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Abstract. We address the problem of uncertainty calibration and in-
troduce a novel calibration method, Parametrized Temperature Scaling
(PTS). Standard deep neural networks typically yield uncalibrated pre-
dictions, which can be transformed into calibrated confidence scores using
post-hoc calibration methods. In this contribution, we demonstrate that
the performance of accuracy-preserving state-of-the-art post-hoc calibra-
tors is limited by their intrinsic expressive power. We generalize tem-
perature scaling by computing prediction-specific temperatures, param-
eterized by a neural network. We show with extensive experiments that
our novel accuracy-preserving approach consistently outperforms exist-
ing algorithms across a large number of model architectures, datasets
and metrics.4

1 Introduction

Due to their high predictive power, neural network based systems are increas-
ingly used for decision making in real-world applications. Models deployed in
such real-world settings, require not only high accuracy, but also reliability
and uncertainty-awareness. Especially in safety critical applications such as au-
tonomous driving or in automated factories where average case performance is
insufficient, a reliable estimate of the predictive uncertainty of models is crucial.
This can be achieved via well-calibrated confidence scores that are representative
of the true likelihood of a prediction.

Since modern neural networks tend to yield systematically overconfident
predictions [4, 13], a number of algorithms for post-hoc calibration have been
proposed. These algorithms include parametric approaches that transform the
outputs of neural networks based on simple linear models in form of Platt-
scaling or Temperature scaling. Alternative non-parametric approaches include
histogram- or regression-based models such as histogram-binning or isotonic re-
gression. Recent research efforts have shown that combining and extending these

4 Source code available at: https://github.com/tochris/pts-uncertainty
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(b) Our approach improves substantially
over baselines across 3 datasets and 9 ar-
chitectures.

Fig. 1: (a) With increased expressive power, temperature scaling-based models
yield lower expected calibration errors (ECE). All post-hoc calibration models
were optimized to calibrate a MobileNetV2 trained on ImageNet. (b) Bars show
the average ECE of all baseline methods. Average is taken over all architectures
and baselines and lines indicate standard deviation. PTS improves substantially
over all baselines with relative reduction of calibration error of 30% over ETS
and even higher reductions for other baselines.

base techniques [26, 9, 8, 11] results in a plethora of approaches where no single
approach performs best across datasets and model architectures. Temperature-
scaling based approaches are a particularly appealing family of post-hoc cal-
ibrators since they do not affect the accuracy of the transformed model and
have a high data efficiency, so that they can be applied also in low-data set-
tings with only small validation sets available. However, they are collectively
limited by a low expressive power (or model capacity): Temperature scaling [4]
fits a single scalar parameter, extended temperature scaling [26] is based on
a weighted ensemble of 3 fixed temperatures. While non-parametric models are
more expressive, they usually do not preserve model accuracy and the accuracy of
trained models may decrease substantially after calibration [4, 26]. Importantly,
all temperature-scaling based approaches are based on a fixed calibration map,
that transforms all uncalibrated predictions of a neural network into calibrated
predictions in the same manner without leveraging information from individual
predictions.
We hypothesize that the performance of temperature-scaling based post-hoc cal-
ibration models is intrinsically limited by their expressive power, which stems
from a lack of modeling a prediction-specific transformation. We show that our
prediction-specific temperatures are indeed different for each model; in fact, they
vary over a wide range of values, which is in stark contrast to only 1 or 3 tem-
peratures for temperature scaling or ensemble temperature scaling and indicates
that temperatures calculated based on each prediction separately yield more
accurate uncertainty aware post-hoc calibration results.
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1.1 Contributions

In this work we make the following contributions:

– We show that the limiting factor of TS-based post-hoc calibrators is the
expressive power of the underlying calibration model.

– We generalize temperature scaling based on a highly expressive neural net-
work that computes prediction-specific temperatures; we refer to our accuracy-
preserving post-hoc calibration approach as Parameterized Temperature Scal-
ing (PTS).

