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Abstract. Learning an egocentric action recognition model from video
data is challenging due to distractors in the background, e.g., irrelevant
objects. Further integrating object information into an action model is
hence beneficial. Existing methods often leverage a generic object detec-
tor to identify and represent the objects in the scene. However, several
important issues remain. Object class annotations of good quality for
the target domain (dataset) are still required for learning good object
representation. Moreover, previous methods deeply couple existing ac-
tion models with object representations, and thus need to retrain them
jointly, leading to costly and inflexible integration. To overcome both
limitations, we introduce Self-Supervised Learning Over Sets (SOS), an
approach to pre-train a generic Objects In Contact (OIC) representation
model from video object regions detected by an off-the-shelf hand-object
contact detector. Instead of augmenting object regions individually as
in conventional self-supervised learning, we view the action process as
a means of natural data transformations with unique spatiotemporal
continuity and exploit the inherent relationships among per-video ob-
ject sets. Extensive experiments on two datasets, EPIC-KITCHENS-100
and EGTEA, show that our OIC significantly boosts the performance of
multiple state-of-the-art video classification models.

Keywords: handled objects, egocentric action recognition, self-supervised
pre-training over sets, long-tail setup.

1 Introduction

Egocentric videos recorded by wearable cameras give a unique perspective on hu-
man behaviors and the scene context [9,32,44]. Existing action recognition meth-
ods, typically developed for third-person video understanding, focus on learn-
ing from the whole video frames [4,15,28,6,34,51,60]. Unlike third-person videos
where actions often take place in dramatically different background scenes (e.g.,
swimming in a pool, cycling on the road) [6,45], egocentric videos are often col-
lected at a specific scene (e.g., a kitchen) with similar background shared across
different human actions (e.g., cutting onion and washing knife) and cluttered
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Fig.1. Handled Objects are vital for determining actions in egocentric
videos. However, most action classification models learn directly from video frames
(left). This paper puts manipulated objects (right) at the forefront without the need
for expensive and tedious fine-grained object annotations.

with distractors (e.g., a knife on the countertop). These distinctive characteris-
tics bring extra challenges for most existing action models without a fine-grained
understanding of spatiotemporal dynamics and context.

Recent works have incorporated information from other modalities, such as
audio [28,29], narration language [3,27], and eye gaze [31], to overcome these
challenges in the video action model. This is motivated by their complementary
information and the modality-specific nature of distractors. Object information
is a powerful complement to prior video action models [12,13,52,56]. While a
video model represents the sequence as a whole, combining foreground and con-
text, object detectors exploit bounding box annotations to explicitly model each
object, separately from the others and background.

Our work falls in this line of research with a crucial difference. We con-
sider that bounding box annotation is costly and unsuited for long-tail open-
vocabulary object distributions across the scenes, e.g., a kitchen setting. Large-
scale annotations are thus seldom possible in most cases. We tackle this issue by
capitalizing an off-the-shelf hand-object contact detector to localize class-agnostic
object regions in the video. Crucially, we introduce a novel self-supervised ap-
proach to learning a specialized representation of the detected object regions
without resorting to object-level labels. Our key idea is to leverage the spa-
tiotemporal continuity in videos as a native context constraint for exploiting the
inherent relationships among the set of detected object regions per video. In-
tuitively, all the handled object regions play respective roles during an action,
and they collectively provide a potentially useful context clue for learning a
suitable object representation (e.g., the “pan” and “spoon” while mixing - see
Fig. 1). With our class agnostic self-supervised learning, there is also a potential
that the natural action class imbalance problem would be simultaneously alle-
viated — a typical yet understudied problem in video understanding. We term
our self-supervised pre-training Self-Supervised Learning Over Sets (SOS). Af-
ter pre-training, we transfer the specialized representation of detected objects to
a target task, e.g., video classification. For this purpose, we employ an Objects
in Contact (OIC) network and further fine-tune the entire representation with
weak video-level labels. Once trained, our OIC can be flexibly integrated with
existing video classification models, further boosting their performance.

We make three contributions in this paper. (1) We investigate the merits
of learning a representation of handled objects for egocentric action recognition,
easy to integrate over multiple state-of-the-art video action models without the
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need for expensive fine-grained region-level labeling on the target dataset. (2) To
that end, we leverage an off-the-shelf hand-object contact detector to generate
class-agnostic object regions and introduce a novel set self-supervised learning
approach, SOS, to learn a specialized representation of object regions. SOS ex-
ploits the inherent relation (e.g., temporal continuity and concurrence) among
handled objects per video to mine the underlying action context clue by treat-
ing all the objects collectively as a set. (3) Experiments on two egocentric video
datasets showcase that our OIC, aided with our SOS pre-training, complements
multiple existing video classification networks and yields state-of-the-art results
in video classification. Moreover, we demonstrate the benefit of SOS for dealing
with the realistic long-tail setup in videos. (Sec. 4.3).

