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Abstract. Recent advances in generative adversarial networks have
shown that it is possible to generate high-resolution and hyperrealistic
images. However, the images produced by GANs are only as fair and
representative as the datasets on which they are trained. In this paper, we
propose a method for directly modifying a pre-trained StyleGAN2 model
that can be used to generate a balanced set of images with respect to one
(e.g., eyeglasses) or more attributes (e.g., gender and eyeglasses). Our
method takes advantage of the style space of the StyleGAN2 model to
perform disentangled control of the target attributes to be debiased. Our
method does not require training additional models and directly debiases
the GAN model, paving the way for its use in various downstream appli-
cations. Our experiments show that our method successfully debiases the
GAN model within a few minutes without compromising the quality of the
generated images. To promote fair generative models, we share the code
and debiased models at http://catlab-team.github.io/fairstyle.
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1 Introduction

Generative Adversarial Networks (GANs) [9] are popular image generation models
capable of synthesizing high-quality images, and they have been used for a variety
of visual applications [19,29,34,35,42,43]. Like most of the deep learning models,
GANs are essentially statistical models trained to learn a data distribution and
generate realistic data that is indistinguishable to the discriminator from that in
the training set. To achieve this, GANs exploit and favor the samples that provide
the most information, and may neglect minority ones. Therefore, a well-trained
GAN favors learning the majority attributes, and the samples they generate suffer
from the same biases in the datasets on which they are trained. For example, a
GAN trained on a face dataset with few images of non-Caucasian individuals,
will generate images of mostly Caucasians [22, 30]. Our preliminary analysis
of the pre-trained StyleGAN2-FFHQ [16] model confirms the significance of
the generation bias: out of 10K randomly generated images, the male attribute
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(a) Black and Female (b) Black and Male

(c) Male with Eyeglasses (d) Non-Black and Male

Fig. 1: Sample outputs from the StyleGAN2 model debiased using our method
with respect to Black+Gender attributes.

is present in 42%, the young attribute is present in 70%, and the eyeglasses
attribute is present in 20%. Our analysis shows that these biases also exist in the
FFHQ training data with 42%, 72%, and 22% for the male, young and eyeglasses
attributes, respectively (see Appendix B for more details). These examples show
that GANs not only inherit biases from the training data, but also carry over
to the applications built on top of them. This is a particularly important issue
because pre-trained large-scale GANs such as StyleGAN2 are often used as the
backbone of various computer vision applications in a variety of domains such
as image processing, image generation and manipulation, anomaly detection,
dataset generation and augmentation. Therefore, any model or application that
depends on large pre-trained models such as StyleGAN2 would inherit or even
amplify their biases and is therefore bound to be unfair.

In this paper, we address the problem of fairness in GANs by debiasing a
pre-trained StyleGAN2 model with respect to single or multiple attributes. After
debiasing, the edited StyleGAN2 models allow the user to generate unbiased
images in which the target attributes are fairly represented. Unlike previous work
that requires extensive preprocessing or training an additional model for each
target attribute, our approach directly debiases the GAN model to produce more
balanced outputs, and it can also be used for various downstream applications.
Moreover, our approach does not require any sub-sampling of the input or output
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data, and is able to debias the GAN model within minutes without compromising
the image quality. Our main contributions are as follows:

– We first propose a simple method that debiases the GAN model with respect
to a single attribute, such as gender or eyeglasses.

– We then extend our method for jointly debiasing multiple attributes such as
gender and eyeglasses.

– To handle more complex attributes such as race, we propose a third method
based on CLIP [25], where we debias StyleGAN2 with text-based prompts
such as ‘a black person’ or ‘an asian person’.

– We perform extensive comparisons between our proposed method and other
approaches to enforce fairness for a variety of attributes. We empirically show
that our method is very effective in de-biasing the GAN model to produce
balanced datasets without compromising the quality of the generated images.

2 Related Work

In this section, we first review related work in fairness and bias. We then discuss
studies that specifically address fairness and bias in generative models. Finally,
we discuss related work in the area of latent space manipulation.