– We show that our approach has a similar data-efficiency as state-of-the-art
prediction-agnostic post-hoc calibrators.

– We demonstrate in exhaustive experiments that PTS outperforms existing
methods across a wide range of datasets and models as ”one-size-fits-all”
calibrator, without the need to optimize any hyperparameter.

2 Related Work

In this section, we review existing approaches for post-hoc calibration of trained
neural networks. For this type of post-processing method a validation set, drawn
from the generative distribution of the training data, is used to rescale the out-
puts returned by a trained neural network such that in-domain predictions are
well calibrated. Related work can be categorized along two distinct axes, namely
parametric vs non-parametric methods and accuracy-preserving methods vs.
those where accuracy can change after calibration. While non-parametric ap-
proaches tend to have a higher expressive power than parametric models, most
non-parametric methods suffer from the drawback that they do not preserve the
accuracy of trained neural networks.

2.1 Non-parametric methods

A popular non-parametric post-processing approach is histogram binning [24]. In
brief, all uncalibrated confidence scores P̂l are partitioned into M bins. Next, a
calibrated score Qm is assigned to each bin by optimizing a bin-wise squared loss.
Extensions to histogram binning include isotonic regression [25] and Bayesian
Binning into Quantiles (BBQ) [15]. For isotonic regression, uncalibrated confi-
dence scores are divided into M intervals and a piecewise constant function f
is fitted on the validation set. This isotonic function is then used to transform
uncalibrated outputs into calibrated scores. BBQ is a Bayesian generalization
of histogram binning using the concept of Bayesian model averaging. Recently
proposed alternatives to histogram-based methods are Gaussian Process based
calibration [23] and calibration via splines [5]. While these non-parametric meth-
ods do not preserve the accuracy of trained neural networks, Zhang et al. [26]
have recently introduced an accuracy-preserving extension of isotonic regression
by imposing strict isotonicity on the isotonic function.
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2.2 Parametric methods

In addition to these non-parametric approaches, also parametric alternatives for
post-processing confidence scores exist. For example, the idea of Platt scaling
[17] is based on transforming the non-probabilistic outputs (logits) zi ∈ R of
a binary classifier to calibrated confidence scores. While initially proposed in
the context of support vector machines, Platt scaling has also been used for
calibrating other classifiers, including neural networks. More specifically, the
logits are transformed to calibrated confidence scores Q̂i using logistic regression
Q̂i = σ(azi + b), where σ is the sigmoid function. The two parameters a and b
are fitted by optimising the negative log-likelihood of the validation set.
Guo et al. [4] generalized Platt scaling to the multi-class case: Temperature
Scaling (TS) is a simple but popular post-processing approach where a scalar
parameter T is used to re-scale the logits of a trained neural network. In the case
of C-class classification, the logits are a C-dimensional vector zi ∈ RC , which are
typically transformed into confidence scores P̂i using the softmax function σSM .
For temperature scaling, logits are rescaled with temperature T and transformed
into calibrated confidence scores Q̂i using σSM as

Q̂i = max
c

σSM (zi/T )
(c) (1)

T is learned by minimizing the negative log-likelihood of the validation set.
Zhang et al. [26] have recently introduced an extended temperature scaling,
where calibrated predictions are obtained by a weighted sum of predictions re-
scaled via three individual temperature terms: an adjustable temperature (as in
vanilla temperature scaling), a fixed temperature of 1 and a fixed temperature
of ∞. Other generalization of Platt scaling to the multi-class case are vector
scaling and matrix scaling [4]. Matrix scaling applies a linear transformation
Wzi+b to the logits, where W and b do not depend on individual predictions.
For vector scaling, W is chosen to be diagonal, so that it can be interpreted
as a generalization of Ensemble Temperature Scaling, where each dimension is
transformed with its own temperature. In contrast to the non-parametric meth-
ods introduced above or other parametric multi-class calibrators such as vector
scaling/matrix scaling or Dirichlet based scaling [12], Temperature Scaling-based
methods have the advantage that they do not change the accuracy of the trained
neural network. Since re-scaling does not affect the ranking of the logits, also the
maximum of the softmax function remains unchanged. In this work, we build
on temperature scaling in order to leverage its accuracy-preserving nature and
introduce a generalized formulation that overcomes its limited expressive power.
More recently, a family of intra order-preserving function was proposed as post-
hoc calibration functions that can preserve the top-k predictions of neural net-
works [18]. Confnet [22] is another calibration method that obtains better confi-
dence scores by feeding logits into a neural network; however, it is an end-to-end
framework optimizing also the weights of the classifier itself.
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Algorithm 1 Parameterized Temperature Scaling (PTS)
Input: Trained classification model (Ŷ , Ẑ) = h(X), validation set (X,Y ), ini-
tialized calibration network T = gθ(Z), number of training steps S, batch size
β.