2 Related Work

Egocentric action recognition. Egocentric action recognition has made
significant advances in recent years, thanks to the introduction of ever-larger

video benchmarks [9,10,32]. Early efforts were focused on adapting representa-
tive generic video models [15,34,51,60]. Later on, a variety of dimensions were
investigated. For example, Kazakos et al. [28] combined multi-modal informa-

tion (e.g., optical flow, audio) within a range of temporal offsets. Bertasius et al.
[3] leveraged the language-based semantic context to supervise the learning of
active object detection. Li et al. [30] investigated the pre-training of a video en-
coder for mitigating the domain gap from the common pre-trained video datasets
(e.g., Kinetics [0]). Sudhakaran et al. [16] designed an LSTM-based Long-Short
Term Attention model to locate relevant spatial parts (e.g., active objects) with
temporally smooth attention. Similarly, Yan et al. [57] proposed an Interactive
Prototype Learning (IPL) model for better learning active object representations
by interaction with different motion patterns. Instead, Li et al. [32,31] and Liu et
al. [35] used human gaze to guide the attention of deep models to interacting re-
gions. Similar to ours, object detection has been previously exploited to improve
action recognition. Indeed, early work already identified explicit hand detection
as an informative queue for action recognition [1]. More recently, Wang et al. [54]
exploited object regions and their spatiotemporal relations to enhance video rep-
resentation learning. Similar to ours, Baradel et al. [2] devised an architecture
with a video branch and an object branch. However, their approach requires
object-level annotations and has no mechanism to identify foreground/active
objects, thus being vulnerable to distractors. Wu et al. [56] used an attentive
mechanism and incorporated long-term temporal context. Wang et al. [52] pro-
posed a model for egocentric action recognition that relies on a complex attentive
mechanism to sieve out distractors. Unlike prior work, our method does not as-
sume fine-grained object-level annotations from the target dataset, hence being
scalable in practical applications. Critically, their object representation is tightly
coupled with an action model with the need for joint training. In contrast, we
learn an independent object representation model enabling to flexibly benefit
from off-the-shelf action models in a decoupled post-training manner.
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Hand-object interaction (HOT). While generic Human-Object Interaction is
a widely-studied topic [16,40,33,22], recent works have shown that it is possible
to train large-scale domain-agnostic hand and hand-object contact detectors
[43,37]. As face detection models, these models can be deployed without domain-
specific retraining and still maintain reasonable effectiveness. We apply one such
off-the-shelf hand-object contact model without retraining in our work [43].
Self-supervised learning. There has been a recent surge in self-supervised
learning (SSL) for learning generic feature representation models from large-scale
datasets without labels [20,8,7,5,18,48]. Inspired by this trend, we introduce a
novel application of exiting SSL techniques to learn a representation specific for
handled objects. A direct application of an SSL algorithm to our problem does
not produce optimal results. We propose two important modifications: firstly,
instead of following a classic fine-tuning from domain-agnostic pre-training, e.g.
over ImageNet, our method leverages on-domain SSL for solving the domain
shift problem with model pre-training. To this end we use a domain-agnostic
SSL model as means of pre-training, followed by domain-specific SSL training
[11]. Secondly, existing SSL methods focus on single images, using two different
augmentations to obtain two copies of an image. Instead, in the presence of
video, sampling different timestamps and locations can create more natural and
effective augmentations [39]. Inspired by this insight, we propose a variant of
SwAV that operates on sets of image regions extracted from a video sequence.
Long-tail learning in video. Real-world egocentric actions are typically class-
imbalanced [9,10,32]. Despite extensive works in image domains [11,23,25,26,36,58],
class imbalance is still less studied in video tasks [59]. Inspired by the intriguing
finding that SSL learns a suitable representation with class-imbalance scenarios
[58], we evaluate if the insights also apply to videos. Unlike [58] images, video
data is more complex due to the extra temporal dimension and the structured
nature of action labels (i.e., defined as a tuple of two imbalanced label distri-
butions, verb, and noun) and only access to video-level supervision. This paper
contributes to the first study of the relationship between SSL and long-tailed
learning in egocentric video understanding.