2.1 Fairness and Bias in AI

Fairness and bias detection in deep neural networks have attracted much attention
in recent years [6, 23]. Most existing work on fairness focuses on studying the
fairness of classifiers, as the predictions of these models can be directly used for
discriminatory purposes or associate unjustified stereotypes with a particular class.
Approaches to eliminating model bias can be divided into three main categories:
Preprocessing methods that aim to collect balanced training data [20, 21, 41],
methods to introduce constraints or regularizers into the training process [2,37,40],
and post-processing methods that modify the posteriors of the trained models
to debias them [7,12]. In our work, we focus on debiasing and fairness methods
developed specifically for GANs, which we discuss below.

2.2 Detecting and Eliminating Biases in GANs

The fairness of generative models is much less studied compared to the fairness
of discriminative models. Most research on the bias and fairness of GANs aims
to either eliminate the negative effects of using imbalanced data on generation
results or to identify and explain the biases. Research on bias and fairness of
GANs can be divided into three main categories: improving the training and
generation performance of GANs using biased datasets, identifying and explaining
biases, and debiasing pre-trained GANs.

The first research category, training GANs on biased datasets, aims to solve the
problem of low quality image generation when the model is trained on imbalanced
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datasets with disjoint manifolds and fails to learn the true data distribution. [32]
proposes a heuristic motivated by rejection sampling to inject disconnectedness
into GAN training to improve learning on disconnected manifolds. [31] proposes
Discriminator Optimal Transport (DOT), a gradient ascent method driven by
a Wasserstein discriminator to improve samples. [3] uses a rejection sampling
method to approximately correct errors in the distribution of the GAN generator.
[10] proposes a weakly supervised method to detect bias in existing datasets
and assigns importance weights to samples during training. The second category
of research aims to detect or explain bias in generative models. [18] proposes
to use attribute-specific classifiers and train a generative model to specifically
explain which style channels of StyleGAN2 contribute to the underlying classifier
decisions. The third line of research aims to debias and improve the sample
quality of pre-trained GANs. [11] proposes to train a probabilistic classifier to
distinguish samples from two distributions and use this likelihood-free importance
weighting method to correct for bias in generative models. However, this method
requires training a classifier for each attribute targeted for debiasing and cannot
handle biases in multiple attributes (e.g., gender and eyeglasses). [30] proposes a
conditional latent space sampling method to generate attribute-balanced images.
More specifically, latent codes from StyleGAN2 are sampled and classified. Then,
a Gaussian Mixture Model (GMM) is trained for each attribute to create a set
of balanced latent codes. Another recent work, [26], proposes to use the latent
codes from the W -space of StyleGAN2 to train a linear SVM model for each
attribute and then use the normal vector to the separation hyperplane to steer
the latent code away from or towards acquiring the target attribute for debiasing.
Unlike [26, 30], our method does not require model training and aims to directly
debias the GAN model which can be used to generate attribute-balanced image
sets.

2.3 Latent Space Manipulation

Several methods have been proposed to exploit the latent space of GANs for image
manipulation, which can be divided into two broad categories: supervised and
unsupervised methods. Supervised approaches typically benefit from pre-trained
attribute classifiers that guide the optimization process to discover meaningful
directions in the latent space, or use labeled data to train new classifiers that
directly aim to learn directions of interest [8, 27]. Other work shows that it
is possible to find meaningful directions in latent space in an unsupervised
manner [14, 33]. GANSpace [13] proposes to apply principal component analysis
[36] to randomly select the latent vectors of the intermediate layers of the
BigGAN [5] and StyleGAN models. A similar approach is used in SeFA [28],
where they directly optimize the intermediate weight matrix of the GAN model
in closed form. LatentCLR [39] proposes a contrastive learning approach to find
unsupervised directions that are transferable to different classes. In addition,
both StyleCLIP [24] and StyleMC [17] use CLIP to find text-based directions
within StyleGAN2 and perform both coarse and fine-grained manipulations of
different attributes. Another recent work, StyleFlow [1], proposes a method for
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attribute-conditioned sampling and attribute-controlled editing with StyleGAN2.
With respect to GAN editing, [4] proposes a method to permanently change the
parameters of a GAN to produce images in which the desired attribute (e.g.,
clouds, thick eyebrows) is always present. However, they did not aim to debias
GANs for fairness and their methodology differs from ours.