1: for ς in 1:S do
2: Read minibatch MB = ({X1, . . . , Xβ}, {Y1, . . . , Yβ}) from validation set
3: for Xb in MB do
4: Compute calibrated predictions σSM (zb/gθ(z

s
b))

(c) with zb = h(Xb) (eq. 7)
5: end for
6: Compute Lθ based on MB and do one training step optimizing θ based on MB
7: end for

3 Definitions and problem set-up

Let X ∈ RD and Y ∈ {1, . . . , C} be random variables that denote the D-
dimensional input and labels in a classification task with C classes with a ground
truth joint distribution π(X,Y ) = π(Y |X)π(X). The dataset D consists of N
i.i.d. samples D = {(Xn, Yn)}Nn=1 drawn from π(X,Y ). Let h(X) = (Ŷ , Ẑ) be
the output of a trained neural network classifier h predicting a class Ŷ and
an associated unnormalized logit tupel Ẑ based on X. Ẑ is then transformed
into a confidence score P̂ associated to Ŷ via the softmax function σSM as
P̂ = maxc σSM (Ẑ)(c). In this work, we develop a new approach to improve the
quality of the predictive uncertainty of h by improving the calibration of its
confidence scores P̂ .

Uncertainty (miss-)calibration We define perfect calibration such that accuracy
and confidence match for all confidence levels [4]:

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (2)

Based on equation 2 it is straight-forward to define miss-calibration as the dif-
ference in expectation between confidence and accuracy:

Ê
P

[∣∣P(Ŷ = Y |P̂ = p)− p
∣∣] (3)

Measuring calibration The expected calibration error (ECE) [15] is a scalar sum-
mary measure estimating miss-calibration by approximating equation 3 based
on predictions, confidence scores and ground truth labels {(Yl, Ŷl, P̂l)}Ll=1 of a
finite number of L samples. ECE is computed by first partitioning all L con-
fidence scores P̂l into M equally sized bins of size 1/M and computing ac-
curacy and average confidence of each bin. Let Bm be the set of indices of
samples whose confidence falls into its associated interval Im =

(
m−1
M , m

M

]
.

conf(Bm) = 1/|Bm|
∑

i∈Bm
P̂i and acc(Bm) = 1/|Bm|

∑
i∈Bm

1(Ŷi = Yi) are
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the average confidence and accuracy associated with Bm, respectively. The ECE
is then computed as

ECEd =

M∑
m=1

|Bm|
n

∥acc(Bm)− conf(Bm)∥d (4)

with d usually set to 1 for the l1-norm. While the ECE is the most commonly
used measure of miss-calibration, it has some drawbacks. In particular, the choice
of bins can result in biased estimates and/or volatility [1, 9, 26]. Therefore, alter-
native formulations to mitigate these issues have been suggested. For example,
Zhang et al. [26] have proposed to replace histograms with non-parametric den-
sity estimators and present an ECE based on kernel density estimation (KDE).
In addition to top-label ECE (eq. 3), class-wise ECE has been proposed as a
metric. However, they have been observed to be often contradictory [16]. Con-
sequently, calibration gain, a dimensionality-independent solution to compare
calibration maps was recently introduced [26]. This metric builds on the well-
known calibration refinement decomposition [14] for the strictly proper scoring
loss [3]. Orthogonal ways of evaluating calibration include testing a hypothesis
of perfect calibration [21].