3 Method

We aim to learn a generic object-in-contact (OIC) model for improving the
performance of existing egocentric action models in a plug-and-play manner.

Overview. Given a video V and an off-the-shelf hand-object contact detector
model [413], we obtain a set of object regions that likely contain objects manipu-
lated by the hands. Let B = {B;};—1.a denote the set of M object regions in the
video. We have an object region encoder fp so that y% = fp(V, B;;05). To that
end, we propose a simple yet effective approach termed, Self-Supervised Learning
Over Sets (SOS), to train p in two steps: (I) First, a large-scale self-supervised
learning model is used for pre-training. (II) Followed by, an on-domain self-
supervised learning stage yielding a specialized representation better suited for
the task of interest. Given a target task, standard discriminative fine-tuning is



SOS: Self-supervised Learning Over Sets 5

t~T L
pj K
I M n'.b G E ‘ b "' il Encoder MLP C —é% q} logpf
! \‘ t~T | - a
P

€
t~Ty
5! (verb, noun)
Action
Target task

Fig. 2. Overview of the proposed Self-Supervised Learning Over Sets (SOS)
approach for pre-training a specialized Objects In Contact (OIC) representation
model. Taking as input object regions extracted by an off-the-shelf hand-object contact
detector in videos, we formulate a two-staged pre-training strategy. The first stage
consists of generic self-supervision learning (e.g. ImageNet). In the second stage, we
exploit self-supervised learning on per-video object sets using actions as the natural
transformations with spatiotemporal continuity. Given a target task, we further fine-
tune the representation through video-level action labels.
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followed, using the video-level labels and standard cross-entropy as supervision.
An overview of our SOS is depicted in Fig. 2.

3.1 Self-Supervised Object Representation Learning from Video
Object Regions

Object representations are typically learned as part of the standard object detec-
tor training pipeline [52]. However, we do not assume the availability of object-
level annotations. Instead, we learn the object representation in an unsupervised
manner using class-agnostic regions from the hand-object contact detector [43].
Stage I: Model pre-training. There is a lack of standard large-scale datasets
for model pre-training in the egocentric video so that one could use the widely
used ImageNet [12] supervised pre-trained weights for model initialization. This
gives rise to an inevitable domain shift challenge for object representation learn-
ing due to the intrinsic discrepancy in data distribution. To overcome these
domain shift challenges, we leverage the more domain-generic self-supervised
learning (SSL) strategy for model pre-training [7,18,20,50,8,5]. In practice, due
to the relatively small size of the target dataset, it is key to start with an SSL
model trained on ImageNet for model initialization. In general, any existing SSL
method is applicable. Based on preliminary experiments, we select the recent
state-of-the-art model SwAV [5] (Fig. 3 top - Stage I).

Stage II: On-domain Self-supervised learning Over Sets, SOS. The key
challenge is how to capitalize the unlabeled object regions. Motivated by the
results of [11], we perform on-domain SSL to specialize the object region encoder
fB to better represent the regions in the target domain, egocentric videos.
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Fig. 3. Overview of the proposed SwAV-S. Schematically outlining the differences
w.r.t.the standard SwAV [5] for image regions, and our self-supervised pre-training

approach using videos and leveraging actions as natural transformations.

The promising pre-training recipe from [41] ignores a crucial piece of infor-

mation from our problem definition, object regions extracted from a single video
are not independent but collectively correlated due to the ongoing action. In-
spired by this consideration, we introduce the notion of actions as natural data
transformation exploiting the unique spatiotemporal continuity of videos and the
inherent relations among a collection of objects per video. We argue that sta-
tistically predominant inter-object relationships (e.g., temporal continuity and
concurrence) provide a strong self-supervisory signal for learning a specialized
object representation suitable for action recognition.

We consider each video V as a training sample and treat the set construc-
tion process from all regions in the video B as a spatiotemporal transformation
process, subject to the structural variations of the performed action in the video
(i.e., elastic, geometrical or ambient changes that objects undergo through space
and time). This is conceptually reminiscent of and complements the standard
image augmentation process (e.g., cropping, flipping, jittering). Interestingly,
under this perspective, our approach fits exactly on recent top-of-the-line self-
supervised frameworks such as contrasting learning, clustering, instance similar-
ity, and decorrelated representation, to name a few [7,18,20,8 5]. Without loss of
generality, we present our Self-supervised Learning Over Sets approach (SOS)
on top of the SWAV formulation due to their state-of-the-art results. Yet, we
anticipate that our SOS could be extended to other frameworks|[7,18,20,8].