3 Methodology

In this section, we propose three methods to debias a pre-trained StyleGAN2
model. We begin with a brief description of the StyleGAN2 architecture and
then describe our methods for debiasing a single attribute, joint debiasing of
multiple attributes, and debiasing with text-based directions. Figure 2 illustrates
a general view of our framework.

3.1 Background on StyleGAN2

The generator of StyleGAN2 contains several latent spaces: Z, W, W+ and S,
also referred to as the style space. z ∈ Z is a latent vector drawn from a prior
distribution p(z), typically chosen as a Gaussian. The generator G acts as a
mapping function G : Z → X , where X is the target image domain. Therefore, G
transforms the vectors from z into an intermediate latent space W by forward
propagating them through 8 fully connected layers. The resulting latent vectors
w ∈ W are then transformed into channel-wise style parameters, forming the style
space, denoted S. In our work, we use the style space S to perform manipulations,
as it is shown [38] to be the most disentangled, complete and informative space
of StyleGAN2.

The synthesis network of the generator in StyleGAN2 consists of several
blocks, each block having two convolutional layers for synthesizing feature maps.
Each main block has an additional 1×1 convolutional layer that maps the output
feature tensor to RGB colors, referred to as tRGB. The three different style code
vectors are referred to as sB1, sB2, and sB+tRGB, where B indicates the block
number. Given a block B, the style vectors sB1 and sB2 of each block consist of
style channels that control disentangled visual attributes. The style vectors of
each layer are obtained from the intermediate latent vectors w ∈ W of the same
layer by three affine transformations, wB1 → sB1,wB2 → sB2,wB2 → sB+tRGB .

3.2 Measuring Generation Bias

To assess whether our method produces a balanced distribution of attributes, we
begin by formulating and quantifying the bias in the generated images. Given an
n-dimensional image dataset I ⊆ Rn, GANs attempt to learn such a distribution
P (I) = Pdata (I). Thus, a well-trained generator is a mapping function G : Z → I,
where Z ⊆ Rm denotes the m-dimensional latent space, usually assumed to be
a Gaussian distribution. Moreover, we can sample latent codes z and use the
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Fig. 2: An overview of the FairStyle architecture, z denotes a random vector
drawn from a Gaussian distribution, w denotes the latent vector generated by
the mapping network of StyleGAN2. Given a target attribute at, si,j represents
the style channel with layer index i and channel index j controlling the target
attribute. We introduce fairstyle bias tensors into the GAN model, in which we
edit the corresponding style channel si,j for debiasing. The edited vectors are
then fed into the generator to get a new batch of images from which we obtain
updated classifier results for at. The fairstyle bias tensors are iteratively edited
until the GAN model produces a balanced distribution with respect to the target
attribute. The de-biased GAN model can then be used for sampling purposes or
directly used as a generative backbone model in downstream applications.

trained model to generate a realistic dataset D = {G (zi)}Ni=1 of N generated
images belonging to the distribution P (I) ≈ Pdata (I).

Assuming that real and generated images contain k semantic attributes
a1, a2, ..., ak, a well-trained GAN learns any bias inherent in the original data
distribution Pdata (I) with respect to the semantic attributes. In our work, we
are interested in finding both the marginal distribution of the individual semantic
attributes P (ai) and the joint distributions of the attribute pairs P (ai, aj) of
the generated dataset D. To measure generation bias, we generate N random
images with pre-trained StyleGAN2 trained on the FFHQ dataset, and use 40
pre-trained binary attribute classifiers [15] to assign labels to each image such
that ai = 1 if the image contains the attribute ai, and ai = 0 otherwise.

3.3 Identifying channels that control certain attributes

For a target attribute at such as eyeglasses, we first propose a simple approach
that identifies a single style channel si,j responsible for controlling the target
attribute, where layer and channel indices are denoted by i and j, respectively. We
assume that there is a binary classifier Cat

corresponding to the target attribute,
such as pre-trained CelebA binary classifiers [15]. The identified style channel
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si,j is then used for debiasing the GAN model with respect to single (Section
3.4) and multiple attributes (Section 3.5).