4 Highly expressive post-hoc calibration via
parameterized temperature scaling

To overcome limitations in the expressive power of TS-based methods, we pro-
pose to parameterize the temperature in a flexible and expressive manner. Rather
then learning a single temperature (or weighted sum of fixed temperatures), we
introduce a dependency of the temperature on the un-normalized logits. In other
words, while temperature scaling works by re-scaling any logit tupel of a trained
model by the same temperature, PTS introduces a dependency of the temper-
ature on the logit tuple itself. That is, our approach leverages the information
present in a logit tupel to compute a prediction-specific temperature.
More formally, we propose the following post-hoc calibrator to map unnormal-
ized logits z to calibrated confidence scores. We start by parameterizing the
temperature T with a flexible neural network as follows:

T (z;θ) = gθ(z
s) (5)

with θ being the weights of a neural network g parameterizing the scalar tem-
perature T (z;θ) and zs being an unnormalised logit tuple sorted by decreasing
value.
The parameterized temperature is then used to obtain calibrated confidence
scores Q̂i for sample i based on unnormalized logits zi:

Q̂i(zi,θ) = max
c

σSM (zi/T (zi;θ))
(c) (6)

= max
c

σSM (zi/gθ(z
s
i ))

(c) (7)
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We fit a post-hoc calibrator for a trained neural network h(X) by optimizing
a squared error loss Lθ with respect to θ.

Lθ =
1

N

N∑
n=1

C∑
c=1

(Inc − σSM (zi/gθ(z
s
i ))

(c))2 (8)

with Inc being 1 if sample n has true class c, and 0 otherwise. PTS is summa-
rized in Algorithm 1.

Like standard temperature scaling, PTS with a parameterized temperature
T (z;θ) does not change the accuracy of the trained model since the ranking of
the logits remains unchanged.

We first explore the relation between calibration performance and expressive
power of a post-hoc calibrator and demonstrate that performance of current
state-of-the-art temperature-scaling based calibrators is limited by expressive
power.
Next, we show that PTS is a one-size-fits-all approach for post-hoc calibration:
in contrast to the common state-of the-art where performance varies widely
between datasets and network architectures, our approach consistently outper-
forms state-of-the-art methods on a wide range of datasets and model architec-
tures. We then demonstrate that in spite of the larger number of parameters,
PTS has a similar data efficiency compared to low-parametric baselines such as
temperature-scaling. Finally, we investigate the dependency structure between
logits and their prediction-specific temperature and show that that allowing for
non-linearities in this relationship improves calibration performance.

4.1 Baseline methods and datasets

With data efficiency and the ability to preserve the trained model’s accuracy
being key desiderata of post-hoc calibration methods [26], we mainly focus on
accuracy preserving baselines and/or temperature-scaling based methods. We
compare our approach to the following baseline methods:

– Base: Uncalibrated baseline model
– Temperature scaling (TS): Post-hoc calibration by temperature scaling [4]
– Ensemble Temperature scaling (ETS): Ensemble version of TS with 4 pa-

rameters [26]
– Isotonic regression (IR) [25]
– Accuracy preserving version of Isotonic regression (IRM) [26]
– Composite model combining Temperature Scaling and Isotonic Regression

(TS-IR) [26]
– The scaling-binning calibrator, combining temperature scaling with histogram

binning (PBMC) [9]
– Accuracy and intra-order preserving calibration (DIAG) [18]
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DIAG can be run with or without hyperparameter optimization; for a fair
comparison, since all other baselines including ours have fixed hyperparameters,
we report results without hyperparameter optimization.
We evaluate the performance of all models on three datasets, namely Imagenet,
CIFAR-10 and CIFAR-100. For all datasets, we calibrate various neural net-
work architectures and analyze a mix of complex and less complex settings. To
complement the complex architectures needed to perform well on Imagenet and
other complex datasets, we explore how our approach (and others) perform in
simpler tasks that require less complex models. For Imagenet we used 5 pre-
trained models provided as part of tensorflow, namely ResNet50, ResNet152 [6],
DenseNet169 [7], Xception [2] and MobileNetv2 [19]. For CIFAR-10 and CIFAR-
100, we trained VGG19 [20] and LeNet5 [10].