SwAV review. SwAV [J] aims to learn a feature representation that matches
different views of the same image. Specifically, the representation of one of these
views is used to compute a code g, which is then predicted from the code of
another view. Formally, given an image x, two corresponding views x; and @2
are created by applying a random transformation ¢ € 7T, where T is the set
of all considered transformations (typically these are synthetic, such as random
crops, color jittering, Gaussian blurring, and flipping, etc.). Corresponding fea-
ture vectors z; = g(f(x;;0); ¢) are generated and projected into the unit sphere,
where z; € R%, f represents a backbone network with parameters § and g a
projection head with parameters ¢. SWAV can be seen as an online clustering
method, where the cluster centroids are defined by a set of learnable prototypes
c; € CE*4 which are used as a linear mapping function to compute each view’s
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code q; = z; C. The objective is to predict a view’s code g; from the other view’s
features z;, and the problem is formulated via cross-entropy minimization as:

L(z1,22) = U(q1, z2) + {(q2, 21) (1)
where the first term is
K
Uq1,22) == > _qflogph , (2)
k=0

where q; represents the prototype likelihood or soft cluster assignment of x;, p§
represents the prediction of g; as the softmax of z, ¢;/7 and T is a temperature
parameter. Additionally, gF comes from @, which normalizes all q in a mini-
batch (or queue) using the Sinkhorn-Knopp algorithm. The second term of Eq.
(1) is similarly defined. In practice, SwWAV uses more than two views per image.
More specifically, the concept of multi-crop is introduced, where crops taken as
part of the augmentation strategy can be either global or local concepts of an
image. Furthermore, the problem is formulated in such a way that prototype
code g assignments are only done on global views, while predictions p are done
using both local and global views.
Our SwAV-S. To better exploit unlabeled object regions from videos, we in-
troduce a set structure into SwAV’s formulation, resulting in a new SSL vari-
ant dubbed as SwAV-S. Specifically, we sample a subset of object regions from
B = {B;}i=1.n, B’ C B from each video. Then, each region undergoes an inde-
pendent image transformation and is treated as one view of V' to be predicted (or
contrasted) from another region of the same set. This set of regions are encoded,
generating embedding vectors {z; = gp(fp(V, B;;05); ¢5)}i=1.N, where fp and
gp represent a non-linear encoder function and projection head, respectively.
In contrastive learning design, we make a couple of important differences
against the original SwAV. (1) At each training iteration, we sample N > 2
object regions {B;};—1.nx from a video sequence V. (2) We only consider global
views, which allows the expansion of terms in Eq. (1) to N, effectively treating
all object regions as a set as follows:

QA E L ewn(iza)
LZmZZZ%‘ log > L2Tew) (3)

i j#i k=0 Y (?zj Crr

where (4, j) indexes the pairs of regions from a video.

Discussion. While our approach shares some high-level ideas w.r.t. earlier SSL
algorithms [55], SOS relies on (1) different assumptions (e.g., do not require an
explicit graph of relations among patches or tracking), (2) different aims (inte-
grating object representations for action recognition), and (3) specific methodol-
ogy (self-supervised learning over sets). All in all, our approach revives this line
of research with a refreshing perspective and using leveraging recent insights.
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network, Video Net. While most existing classification networks consume the entire
video frames, ours OIC only takes object regions. Their predictions are then late fused.
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3.2 Target task fine tuning: OIC Net and Model Fusion

Following the typical transfer learning of SSL pipelines, The pre-trained en-
hanced object region encoder fp serves as initialization for the OIC encoder fp
addressing the target task (c¢f. Fig. 4 - OIC Net). In our case, the target task
corresponds to supervised video classification using object patches.

Given a set of object regions B per video, we feed them through the OIC
encoder, followed by a pooling module aggregating the information from all the
cohort to obtain the classification logits of interest I = h(fg(V,B;60)) € R,
where |)| corresponds to the size of the label space. Note that we only have
access to weak video-level supervision. We apply the standard cross-entropy loss
between the logits and the video-level label to optimize the network parameters.

Class imbalanced fine-tuning. To complement our SOS pre-training for tack-
ling the class imbalance issue, we adopt the recent logit adjustment method [36]
with the key idea is to impose the class distribution prior of the training data

through logit regulation. For training, we optimize a logit adjustment cross-
fy+Tlogmy
< fy/+"' log Tyl

entropy loss, L;, = —log with 7, the frequency of class y on

y'ey €
the training set (i.e., the class prior), and 7 the temperature. In our case, we

impose this adjustment to the noun and verb branches separately, so their im-
balance can be remedied according to their respective distribution priors.