To identify si,j , we first generate N random noise vectors to obtain their
style codes using StyleGAN2. Given an arbitrary style code s, we generate two
perturbed style codes by adding and subtracting a value of c at the corresponding
index i and channel j. This process is repeated for N randomly generated
style codes, and each perturbed style code is forward propagated through the
StyleGAN2 generator to synthesize images. Finally, we identify si,j corresponding
to the target attribute by selecting the style channel for which the perturbation
causes the highest average change in classification score over the batch of N
images:

argmax
i,j

PN
k=1 |Cat

(G(s−∆si,j))− Cat
(G(s+∆si,j))|

N
(1)

where ∆si,j represents c as the perturbation value, k denotes the index of
the generated image, and G denotes the generator of StyleGAN2. In other words,
we repeat the same process for each channel of the style codes and leave the
values of the other style channels unchanged. In our experiments, we use the
perturbation value c = 10 and N = 128.

3.4 Debiasing single attributes

Once we have identified a style channel si,j that controls the target attribute at, we
can perturb the value of the channel to increase or decrease the representation of
the target attribute in the generated output. In our work, we use this observation
to edit the parameters of a pre-trained StyleGAN2 model that can be used to
generate balanced outputs with respect to the target attribute at.

To this end, we introduce additional bias tensors, which we call fairstyle
tensors, into the GAN model (see Figure 2). These tensors are added to the
StyleGAN2 convolution modulations on a channel-wise manner. More specifically,
for a fairstyle tensor, b, we set bi,j = c and bm,n = 0, where m,n ̸= i, j, and c is
initialized to 0. In other words, the values inside the fairstyle tensors are set to
zero except for the channel indices i, j that correspond to the target attribute.

We then iteratively generate a batch of N = 128 latent codes and compute
their updated style vectors. Given an arbitrary style vector s, we then compute
the updated vector s′ = s + b. We forward propagate these style vectors to
generate a batch of images and compute the distribution of the target attribute
using an attribute classifier. Our goal is to optimize fairstyle tensor b such that
the images generated using the updated GAN model have a fair distribution with
respect to the target attribute at. Similar to [30], we use the Kullback-Leibler
divergence between the class distribution of at and a uniform distribution to
compute a fairness loss value Lfair, formulated as follows:

Lfair = KL(PD(at) || U(at)) (2)
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where PD denotes the class probability distributions and U denotes the
uniform distribution. We used a one-dimensional gradient descent for optimizing
fairstyle tensors b. The updated GAN model with the optimized fairstyle tensors
can then be used to generate images with a balanced distribution with respect
to the target attribute.

3.5 Debiasing multiple attributes

While our first method is effective at debiasing the GAN model with respect to
a single attribute such as eyeglasses, it does not allow for the joint debiasing
of multiple attributes such as gender and eyeglasses. Therefore, we propose to
extend our method to multiple attributes. Let at1

and at2
represent attributes

that we want to jointly debias, such as gender and eyeglasses. Let si1,j1 and si2,j2

represent the target style channels identified by the method in Section 3.3 for
attributes at1

and at2
, respectively. Similar to our first method, we iteratively

generate N = 128 random noise vectors and their corresponding style codes.
Given an arbitrary style code s, we then compute the fairstyle tensor for the
corresponding channels as follows:

bi1,j1
= x2 ×

si2,j2
− s̄i2,j2

σ̂si2,j2

+ y2

bi2,j2
= x1 ×

si1,j1 − s̄i1,j1

σ̂si1,j1

+ y1

(3)

where x1, y1, x2, y2 are learned parameters initialized at 0 and optimized
using gradient descent over a batch of N images, and s̄i,j , σ̂si,j denote the mean
and standard deviation for a given target style channel si,j calculated as follows:

s̄i,j =
1

N

NX
k=1

si,j (4)

σ̂2
si,j =

1

N − 1

NX
k=1

(si,j − s̄i,j)
2 (5)

Similar to our first method, we use KL divergence as a loss function between the
joint class distribution of attributes at1

, at2
and a uniform distribution. After

optimizing the fairstyle tensor, we use the GAN model to produce a balanced
distribution of images with respect to the target attributes.