We used a standard setup for evaluating model calibration [4] and trained
PTS as well as all baselines on the standard validation sets of all datasets. We
then evaluated all models by computing the ECE on the standard test sets. For
CIFAR-10 and CIFAR-100, we used a validation dataset consisting of 5000 sam-
ples and an independent test set of 10000 samples. For ImageNet, we randomly
split the hold-out set into a validation set of 12500 samples and a test set of
37500 samples.

We quantify the quality of calibration for all experiments using the standard
Expected Calibration Error ECE1 based on 10 bins as well as and Expected
Calibration Error based on kernel density estimates, ECEKDE. In addition, we
also report results from the dimensionality-independent calibration gain, which
takes all classes into account [26].

PTS was trained as a neural network with 2 fully connected hidden layers
with 5 nodes each. Hyperparameters were the same for all experiments, namely
a learning rate of 0.00005, batch size of 1000 and stepsize of 100,000. We further
limited zs to the top 10 most confident predictions in all settings since we found
that they convey sufficient information. That means, PTS can be used in a large
variety of settings without the need to optimize hyperparameters.

5 Experiments and results

5.1 Higher expressive power leads to better calibration performance

To assess the link between expressive power and calibration for temperature-
scaling based models, we train our PTS calibrators with an increasing number
of nodes in the hidden layers on the Imagenet validation set. We compare cali-
bration performance of our neural-network-based parameterization of the tem-
perature to post-hoc calibrators with fixed temperature on the Imagenet test
set. Fig. 1 illustrates that increasing the expressive power of temperature scal-
ing (based on a single parameter) via a weighted ensembles of 3 temperatures
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Table 1: Expected calibration error ECE1. For all architectures our approach
largely outperforms baseline post-hoc calibrators.

Base IROvA IROvA-TS IRM PBMC DIAG TS ETS PTS (ours)

CIFAR LeNet5 1.91 1.99 1.92 1.57 2.14 1.94 1.91 1.67 1.47
CIFAR VGG19 7.92 1.10 0.77 1.03 1.66 1.51 1.37 1.34 0.84

CIFAR100 LeNet5 7.54 1.71 2.52 3.52 2.69 3.78 1.71 1.28 0.70
CIFAR100 VGG19 12.96 5.73 2.88 5.28 3.05 9.30 3.64 2.11 0.82

ImgNet ResNet50 6.26 6.60 5.66 2.86 3.47 1.53 1.85 1.35 1.34
ImgNet ResNet152 6.39 6.55 5.46 2.88 3.49 1.99 2.17 1.02 0.97
ImgNet DenNet169 6.13 6.61 5.64 2.74 3.39 1.89 1.97 1.08 1.05
ImgNet Xception 13.25 8.31 5.43 5.34 3.26 - 4.40 1.83 1.59
ImgNet MobNetV2 2.98 6.19 6.12 3.05 1.52 1.41 5.91 2.94 1.43

Table 2: Expected calibration error ECEKDE. Overall rankings are largely consis-
tent with ECE1. DIAG did not converge to a meaningful optimum for Xception.

