.1 86.3 ± 1.6 94.8 ± 3.7 86.9 ± 1.4 99.3 ± 0.9
a0+a1 86.3 ± 1.8 90.7 ± 2.7 86.4 ± 1.5 93.4 ± 1.2 86.9 ± 1.1 98.3 ± 1.3
a0+a1+a2 86.3 ± 1.8 90.1 ± 2.8 86.3 ± 1.7 92.4 ± 1.6 86.8 ± 1.0 98.5 ± 0.6
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F Certification with Ground Truth Data

An essential part of the evaluation is demonstrating that the fairness certificates
obtained using the generative model can transfer to ground truth data. However,
CelebA does not contain images of the same individual with different attributes,
e.g., the same individual with different skin colors. Thus, we experiment with
the 3D Shapes dataset (Apache-2.0 license) [8], which provides images of 3D
shapes that are procedurally generated from 6 independent latent factors: floor
hue, wall hue, object hue, scale, shape, and orientation. Therefore, we can
obtain ground truth images of the same object with varying latent factors. The
3D Shapes dataset is typically used to investigate disentanglement properties of
unsupervised learning methods, e.g., in the context of fairness [53].

The goal is to show that the similarity set computed by Glow captures a
given latent factor (as in Fig. 12) and that certification with respect to this set
will result in certification of the ground truth. To that end, we experiment with
orientation as the continuous sensitive attribute. It has v = 15 possible values,
the most among all latent factors, providing for the most rigorous evaluation.
The target attribute is set to object hue, which has 10 different classes.

We filter the original training set to create a biased one, correlating orienta-
tion and object hue. We only keep those samples in the training set for which:
(i) hue ≤ 5 and orient ≤ 7, or (ii) hue ≥ 6 and orient ≥ 9. We extend
the attribute vector computation from Sec. 4.1 [41] (performed on the original,
unfiltered training set) to non-binary attributes, defining aij = zG,i−zG,j , where
1 ≤ i, j ≤ v are sensitive attribute values. Based on the construction of the biased
training set, we let the similarity set S (x) to be defined by all attribute vectors
{aij} for which i < 8 < j (7 · 7 = 49 vectors) and set ε = 1. We train Naive
(λ1 = 1; λ2 = λ3 = 0; σrs = 5) and LASSI (λ1 = 1; λ2 = 0.1; λ3 = 0; σrs = 1;
s = 100) models and report results on 300 samples from the test set. When
running LASSI on 3D Shapes, we sample more points (s = 100) compared to
the other datasets in order to accommodate for the more complex similarity set,
defined by many more attribute vectors.

In the evaluation, apart from reporting the accuracy and the certified fairness
(CertFair) on the (unbiased) test subset, for each sample we also obtain the v
similar ground truth data points, i.e., the same shape at v different orientations,
while fixing all other factors. The empirical unfairness (EmpUnfair) in this case
is the percentage of test samples for which the downstream classifier does not
classify all v ground truth individually similar images the same. Moreover, if any
of the v similar data points is certified, we check whether all v similar ground
truth data points obtain the same classification, indicating ground truth fairness.

Tab. 19 shows that LASSI substantially increases the accuracy and the
certified individual fairness (w.r.t. the similarity set computed using Glow), while
being nearly 100% empirically fair on the ground truth images. That is, in 0.3%
of the test samples there were different classification outcomes among their v
similar (ground-truth) samples. Crucially, in all of these cases, our method did
not certify individual fairness for any of the v similar data points, showing that
the certificates transfer to the ground truth.
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Table 19: Evaluation on 3D Shapes for the task object hue. The certification
rate (CertFair) and the percentage of ground truth empirically unfair data points
(EmpFair) sum up below 100%.

Method: Naive LASSI (ours)

Sens. attrib. Acc CertFair EmpUnfair (↓) Acc CertFair EmpUnfair (↓)

orientation 32.0 0 69.3 100 81.3 0.3

G More Examples of Similar Individuals

Here, we provide further samples from the similarity sets Sin (x) (defined with a =
zG,pos− zG,neg), as reconstructed by Glow, for various inputs x randomly drawn
from our evaluation subsets. A summary of all configurations is listed in Tab. 20.
The images in the middle of the CelebA and FairFace reconstructions correspond
to the original inputs. The perturbations range uniformly between [− ε√

n
, ε√

n
],

where n is the number of sensitive attributes. For n > 1, all attribute vectors are
multiplied by the same t before adding them to the latent representation of the
original inputs. ε = 1 for CelebA and 3D Shapes and ε = 0.5 for FairFace.

Table 20: Example image reconstructions from the similarity sets in this work.

Dataset Sensitive attribute(s) Figure

CelebA

Pale_Skin Fig. 5
Young Fig. 6
Blond_Hair Fig. 7
Heavy_Makeup Fig. 8
Pale + Young Fig. 9
Pale + Young + Blond Fig. 10

FairFace Race=Black Fig. 11

3D Shapes orientation Fig. 12
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Fig. 5: Similar individuals from Sin (x), for x in the CelebA dataset, obtained by
varying the sensitive attribute Pale_Skin.
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Fig. 6: Similar individuals from Sin (x), for x in the CelebA dataset, obtained by
varying the sensitive attribute Young.



36 M. Peychev et al.

Fig. 7: Similar individuals from Sin (x), for x in the CelebA dataset, obtained by
varying the sensitive attribute Blond_Hair.
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Fig. 8: Similar individuals from Sin (x), for x in the CelebA dataset, obtained by
varying the sensitive attribute Heavy_Makeup.
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Fig. 9: Similar individuals from Sin (x) obtained by simultaneously varying the
sensitive attributes Pale_Skin + Young.
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Fig. 10: Similar individuals from Sin (x) obtained by simultaneously varying the
sensitive attributes Pale_Skin + Young + Blond.
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Fig. 11: Similar individuals from Sin (x), for x in FairFace and ε = 0.5, obtained
by varying the sensitive attribute Race=Black.
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Fig. 12: Sampled shapes at 15 different ground truth orientations. The original
(above) and the corresponding reconstructions (below) obtained from interpolating
along one of the attribute vectors, a1,15 (see App. F for details), grouped together.