Model Fusion. Once trained as discussed above, our OIC model can be in-
tegrated with any existing action models [4,34,15] as depicted in Fig. 4. For
simplicity and flexibility, we use a weighted late-fusion of video predictions as:

l = aorcloic + a;l;, (4)

where locr, l; are the classification logits of our OIC and any existing model;
and aopcr, «; are scalars weighting the confidence of each model. In practice, we
set apcr, o; based on the performance of each model on a pilot validation set
(e.g., 30% of the training set). The fusion is applied separately in the case of
verb and noun-based action prediction.
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4 Experiments

Datasets. We evaluate our method on two standard egocentric video datasets in
the domain of kitchen environments. EPIC-KITCHENS-100 [10] is a large-
scale egocentric action recognition dataset with more than 90,000 action video
clips extracted from 100 hours of videos in kitchen environments. It captures
a wide variety of daily activities in kitchens. The dataset is labeled using 97
verb, and 300 noun classes and their combinations define different action classes.
Please refer to the supplementary material for results in the test server, and
additional details, among others. EGTEA [32] is another popular egocentric
video dataset consisting of 10,321 video clips annotated with 19 verb classes, 51
noun classes, and 106 action classes.

Performance metrics. We adhere to the standard action recognition protocol
[10,32,53]. Specifically, each model predicts the verb and the noun using two
classification heads, and we report accuracy rates of verb, noun, and action (i.e.
verb and noun tuple) as performance metric. For EPIC-KITCHENS-100, we
report the top-k accuracy over different sets of instances. For EGTEA, we adopt
the mean class accuracy on the three train/test splits.

Implementation details. We use an off-the-shelf hand-object contact detector
to extract candidate regions of interest where it is likely to find hands and ma-
nipulated objects [43]. We only consider the object regions and select those with
a confidence threshold greater than 0.01 non-filtered by the typical non-maxima
suppression operation of object detector pipelines [16]. Each region of interest
is cropped from the original frame size and resized such that the resolution of
each object region is 112 x 112. During training, we enable the center and size
jittering as data augmentation. The jittering is proportional to the size of the
region of interest and sampled from a uniform distribution [1,1.25). For each
frame, we consider three regions at most. At test time, we retained the most
confident detected regions. Yet, we sampled object regions irrespective of the
confidence score during training for data augmentation purposes.

Our OIC network uses a 2D-CNN backbone, ResNet-50 [21], to encode each
object region. Its Pool block corresponds to an integrated classifier followed by a
aggregation module, the video prediction is done by classifying each object region
independently, and then aggregating all the object predictions with a parameter-
less Mean pooling operation. We use the standard frame sampling [51], and
modestly consider 8 frames per video. In contrast to prior art [4], we did not
resort on additional test-time data augmentations (e.g. multi-crop/views) per
video. Thus, the performance of our model could improve further.

During the on-domain SOS self-supervised pre-training (Stage IT), we sample
sets of size N = 8 objects per video, and apply the standard set of photometric
and geometric data augmentation (e.g., color jittering and cropping cf. [5] for
more details) independently per element. We resort to single-machine training
with a batch size of 256 over 400 epochs and used the default optimization hy-
perparameters [5]. We initialize the CNN backbone of OIC from an off-the-shelf
self-supervised pre-trained network on ImageNet [5] (i.e., Stage I pre-training).
During the target task stage, we tune the whole OIC network end-to-end for
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: | close, fridge
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Fig. 5. Qualitative results. The green bounding boxes represent automatically de-
tected object regions being manipulated. The left examples are corrected by our
method, while the right two examples either error were maintained or flipped.

video classification. We train with SGD using an initial learning rate of 0.02 and
momentum 0.9 with a batch size of 64 videos. We decay the learning rate by
a factor of 0.1 after 20 epochs. We implemented our approach in Pytorch [38],
PytorchLightning [14] and the NUMFocus stack [19,49].