Base IROvA IROvA-TS IRM PBMC DIAG TS ETS PTS (ours)

CIFAR LeNet5 1.93 1.82 1.83 1.50 2.33 2.11 1.97 1.82 1.49
CIFAR VGG19 7.34 1.24 1.11 1.07 1.95 1.92 1.85 1.72 1.38

CIFAR100 LeNet5 7.54 1.76 2.66 3.52 2.70 4.08 1.73 1.07 0.95
CIFAR100 VGG19 12.32 5.29 2.50 5.23 3.73 9.24 3.43 2.31 1.05

ImgNet ResNet50 5.61 5.93 5.00 2.54 4.82 1.17 1.44 1.57 1.32
ImgNet ResNet152 5.69 5.73 4.82 2.48 4.88 1.76 1.85 1.39 0.89
ImgNet DenNet169 5.49 5.95 4.97 2.39 4.81 1.56 1.53 1.29 1.03
ImgNet Xception 12.59 7.72 4.79 4.77 3.62 - 4.01 1.98 1.26
ImgNet MobNetV2 3.10 5.75 5.63 2.93 2.09 1.55 5.91 3.02 1.26

(4 parameters) results in an improved ECE (50% for MobileNetV2 trained on
ImageNet), as previously demonstrated. When further increasing the expressive
power of temperature-scaling based calibrators via a neural network, we find that
the calibration error further decreases with a larger number of parameters until
a plateau is reached (additional improvement in ECE of 52% for MobileNetV2
trained on ImageNet). We next evaluated the set of temperatures learnt by PTS
for predictions from three different models on the Imagenet test set (Fig. 2).
These temperatures span a wide range of values, which is in stark contrast to
only 3 temperatures used in ETS, indicating that for ETS the ensemble of only
3 temperatures limits its calibration performance.
Taken together, this illustrates that the performance of conventional temperature-
scaling based methods is limited by their inherent expressive power.
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Table 3: Calibration Gain (higher is better): Our approach (PTS) largely out-
performs baseline post-hoc calibrators also for a dimensionality-independent cal-
ibration metric.

IROvA IROvA-TS IRM PBMC DIAG TS ETS PTS (ours)

CIFAR LeNet5 0.01 0.01 0.03 -0.05 0.00 0.01 0.02 0.03
CIFAR VGG19 0.91 0.92 0.91 0.88 0.87 0.87 0.91 0.91

CIFAR100 LeNet5 0.69 0.65 0.48 0.59 0.55 0.67 0.70 0.72
CIFAR100 VGG19 1.67 1.99 1.70 1.94 0.66 1.92 2.03 2.09

ImgNet ResNet50 -0.02 0.14 0.39 0.26 0.47 0.45 0.47 0.47
ImgNet ResNet152 0.01 0.17 0.39 0.24 0.43 0.42 0.46 0.48
ImgNet DenNet169 -0.03 0.10 0.36 0.22 0.40 0.39 0.42 0.43
ImgNet Xception 0.28 0.20 0.46 0.41 - 0.33 0.44 0.49
ImgNet MobNetV2 0.20 0.08 0.36 0.34 0.38 0.28 0.36 0.38
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Fig. 2: Prediction-specific temperatures inferred by PTS for all samples in the
Imagenet test set. For all models, temperatures varied over a wide range of
values, which is in stark contrast to only 3 temperatures used in ETS.

5.2 PTS is a one-size-fits-all post-hoc calibrator

We next evaluate the performance of our approach on a total of 9 deep neural
networks trained on CIFAR-10, CIFAR-100 and Imagenet.
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Table 1 shows the standard ECE, Table 2 the KDE-based ECE and Table 3
calibration gain for all experiments. Rankings for all metrics are largely consis-
tent and our approach outperforms baselines in all settings in terms of ECE1.
ECEKDE suggests that in settings with low complexity - i.e. a simple dataset
with low number of classes such as CIFAR-10 and/or a simple architecture such
as LeNet - performance of PTS is comparable to ETS only. The more complex
a setting, the larger the gain of PTS. This range of complex architectures and
datasets is particularly relevant in practice since Guo et al. [4] have shown that it
is particularly modern architectures that are prone to mis-calibration. Addition-
ally, Table 3 shows the calibration gain [26], which indicates that PTS yields an
improved performance even for metrics, which are dimensionality-independent.
To make sure the choice of bin size when computing the ECE does not affect
our findings, we computed ECE1 for bin sizes M ranging from 5 to 20 in steps
of 2. Figure 3 (a) illustrates the mean ECE across the 5 architectures trained on
ImageNet and calibrated using TS, ETS and PTS. While small bin sizes result
in a systematically smaller ECE - a known bias [9] - PTS outperforms the other
TS-based methods for all bin sizes with rankings being unchanged.