Our method can also be extended to support joint debiasing for more than
two attributes. Let the number of attributes for which we want to jointly debias
our model be M and assume that we have identified a style channel si,j for each
target attribute. In this case, each corresponding channel of the fairstyle tensor
is updated as follows:

bim,jm =

MX
k=1,k ̸=m

(xmk
× sik,jk − s̄ik,jk

σ̂sik,jk

+ ymk
) (6)
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(a) Gender (b) Eyeglasses (c) Smiling (d) Young

(e) Gender + Eyeglasses (f) Eyeglasses + Smiling (g) Gender + Smiling

Fig. 3: Distribution of single and joint attributes before and after debiasing
StyleGAN2 model with our methods.

We note that Eq. 6 is simply a generalized version of Eq. 3 where each fairstyle
tensor channel for a target depends on the other target channels. In this case,
the number of resulting subclasses is equal to M2 and the number of parameters
to be learned is equal to 2×M × (M − 1).

3.6 Debiasing attributes with text-based directions

The first two methods debias the GAN model with single or multiple channels,
where the channels responsible for the desired attributes were identified using pre-
trained attribute classifiers. However, the complexity of the attributes is limited
by the availability of the classifiers. To debias even more complex attributes such
as ‘a black person’ or ‘an asian person’, we debias style channels with text-based
directions using CLIP. We use StyleMC [17], a text-guided image generation
and manipulation framework, to identify the top style channels that control the
attributes described in the input text.

In addition to the text-based directions, we also replace the attribute classifier
with a CLIP-based one, since binary classifiers are not available for more complex
attributes. In this case, we label images by comparing their CLIP-based distances,
D CLIP , with a text prompt at describing our target attribute and with another
text prompt atneg negating the attribute (e.g., ‘the photo of a person with curly
hair’ vs. ‘the photo of a person with straight hair’) as follows:

Cat =

(
1, if DCLIP(G(s), at) < DCLIP(G(s), atneg

).

0, otherwise.
(7)

where s is an arbitrary style code, D CLIP is the cosine distance between
CLIP embeddings of the generated image and the text prompt at or atneg

, and
Cat

is the binary label assigned based on whichever text prompt (at or atneg
)

achieves the shortest CLIP distance from the input image. We note that the



10 C. Karakas, et al.

negative text prompt atneg
, as in the example above, may be biased and exclude

certain groups, such as ’the photo of a black person’.
With an effective approach to assign classification scores to generated images,

we identify a direction sat consisting of one or more style channels using [17]. We
use the same debiasing approach as our first method by replacing b with αsat

,
where α is a learned manipulation strength parameter initialized as 0. Similarly,
we use the binary attribute scores Cat

calculated with CLIP to compute the
fairness loss Lfair and optimize the fairstyle tensors.

4 Experiments

In this section, we explain our experimental setup and evaluate the proposed
methods using StyleGAN2 trained on the FFHQ dataset. Furthermore, we
show that our methods effectively debias StyleGAN2 without requiring model
training or affecting the quality of generation. Next, we compare our methods to
FairGen [30] and StyleFlow [1] methods.

4.1 Experimental Setup

For the first two methods, we identify a layer and a style channel for the gender,
eyeglasses, smiling and age attributes and use them in our single or multiple
attribute debiasing methods as described in Section 3.4 and Section 3.5. For the
third method, described in Section 3.6, we experiment with a variety of simple
and complex attributes such as ‘a person with eyeglasses’, ‘a smiling person’, ‘a
black person’, ‘an asian person’ using [17]. We generate and label 1000 images to
compute the mean and std statistics for our second method.

For our experiments, we use the official pre-trained StyleGAN2 models and
binary attribute classifiers pre-trained with the CelebA-HQ dataset1. The archi-
tecture of the binary classifiers is described in Appendix A. To identify attribute-
relevant style channels, we exclude stRGB layers from the style channel search
since they cause entangled manipulations [38]. Following [17], we also exclude
the style channels of the last four blocks from the search, as they represent very
fine-grained features.