4.1 Evaluation on EPIC-KITCHENS-100

Qualitative analysis Fig. 5 depicts qualitative results, each quadrant de-
picts three frames from a particular video with its associated object regions,
ground truth labels, and the predictions made by TSM as well as OURS (i.e.,
TSM+OIC). Correctly predicted verbs and nouns are highlighted as green, while
incorrectly predicted as red. We observe that OIC network provides additional
context to guide predictions correctly. Fig. 5 (bottom left) depicts an example
where the noun of interest is mainly out of view during the duration of clip (only
visible at the very beginning and at the end), hence the verb is also implicitly
also not visible. Nevertheless, including the OIC module allows this informa-
tion to be correctly captured and preserved. Similarly, Fig. 5 (top right) shows
that TSM alone makes somewhat nonsensical prediction of “fill, tap”, while ours
predicts “wash, bowl” which is arguably visually and semantically closer to the
ground truth “fill, bowl” after all filling a bowl looks much like washing a bowl.
However, both TSM and ours still struggle with visually confusing noun classes,
as shown in Fig. 5 (bottom right). Although both models correctly predict the
verb “pour-in”, they both confuse the white water kettle with a jug of milk.
Perhaps surprisingly, we appreciate that TSM often struggles with seemingly
simple cases (noun and verb clearly visible and executed), as shown in Fig. 5
(top left), while the inclusion of OIC greatly alleviates this problem.
Baselines For extensive comparative evaluation, we consider a variety of state-
of-the-art action recognition models including (1) top CNN action models: TSM
[34], and SlowFast [15] designed for generic action recognition tasks with varying
architectural design for spatio-temporal representation learning, (2) a recent
vision transformer: X-ViT [4] with superior cost-effective formulation for spatio-
temporal attention learning, and (3) the latest egocentric action model: IPL [53]
designed to learn superior active object representation subject to human motion
cues. We test the effective of our OIC in improving several above methods with
the proposed fusion method.
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Overall Unseen participants Tail classes

Modality | Method TTDA Top-1 Top-5 Top-1 Top-1

Verb Noun Action | Verb Noun Action | Verb Noun Action|Verb Noun Action
4 TSM' [31] X 63.0 473 356 |89 742 572 |54.6 37.1 263 |359 267 181
v + OIC X 64.0 52.3 39.0 |90.2 78.4 61.6 |53.1 40.3 27.2 |36.2 29.9 20.5
v SlowFast! [15] X 65.6 50.0 385 |90.0 75.6 58.7 |56.7 41.6 30.0 |36.3 23.3 18.7
v +0IC X 66.5 53.5 40.9 |89.6 77.8 61.8 |56.6 43.6 31.1 |37.6 27.3 20.3
4 X-ViT! | X 62.9 49.1 37.7 |87.5 738 57.1 |54.4 41.7 305 |357 28.0 19.42
v +0IC X 64.7 54.6 40.9 |91.0 79.3 62.8 |54.6 43.8 31.2 |37.0 31.1 21.2
v X-ViT | 4 68.7 56.4 443 |904 79.4 645 |57.8 474 349 |382 318 224
v +0IC v 69.3 57.9 45.7 |91.2 81.1 66.2 [57.9 49.3 36.3 |38.6 33.1 23.7
V+F TSM' [34] X 67.9 49.1 384 |91.0 749 60.7 |585 392 29.3 |36.8 225 17.7
V+F +0IC X 68.4 53.7 41.8 |91.4 78.7 64.0 |58.7 42.7 30.8 |37.1 26.7 20.1
V+F IPL(I3D) [53] X |67.82 50.87 39.87 - - - - - -
V+F IPL(R2+1D) [53] X |68.61 51.24 40.98 - -

Table 1. Results on the validation set of EPIC-KITCHENS-100 [ ]. Modality:
V=Visual; F=Optical flow. ': Results computed with the model weights released by the
authors of [10,4]. TTDA: Test-time data-augmentation (e.g., multi-crop). Underlined
numbers correspond to best results across the board. Bold numbers highlight the best
between a proxy model and proxy + ours. All in all, our model yields state-of-the-art
results and it is versatile as improved four strong action classification models.