5.3 PTS is data-efficient

A major advantage of TS-based models over other approaches is their high data-
efficiency paired with accuracy-preserving properties. We therefore designed ex-
periments to quantify the data-efficiency of PTS. To this end, we fitted our model
on increasingly smaller subsets of the validation set to calibrate a MobileNetV2
architecture trained on ImageNet and a LeNet5 architecture trained on CIFAR-
100. In both cases we varied the size of the subsets from 10% to 100% of the
respective standard validation set size. When evaluating ECE on the test set,
we found that like vanilla TS and ETS, our model yielded excellent performance
even when trained on small fractions of the validation set, maintaining one of
the key advantages of TS-based models (Figure 3 (b) and (c)). We confirmed
the robustness of these findings, by performing the dataset-size vs ECE exper-
iment for all other models trained on imagenet. We summarized the results by
normalizing ECE relative to PTS for each dataset size and model. We then took
the average across all models. Table 4 shows that across all models, only for very
small dataset sizes of 10%, PTS is outperformed by other approaches.

These findings are in contrast to non-parametric models, which also tend to
have a higher expressive power than standard TS approaches. When repeating
the data-efficiency experiment for this family of models, we found that calibra-
tion error increased substantially with decreasing validation set size. In addition,
IROVA and IROVA-TS also yielded a substantial decrease in accuracy (Figure
4).
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Fig. 3: Robustness of TS-based methods. (a) Mean ECE across 5 architectures
trained on ImageNet, with a confidence band illustrating one standard deviation.
PTS has the lowest calibration error across all architectures, irrespective of the
chosen number of bins. Robustness in terms of dataset size (b and c): ECE
for post-hoc calibrators trained on increasingly smaller subsets of the validation
sets of ImageNet (b) and CIFAR-100 (c), generated by subsampling decreasing
fractions of the full validation set (10% to 100%). PTS maintains the high data
efficiency inherent in TS methods with low ECE even for small validation sets.

5.4 The relationship between logits and temperature is non-linear

We finally assessed whether the information present in the logits can be cap-
tured via a linear model or whether non-linearities need to be accounted for. To
this end, we trained a linear version of our neural network without non-linear
activation function (with the same number of parameters as PTS to ensure a
fair comparison) as calibration map. Using this linear model to calibrate trained
networks with all assessed architectures on Imagenet results on average in a sub-
stantially higher ECE of 1.36 compared to 1.28 using a nonlinear model (Table
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Fig. 4: ECE and accuracy for non-parametric post-hoc calibrators on validation
sets of decreasing size. Non-parametric calibration methods suffer from a low
data-efficiency and decrease in accuracy compared to PTS.

Table 4: Normalized ECE relative to PTS for 5 Imagenet models across different
validation set sizes.

Validation Set Size [%] IROvA IROvA-TS IRM TS ETS

10 6.84 6.81 0.83 0.71 0.40
20 11.92 11.42 2.62 2.12 1.11
40 7.85 7.14 2.50 2.14 1.13
60 6.17 5.59 2.16 1.92 1.00
80 5.96 5.09 2.47 2.13 1.00
100 5.67 4.81 2.63 2.28 1.16

5). This indicated that it is not sufficient to generate prediction-specific tem-
peratures using a linear model, but that the relationship between logits and
temperature is non-linear.

Table 5: ECE for linear and non-linear models on Imagenet. Indicates that gen-
erating temperatures using simply a linear model is not sufficient.