For the comparison with FairGen, we use the pre-trained GMM models2 and
we had to limit our comparison to the available pre-trained models in Table
1. We used the StyleFlow’s official implementation3 to uniformly sample latent
codes from each attribute group. Although StyleFlow is not intended for fairness,
we use it for conditional sampling similar to [30]. In StyleFlow, we had to limit
our comparisons to the available attributes gender, smiling, eyeglasses and age
and their multiple attributes age and eyeglasses, age and gender, gender and
eyeglasses. We exclude the comparison for racial attributes for both methods
because no pre-trained models were available for these attributes and the training

1 https://github.com/NVlabs/stylegan2
2 https://github.com/genforce/fairgen
3 https://github.com/RameenAbdal/StyleFlow

https://github.com/NVlabs/stylegan2
https://github.com/genforce/fairgen
https://github.com/RameenAbdal/ StyleFlow
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(a) Female with Eyeglasses (b) Female w/o Eyeglasses

(c) Male with Eyeglasses (d) Male w/o Eyeglasses

(e) Black with Eyeglasses (f) Black w/o Eyeglasses

(g) Non-Black with Eyeglasses (h) Non-Black w/o Eyeglasses

Fig. 4: Qualitative results for fair image generation in GANs with Gen-
der+Eyeglasses and Black+Eyeglasses attributes.
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code was not available to train new ones. We run all experiments, including
comparisons, on same server using a single GeForce GTX Titan X GPU (see
Appendix D for runtime analysis).

4.2 Fairness Analysis

To assess the fairness of the generated images, we report the KL divergence
between the marginal or joint distribution of the generated images with respect
to the target attributes and a uniform distribution (see Eq. 2). Our goal is to
obtain a distribution with respect to one or more attributes that closely resembles
a uniform distribution in order to achieve a fair distribution. To this end, we
generate 10, 000 images for each of our methods as well as for the pre-trained
StyleGAN2 model, FFHQ dataset, FairGen and StyleFlow.

We start with our first method to debias a single target attribute, and present
marginal distribution of the datasets generated with our method and the pre-
trained StyleGAN2 in Figure 3 (a-d). As can be seen in the figure, our first
method can successfully debias attributes and achieves almost perfectly balanced
datasets for the attributes gender, eyeglasses, age and smiling. Next, we use
our second method to debias gender and eyeglasses, eyeglasses and smiling and
gender and smiling attributes. As can be seen in Figure 3 (e-g), our second
method is very effective at debiasing even extremely imbalanced distributions as
in the case of the gender and eyeglasses attributes, and can achieve a significant
balance.

We then measure the KL divergence between the distribution of generated
datasets and a uniform distribution, and provide a comprehensive comparative
analysis with the FFHQ training dataset, pre-trained StyleGAN2, FairGen, and
StyleFlow. We debias single attributes for eyeglasses, age, smiling, gender and
joint attributes for the Age+Gender, Age+Eyeglasses, and Gender+Eyeglasses
(see Table 1). As can be seen in the table, our method outperforms StyleFlow,
Fairgen and the pre-trained StyleGAN model on all attributes and achieves KL
divergence values that are very close to uniform distribution in all single-attribute
debiasing experiments. We note that FairGen requires training separate GMM
models for each attribute and sampling input latents while our method directly
edits the GAN model, which can be used for sampling images like FairGen, or in
any downstream application.

We also perform additional single-attribute debiasing experiments for the
highly biased attributes black, asian, and white. Since the CelebA classifiers
did not cover these attributes, we used our CLIP-based method to debias the
StyleGAN2 model for the black, asian, and white attributes. Additionally, we
provide performance comparisons between our CLIP-based classifier and binary
classifiers for existing attributes in Appendix E. We present the results of this
experiment in Table 2. As can be seen in the table, our method achieves a
distribution that is very close to a uniform distribution, and effectively produces
unbiased datasets with respect to the racial attributes.
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Table 1: KL Divergence between a uniform distribution and the distribution of
images generated with our method, StyleFlow and FairGen. FFHQ and Style-
GAN2 are included for comparison purposes.