Results analysis We report the action recognition results in Table 1. We have
the following observations: (1) The performance of CNN action models, SlowFast
and TSM, are similar to the recently introduced X-ViT without heavy test-time
data augmentation. (2) Importantly, our OIC further improves SlowFast(V),
TSM(V+F) and X-ViT by 2.4%, 3.4%, and 3.2% on overall action accuracy,
respectively. Without using computationally expensive optical flow, TSM still
benefits from OIC at a similar scale. These results verify the versatility and
consistent usefulness of our OIC in enhancing prior art models. As expected, the
improvement is mainly achieved in noun recognition. This evidence indicates
that generic action recognition methods are limited in modeling the handled
objects from cluttered backgrounds and scenes. This is exactly the motivation
for learning our OIC model. (3) We also observe that our OIC clearly improves
the accuracy scores on unseen participants and tail classes. This implies that
exploiting our OIC could help reduce the negative impact of domain shift (seen
vs. unseen participants in this case) and mitigate the overwhelming effect from
head classes to tail classes, concurrently. (4) Along with TSM, our method also
clearly outperforms the latest egocentric action model IPL designed to learn
better active object representations. This indicates that without explicit region
detection, the CNN model is less effective in isolating the active objects from
the scenes. (5) The recent X-ViT model lifts the performance of CNN using
additional test-time data augmentation (i.e., averaging the results from 3 crops
per video). It is worth noting that even after triplicating the computational
budget, our computationally modest OIC representation stills provides a further
gain of 1.4% on overall actions to this model. Computational complexity and
runtime. In a 1080Ti GPU, TSM and XViT run in 12 and 66 msec. respectively,
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Modality | Method Split 1 Split 2 Split 3 | Avg
v TSM [3]] 612 612 596 | 60.7
Vv TSM+OIC 62.0 61.9 60.0 | 61.3
V+F I3D* [6] 55.8 53.1 53.6 54.2
V+F Ego-RNN-28* [17] | 524  50.1  49.1 | 50.5
V+F LSTA-28* [46] 53.0 § N N

V+F MutualCtx-25* [21] | 55.7 - - -

V+F Prob-ATT [31] 56.5 53.5 53.6 | 54.5
V+F I3D+IPL [53] 60.2 59.0 57.9 59.1
V4F+G | I3D* [6] 537 503  49.6 | 51.2
V+F+G | Prob-ATT [31] 57.2 53.8 54.1 | 55.0

Table 2. Comparison against state of the art in EGTEA [32]. Modality:
V=Visual; F=Optical flow; G=Gaze. *: Results are taken from [31].

while the OIC module runs in 10.7 msec. The OIC complexity is 26 GFLOPs
while XViT is much larger, 285 GFLOPs. OIC is comparatively efficient.

4.2 Evaluation on EGTEA

Baselines Compared to EPIC-KITCHENS-100, EGTEA uniquely features eye
gaze tracking information. We compare our method with the following alter-
natives: (1) I3D [6]: A two-stream I3D with joint training of RGB and optical
flow, (2) I3D+Gaze: Instead of average pooling, the ground truth human gaze is
leveraged to pool the features from the last conv layer, (3) Ego-RNN-2S [417] and
LSTA-2S [46]: two recurrent networks with soft attention, (4) MutualCtx-2S [24]:
A gaze-enhanced action model trained by alternating between gaze estimation
and action recognition, (5) Prob-ATT [31]: A state-of-the-art joint gaze estima-
tion and action recognition model featured with a stochastic gaze distribution
formulation, (6) TSM [34]: A recent strong action recognition model with effi-
cient temporal shift operation between nearby frames for motion modeling, (7)
IPL [53]: A recent state-of-the-art egocentric action model as discussed earlier.
We combine our OIC with TSM in evaluating this dataset.

Results analysis. Table 2 reports the results. We observed that: (1) using gaze
modality does not guarantee superior results; For example, without gaze IPL still
achieves better results than Prob-ATT using gaze. This suggests that video data
alone already provide rich information and the key is how to learn and extract
discriminative action information with proper model design. The way to leverage
the gaze data is also equally critical. (2) Similarly, the computationally expensive
optical flow is not the highest performance promise, as indicated by the excellent
performance with TSM using only 2D video frames as input. (3) Importantly,
our OIC again further improves the performance of TSM consistently over all the
splits, suggesting the generic efficacy of our method on a second test scenario.

4.3 SOS and Long-tail Learning

Here we present a rigorous assessment on the role of our SOS pre-training for
dealing with class-imbalance distributions in videos. Dataset and metrics.
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LT loss Overall Tail classes

Method S0S [36] Verb Noun Action | Verb Noun Action
A OIC X X 18.2 21.1 8.7 13.2 119 6.1
B OIC X v 275 25.0 8.1 25.4  19.9 7.1
C OIC v X 20.8 25.0 10.8 | 159 16.7 8.6
D OIC v v 30.3 28.0 9.4 28.6 23.4 8.7
E X-ViT X X 22.1  25.9 12.8 159 17.8 9.5
F X-ViT + OIC Vv v 30.2 31.8 15.2 | 25.2 24.9 12.8

Table 3. Long-tail results (accuracy) on the validation set of EPIC-
KITCHENS-100, showcasing the impact of SOS for dealing with class-imbalance
distributions. Refer to text for details about the metric.