Linear Model PTS (ours)

ImgNet ResNet50 1.47 1.34
ImgNet ResNet152 1.02 0.97
ImgNet DenNet169 1.22 1.05
ImgNet Xception 1.62 1.59
ImgNet MobNetV2 1.49 1.43
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6 Conclusion

In this work, we have introduced a novel approach for accuracy-preserving post-
hoc calibration by modeling prediction-specific temperatures. To boost the ex-
pressive power of TS-based models we introduce a dependency of the tempera-
ture on the predicted logits and propose a parameterization of the temperature
itself using a neural network. These prediction-specific temperatures make up a
highly expressive, accuracy-preserving and data-efficient generalization of tem-
perature scaling. In extensive experiments, we show that this approach results
in substantially lower calibration errors than existing post-hoc calibration ap-
proaches, with an average improvement over the current state-of-the-art (ETS)
of 30%.

Acknowledgements: This work was supported by the Munich Center for Machine
Learning and has been funded by the German Federal Ministry of Education and
Research (BMBF) under Grant No. 01IS18036B.

References

1. Ashukha, A., Lyzhov, A., Molchanov, D., Vetrov, D.: Pitfalls of in-domain uncer-
tainty estimation and ensembling in deep learning. arXiv preprint arXiv:2002.06470
(2020)

2. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1251–1258 (2017)

3. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American statistical Association 102(477), 359–378 (2007)

4. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. pp. 1321–1330. JMLR. org (2017)

5. Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., Hartley,
R.: Calibration of neural networks using splines. arXiv preprint arXiv:2006.12800
(2020)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

8. Jang, S., Lee, I., Weimer, J.: Improving classifier confidence using lossy label-
invariant transformations. In: International Conference on Artificial Intelligence
and Statistics. pp. 4051–4059. PMLR (2021)

9. Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: Advances in
Neural Information Processing Systems. pp. 3792–3803 (2019)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)



Parameterized Temperature Scaling 15

11. Ma, X., Blaschko, M.B.: Meta-cal: Well-controlled post-hoc calibration by ranking.
In: International Conference on Machine Learning. pp. 7235–7245. PMLR (2021)

12. Milios, D., Camoriano, R., Michiardi, P., Rosasco, L., Filippone, M.: Dirichlet-
based gaussian processes for large-scale calibrated classification. arXiv preprint
arXiv:1805.10915 (2018)

13. Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran,
D., Lucic, M.: Revisiting the calibration of modern neural networks. Advances in
Neural Information Processing Systems 34, 15682–15694 (2021)

14. Murphy, A.H.: A new vector partition of the probability score. Journal of Applied
Meteorology and Climatology 12(4), 595–600 (1973)

15. Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities
using bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (2015)

16. Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration
in deep learning. In: CVPR Workshops. vol. 2 (2019)

17. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: ADVANCES IN LARGE MARGIN CLASSI-
FIERS. pp. 61–74. MIT Press (1999)

18. Rahimi, A., Shaban, A., Cheng, C.A., Hartley, R., Boots, B.: Intra order-preserving
functions for calibration of multi-class neural networks. Advances in Neural Infor-
mation Processing Systems 33, 13456–13467 (2020)

19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

21. Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., Schön, T.:
Evaluating model calibration in classification. In: The 22nd International Confer-
ence on Artificial Intelligence and Statistics. pp. 3459–3467. PMLR (2019)

22. Wan, S., Wu, T.Y., Wong, W.H., Lee, C.Y.: Confnet: Predict with confidence.
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) pp. 2921–2925 (2018)

23. Wenger, J., Kjellström, H., Triebel, R.: Non-parametric calibration for classifi-
cation. In: International Conference on Artificial Intelligence and Statistics. pp.
178–190. PMLR (2020)

24. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers. In: Icml. vol. 1, pp. 609–616. Citeseer (2001)

25. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 694–699 (2002)

26. Zhang, J., Kailkhura, B., Han, T.: Mix-n-match: Ensemble and composi-
tional methods for uncertainty calibration in deep learning. arXiv preprint
arXiv:2003.07329 (2020)