Method Age+Gender Age+Glasses Gender+Glasses
FFHQ 0.2456 0.3546 0.2421

StyleGAN2 0.2794 0.3836 0.2495
StyleFlow 0.2141 0.1620 0.1214
FairGen 3.73× 10−2 3.30× 10−2 1.85× 10−3

FairStyle 2.57× 10−2 1.57× 10−2 2.41× 10−4

Glasses Age Smiling Gender

FFHQ 0.186 0.091 0.005 0.015
StyleGAN2 0.180 0.109 0.011 0.018
StyleFlow 0.061 3.98× 10−4 0.045 0.023
FairGen 7.07× 10−4 1.77× 10−3 1.80× 10−5 4.21× 10−4

FairStyle 0 1.80× 10−7 8× 10−8 3.20× 10−7

4.3 Qualitative Results

We use our methods to debias StyleGAN2 for multiple attributes and show the
generated images in Figure 1 and Figure 4. As can be seen in the figures, our multi-
attribute debiasing method generates balanced images for the attributes gender
with eyeglasses (Figure 4 (a-d)), and our CLIP-based method generates balanced
images for the attributes gender and black (Figure 1 (a-d)) and attributes black
and eyeglasses (Figure 4) (e-h)).

4.4 Generation Quality

We note that a fair generative model should not compromise on generation quality
to maintain its usefulness. To ensure that our methods generate high quality and
diverse images, we report the Fréchet Inception Distance (FID) between sets
of 10K images generated by the debiased StyleGAN2 model produced by our
method and by the pre-trained StyleGAN2 model. Unlike our method, FairGen
and StyleFlow do not edit the GAN model, but rely on subsampling latent vectors
from GMM or normalizing flows models. Therefore, we exclude them from the
FID experiments.

To test image quality after debiasing the GAN model, we use the attribute
pairs gender and eyeglasses, race and gender and race and eyeglasses to compute
the FID scores of the debiased datasets. While the pre-trained StyleGAN2 model
achieves a FID score of 14.11, our method achieves fairly similar FID score of
14.72 (a lower FID score is better). Note that a small increase in FID scores is
expected as the distribution of generated images is shifted for debiasing compared
to the real images from the training data. However, we note that the increase in
FID score is negligible and the debiased GAN model still generates high quality
images (see Figure 1 and Figure 4).
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Table 2: KL Divergence between a uniform distribution and the distribution of
images generated by our text-based method to debias the black, asian, and white
attributes. FFHQ and StyleGAN2 are included for comparison purposes.

Method Black Asian White

FFHQ 0.576 0.279 0.042
StyleGAN2 0.603 0.319 0.057

FairStyle 8.00× 10−6 7.20× 10−7 2× 10−6

5 Limitations and Broader Impact

While our proposed method is effective in debiasing GAN models, it requires
pre-trained attribute classifiers for style code optimization. We note that the
debiasing process can be affected by biases in these classifiers, a problem that also
occurs in the competing methods. This is especially important when debiasing
attributes that are known to be biased, such as racial attributes like black or
asian.

6 Conclusion

Generative models are only as fair as the data sets on which they are trained. In
this work, we attempt to address this problem and propose three novel methods
for debiasing a pre-trained StyleGAN2 model to allow fairer data generation
with respect to a single or multiple target attributes. Unlike previous work that
requires training a separate model for each target attribute or subsampling from
the latent space to generate debiased datasets, our method restricts the debiasing
process to the style space of StyleGAN2 and directly edits the GAN model
for fast and stable fair data generation. In our experiments, we have shown
that our method is not only effective in debiasing, but also does not affect the
generation quality. We believe that our method is not only useful for generating
fairer data, but also our debiased models can serve as a fairer framework for
various applications built on StyleGAN2. Our method is currently applicable
to style-based architectures such as StyleGAN2 since it directly benefits from
stylespace. However, we consider extending our method to other architectures
such as BigGAN as future work.
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