We perform the study in the validation set of EPIC-KITCHENS-100 using the
standard metrics for evaluating long-tail learning algorithms [1 1], class-balanced
average accuracy for verb, noun and action. Concretely, each video is weighted
by the inverse of the number of instances of its corresponding label. Note that we
retain the tail classes definition from [10], but the metrics reported in this section
differ from those in Table 1. Baselines. We consider our OIC network aided
(or not) with our SOS pre-training and using (or not) the long-tail (LT) loss of
[36] during the target task fine-tuning. We also report of single-crop X-ViT [4],
using the pre-trained weights of the authors, and our fused model.
Results analysis. Table 3 reports the results. We observed that: (1) Our SOS
pre-training indeed helps for dealing with class-imbalanced scenarios. It naturally
improves noun and action classes the most, by +3.9% and +2.1% overall classes
respectively (row C v.s. A). Note that aiding OIC with SOS (C) significantly
reduced the gap between the X-ViT (E) and our plain OIC (A). (2) SOS is
complementary to the state-of-the-art LT learning approach. SOS and the LT
loss [36] yields the best results for the OIC model, except for overall action classes
where SOS pre-training achieves the best result. The relatively minor setback
evidences the relevance of studying LT and SSL pre-training within the context
of structured labels such as actions in videos. (3) Our fused model (F) , X-ViT
with OIC aided with SOS and the LT loss [30], achieves the state-of-the-art on
LT accuracy for noun and action by a large margin.

Overall, we have validated the relevance and complementary of SOS for deal-
ing with long-tail learning scenarios in egocentric action recognition.

4.4 Ablation Study

As prior art [53], we validate the major components of our approach on EPIC-
KITCHENS-100 using the corresponding evaluation protocol [10].

Off-the-shelf self-supervised encoder. We study the impact of using off-
the-shelf supervised [38] vs. self-supervised [5] encoders for representing handled
objects in the target dataset. Both encoders were trained in ImageNet [12], and
serve as initialization for our OIC backbone. Table 4 row A and B report the
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Overall Tail classes
Method oD Verb Noun Action | Verb Noun Action

A Supervised pre-training X |49.3 44.5 27.4 32.0 23.6 14.8
B SwAV X 149.2 458 279 31.2 21.2 14.0
C SwAV v 1499 470 28.7 30.6 23.1 14.6
D SwAV-S v |51.5 48.5 30.2 |32.4 25.6 16.4

Table 4. Ablation of different components of our approach on EPIC-
KITCHENS-100. Rows A-D report the top-1 accuracy Verb, Noun, and Action
of the OIC model by itself (i.e., without video network fusion) for overall and tail
instances [10]. OD: On-Domain pre-training in target dataset, EPIC-KITCHENS-100.

results of supervised and self-supervised encoders, respectively. Self-supervised
initialization improves the performance w.r.t. supervised initialization in noun by
1.3% and action by 0.5% without degrading verb performance. These results echo
the relevance and popularity of self-supervised pre-training [17] in the domain
of egocentric visual perception, which has been relatively under-explored.
Impact of self-supervised adaptation. We gauge the impact of adopting
the off-the-shelf self-supervised representation to the domain of interest, manip-
ulated object regions in EPIC-KITCHENS-100. For this purpose, we employ the
standard SwAV loss (Eq. (1)) during the Stage II pre-training, (cf. Fig. 2). We
use the original set of data augmentations and optimization hyper-parameters
as in [5]. Table 4 row C reports the results of the self-supervised domain adap-
tation with SwAV loss over individual object regions (Fig. 3 - top). Adapting
the representation helps to boost the predictive power for verb, noun and action
by 0.7%, 1.2% and 0.8% w.r.t. no domain adaptation Table 4 row B.
Relevance of SOS. We validate the impact of SWAV-S (i.e., our incarnation of
SOS), which treats actions as a natural self-supervised transformation. For this
purpose, we employ the SwAV-S loss (Eq. (3)) during the Stage II pre-training
(see Fig. 2). We kept the same set of hyper-parameters as SwAV. Table 4 row
D reports the results of SwAV-S. We observe the best performance across the
board and a more significant boost w.r.t. on-domain SwAV (Table 4 row C)
by 1.6% for verb, 1.5% for noun and 1.5% for action. This result validates the
benefit of our novel approach for self-supervised domain adaptation.

5 Conclusions

We presented a novel approach, Self-supervised Learning Over Sets (SOS), for
learning an object representation suitable for egocentric action recognition with-
out needing object-level annotations. SOS exploits the temporal consistency and
concurrence relations among a set of handled objects as a self-supervisory signal.
Experiments show that prior state-of-the-art video models consistently benefit
from our object representation, with improved ability to tackle the challenging
long-tail setup.
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